Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 11: 1433, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754156

RESUMEN

Vitamin D plays an active role in the modulation of innate and adaptive immune responses as well as in the protection against respiratory pathogens. Evidence for this immunomodulatory and protective role is derived from observational studies showing an association between vitamin D deficiency, chronic airway diseases and respiratory infections, and is supported by a range of experimental studies using cell culture and animal models. Furthermore, recent intervention studies have now shown that vitamin D supplementation reduces exacerbation rates in vitamin D-deficient patients with chronic obstructive pulmonary disease (COPD) or asthma and decreases the incidence of acute respiratory tract infections. The active vitamin D metabolite, 1,25-dihydroxy-vitamin D (1,25(OH)2D), is known to contribute to the integrity of the mucosal barrier, promote killing of pathogens (via the induction of antimicrobial peptides), and to modulate inflammation and immune responses. These mechanisms may partly explain its protective role against infections and exacerbations in COPD and asthma patients. The respiratory mucosa is an important site of local 1,25(OH)2D synthesis, degradation and signaling, a process that can be affected by exposure to inflammatory mediators. As a consequence, mucosal inflammation and other disease-associated factors, as observed in e.g., COPD and asthma, may modulate the protective actions of 1,25(OH)2D. Here, we discuss the potential consequences of various disease-associated processes such as inflammation and exposure to pathogens and inhaled toxicants on vitamin D metabolism and local responses to 1,25(OH)2D in both immune- and epithelial cells. We furthermore discuss potential consequences of disturbed local levels of 25(OH)D and 1,25(OH)2D for chronic lung diseases. Additional insight into the relationship between disease-associated mechanisms and local effects of 1,25(OH)2D is expected to contribute to the design of future strategies aimed at improving local levels of 1,25(OH)2D and signaling in chronic inflammatory lung diseases.


Asunto(s)
Asma , Inflamación/inmunología , Enfermedad Pulmonar Obstructiva Crónica , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Vitamina D/metabolismo , Animales , Humanos
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 224-233, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30528790

RESUMEN

INTRODUCTION: Disturbances in onset and resolution of inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. Dietary polyunsaturated fatty acids (PUFAs) can be converted into lipid mediators here collectively named oxylipins. These include classical eicosanoids, but also pro-resolving mediators. A balanced production of pro-inflammatory and pro-resolving oxylipins is of importance for adequate inflammatory responses and subsequent return to homeostasis. OBJECTIVES: Here we investigated if PUFA metabolism is disturbed in COPD patients. METHODS: Free PUFA and oxylipin levels were measured in induced sputum samples from the Bergen COPD cohort and COPD exacerbation study using liquid chromatography-mass spectrometry. Additionally, effects of whole cigarette smoke on PUFA metabolism in air-liquid interface cultures of primary bronchial epithelial cells were assessed. RESULTS: Significantly lower levels of free alpha-linolenic acid, linoleic acid and eicosapentaenoic acid (EPA) were detected in sputum from stable COPD patients compared to controls. During acute exacerbation (AE), levels of free arachidonic acid and docosapentaenoic acid were higher than in stable COPD patients. Furthermore, levels of omega-3 EPA- and docosahexaenoic acid-derived oxylipins were lower in sputum from stable COPD patients compared to controls. Cyclooxygenase-2-converted mediators were mostly increased during AE. In vitro studies additionally showed that cigarette smoke exposure may also directly contribute to altered epithelial PUFA metabolism, and indirectly by causing airway epithelial remodelling. CONCLUSIONS: Our findings show significant differences in PUFA metabolism in COPD patients compared to controls, further changed during AE. Airway epithelial remodelling may contribute to these changes. These findings provide new insight in impaired inflammatory resolution in COPD.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Esputo/metabolismo , Ácido Araquidónico/metabolismo , Fumar Cigarrillos/efectos adversos , Fumar Cigarrillos/metabolismo , Dieta , Ácido Eicosapentaenoico/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Ácidos Grasos Insaturados/fisiología , Femenino , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Oxilipinas/metabolismo , Mucosa Respiratoria/metabolismo , Fumadores , Esputo/química , Ácido alfa-Linolénico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA