Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 344: 118573, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37459811

RESUMEN

Forest restoration mitigates climate change by removing CO2 and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil. Relations between SOM properties and soil health indicators were also explored. We examined two restorations using tree planting ('active restoration'): an 8-year-old forest with green manure and native trees planted in two rounds, and a 15-year-old forest with native-planted trees in one round without green manure. Restorations were compared to reformed pasture and primary forest sites. We measured C storage in soil layers (0-10, 10-20, and 20-30 cm), litter, and plants. GHG emissions were assessed using CH4 and CO2 fluxes. SOM quantity was evaluated using C and N, quality using humification index (HLIFS), and origin using δ13C and δ15N. Nine soil health indicators were interrelated with SOM attributes. The primary forest presented the highest C stocks (107.7 Mg C ha-1), followed by 15- and 8-year-old restorations and pasture with 69.8, 55.5, and 41.8 Mg C ha-1, respectively. Soil C stocks from restorations and pasture were 20% lower than primary forest. However, 8- and 15-year-old restorations stored 12.3 and 28.3 Mg ha-1 more aboveground C than pasture. The younger forest had δ13C and δ15N values of 2.1 and 1.7‰, respectively, lower than the 15-year-old forest, indicating more C derived from C3 plants and biological N fixation. Both restorations and pasture had at least 34% higher HLIFS in deeper soil layers (10-30 cm) than primary forest, indicating a lack of labile SOM. Native and 15-year-old forests exhibited higher soil methane influx (141.1 and 61.9 µg m-2 h-1). Forests outperformed pasture in most soil health indicators, with 69% of their variance explained by SOM properties. However, SOM quantity and quality regeneration in both restorations approached the pristine forest state only in the top 10 cm layer, while deeper soil retained agricultural degradation legacies. In conclusion, active restoration of the Atlantic Forest is a superior approach compared to pasture reform for GHG mitigation. Nonetheless, the development of restoration techniques to facilitate labile C input into deeper soil layers (>10 cm) is needed to further improve soil multifunctionality and long-term C storage.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Ecosistema , Brasil , Secuestro de Carbono , Dióxido de Carbono/análisis , Estiércol , Carbono/análisis , Bosques , Árboles
2.
Ecol Lett ; 13(3): 292-301, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20070364

RESUMEN

Rare species are assumed to have little impact on community interactions and ecosystem processes. However, very few studies have actually attempted to quantify the role of rare species in ecosystems. Here we compare effects of soil community assemblages on plant-herbivore interactions and show that reduction of rare soil microbes increases both plant biomass and plant nutritional quality. Two crop plant species growing in soil where rare microbes were reduced, had tissues of higher nutritional quality, which theoretically makes them more susceptible to pest organisms such as shoot-feeding aphids and root-feeding nematodes. Reduction of rare microbes increased aphid body size in the absence of nematodes; nematodes always reduced aphid body size independent of the soil microbial community. This study is the first to show that rare soil microbes are not redundant but may play a role in crop protection by enhancing aboveground and belowground plant defence. It remains to be tested whether these are direct effects of rare soil microbes on plants and herbivores, or indirect effects via shifts in the microbial soil community assemblages.


Asunto(s)
Áfidos/fisiología , Bacterias/clasificación , Beta vulgaris/fisiología , Brassica/fisiología , Hongos/clasificación , Nematodos/crecimiento & desarrollo , Microbiología del Suelo , Animales , Áfidos/microbiología , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Beta vulgaris/microbiología , Brassica/microbiología , Hongos/aislamiento & purificación , Hongos/fisiología , Nematodos/microbiología , Nematodos/fisiología , Esterilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA