Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 4141, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230471

RESUMEN

Genetic gain in potato is hampered by the heterozygous tetraploid genome of cultivated potato. Converting potato into a diploid inbred-line based F1-hybrid crop provides a promising route towards increased genetic gain. The introduction of a dominant S-locus inhibitor (Sli) gene into diploid potato germplasm allows efficient generation of self-fertilized seeds and thus the development of potato inbred lines. Little is known about the structure and function of the Sli locus. Here we describe the mapping of Sli to a 12.6 kb interval on chromosome 12 using a recombinant screen approach. One of two candidate genes present in this interval shows a unique sequence that is exclusively present in self-compatible lines. We describe an expression vector that converts self-incompatible genotypes into self-compatible and a CRISPR-Cas9 vector that converts SC genotypes into SI. The Sli gene encodes an F-box protein that is specifically expressed in pollen from self-compatible plants. A 533 bp insertion in the promotor of that gene leads to a gain of function mutation, which overcomes self-pollen rejection.


Asunto(s)
Genes de Plantas/genética , Fitomejoramiento , Proteínas de Plantas/genética , Solanum tuberosum/genética , Sistemas CRISPR-Cas , Mapeo Cromosómico , Cromosomas de las Plantas , Diploidia , Genotipo , Heterocigoto , Magnoliopsida , Polen/genética , Semillas/metabolismo , Autoincompatibilidad en las Plantas con Flores/genética
2.
G3 (Bethesda) ; 10(10): 3489-3495, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32759330

RESUMEN

With the rapid expansion of the application of genomics and sequencing in plant breeding, there is a constant drive for better reference genomes. In potato (Solanum tuberosum), the third largest food crop in the world, the related species S. phureja, designated "DM", has been used as the most popular reference genome for the last 10 years. Here, we introduce the de novo sequenced genome of Solyntus as the next standard reference in potato genome studies. A true Solanum tuberosum made up of 116 contigs that is also highly homozygous, diploid, vigorous and self-compatible, Solyntus provides a more direct and contiguous reference then ever before available. It was constructed by sequencing with state-of-the-art long and short read technology and assembled with Canu. The 116 contigs were assembled into scaffolds to form each pseudochromosome, with three contigs to 17 contigs per chromosome. This assembly contains 93.7% of the single-copy gene orthologs from the Solanaceae set and has an N50 of 63.7 Mbp. The genome and related files can be found at https://www.plantbreeding.wur.nl/Solyntus/ With the release of this research line and its draft genome we anticipate many exciting developments in (diploid) potato research.


Asunto(s)
Solanum tuberosum , Solanum , Secuencia de Bases , Genoma de Planta , Fitomejoramiento , Solanum/genética , Solanum tuberosum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA