Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cochrane Database Syst Rev ; 9: CD013419, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31476271

RESUMEN

BACKGROUND: Exercise training is commonly recommended for adults with fibromyalgia. We defined flexibility exercise training programs as those involving movements of a joint or a series of joints, through complete range of motion, thus targeting major muscle-tendon units. This review is one of a series of reviews updating the first review published in 2002. OBJECTIVES: To evaluate the benefits and harms of flexibility exercise training in adults with fibromyalgia. SEARCH METHODS: We searched the Cochrane Library, MEDLINE, Embase, CINAHL (Cumulative Index to Nursing and Allied Health Literature), PEDro (Physiotherapy Evidence Database), Thesis and Dissertation Abstracts, AMED (Allied and Complementary Medicine Database), the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), and ClinicalTrials.gov up to December 2017, unrestricted by language, and we reviewed the reference lists of retrieved trials to identify potentially relevant trials. SELECTION CRITERIA: We included randomized trials (RCTs) including adults diagnosed with fibromyalgia based on published criteria. Major outcomes were health-related quality of life (HRQoL), pain intensity, stiffness, fatigue, physical function, trial withdrawals, and adverse events. DATA COLLECTION AND ANALYSIS: Two review authors independently selected articles for inclusion, extracted data, performed 'Risk of bias' assessments, and assessed the certainty of the body of evidence for major outcomes using the GRADE approach. All discrepancies were rechecked, and consensus was achieved by discussion. MAIN RESULTS: We included 12 RCTs (743 people). Among these RCTs, flexibility exercise training was compared to an untreated control group, land-based aerobic training, resistance training, or other interventions (i.e. Tai Chi, Pilates, aquatic biodanza, friction massage, medications). Studies were at risk of selection, performance, and detection bias (due to lack of adequate randomization and allocation concealment, lack of participant or personnel blinding, and lack of blinding for self-reported outcomes). With the exception of withdrawals and adverse events, major outcomes were self-reported and were expressed on a 0-to-100 scale (lower values are best, negative mean differences (MDs) indicate improvement). We prioritized the findings of flexibility exercise training compared to land-based aerobic training and present them fully here.Very low-certainty evidence showed that compared with land-based aerobic training, flexibility exercise training (five trials with 266 participants) provides no clinically important benefits with regard to HRQoL, pain intensity, fatigue, stiffness, and physical function. Low-certainty evidence showed no difference between these groups for withdrawals at completion of the intervention (8 to 20 weeks).Mean HRQoL assessed on the Fibromyalgia Impact Questionnaire (FIQ) Total scale (0 to 100, higher scores indicating worse HRQoL) was 46 mm and 42 mm in the flexibility and aerobic groups, respectively (2 studies, 193 participants); absolute change was 4% worse (6% better to 14% worse), and relative change was 7.5% worse (10.5% better to 25.5% worse) in the flexibility group. Mean pain was 57 mm and 52 mm in the flexibility and aerobic groups, respectively (5 studies, 266 participants); absolute change was 5% worse (1% better to 11% worse), and relative change was 6.7% worse (2% better to 15.4% worse). Mean fatigue was 67 mm and 71 mm in the aerobic and flexibility groups, respectively (2 studies, 75 participants); absolute change was 4% better (13% better to 5% worse), and relative change was 6% better (19.4% better to 7.4% worse). Mean physical function was 23 points and 17 points in the flexibility and aerobic groups, respectively (1 study, 60 participants); absolute change was 6% worse (4% better to 16% worse), and relative change was 14% worse (9.1% better to 37.1% worse). We found very low-certainty evidence of an effect for stiffness. Mean stiffness was 49 mm to 79 mm in the flexibility and aerobic groups, respectively (1 study, 15 participants); absolute change was 30% better (8% better to 51% better), and relative change was 39% better (10% better to 68% better). We found no evidence of an effect in all-cause withdrawal between the flexibility and aerobic groups (5 studies, 301 participants). Absolute change was 1% fewer withdrawals in the flexibility group (8% fewer to 21% more), and relative change in the flexibility group compared to the aerobic training intervention group was 3% fewer (39% fewer to 55% more). It is uncertain whether flexibility leads to long-term effects (36 weeks after a 12-week intervention), as the evidence was of low certainty and was derived from a single trial.Very low-certainty evidence indicates uncertainty in the risk of adverse events for flexibility exercise training. One adverse effect was described among the 132 participants allocated to flexibility training. One participant had tendinitis of the Achilles tendon (McCain 1988), but it is unclear if the tendinitis was a pre-existing condition. AUTHORS' CONCLUSIONS: When compared with aerobic training, it is uncertain whether flexibility improves outcomes such as HRQoL, pain intensity, fatigue, stiffness, and physical function, as the certainty of the evidence is very low. Flexibility exercise training may lead to little or no difference for all-cause withdrawals. It is also uncertain whether flexibility exercise training has long-term effects due to the very low certainty of the evidence. We downgraded the evidence owing to the small number of trials and participants across trials, as well as due to issues related to unclear and high risk of bias (selection, performance, and detection biases). While flexibility exercise training appears to be well tolerated (similar withdrawal rates across groups), evidence on adverse events was scarce, therefore its safety is uncertain.


Asunto(s)
Terapia por Ejercicio/métodos , Fatiga/terapia , Fibromialgia/terapia , Calidad de Vida , Ejercicio Físico , Fibromialgia/fisiopatología , Humanos , Dimensión del Dolor , Ensayos Clínicos Controlados Aleatorios como Asunto , Entrenamiento de Fuerza , Resultado del Tratamiento
2.
Cochrane Database Syst Rev ; 9: CD011755, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28950401

RESUMEN

BACKGROUND: Exercise training is commonly recommended for adults with fibromyalgia. We defined whole body vibration (WBV) exercise as use of a vertical or rotary oscillating platform as an exercise stimulus while the individual engages in sustained static positioning or dynamic movements. The individual stands on the platform, and oscillations result in vibrations transmitted to the subject through the legs. This review is one of a series of reviews that replaces the first review published in 2002. OBJECTIVES: To evaluate benefits and harms of WBV exercise training in adults with fibromyalgia. SEARCH METHODS: We searched the Cochrane Library, MEDLINE, Embase, CINAHL, PEDro, Thesis and Dissertation Abstracts, AMED, WHO ICTRP, and ClinicalTrials.gov up to December 2016, unrestricted by language, to identify potentially relevant trials. SELECTION CRITERIA: We included randomized controlled trials (RCTs) in adults with the diagnosis of fibromyalgia based on published criteria including a WBV intervention versus control or another intervention. Major outcomes were health-related quality of life (HRQL), pain intensity, stiffness, fatigue, physical function, withdrawals, and adverse events. DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials for inclusion, extracted data, performed risk of bias assessments, and assessed the quality of evidence for major outcomes using the GRADE approach. We used a 15% threshold for calculation of clinically relevant differences. MAIN RESULTS: We included four studies involving 150 middle-aged female participants from one country. Two studies had two treatment arms (71 participants) that compared WBV plus mixed exercise plus relaxation versus mixed exercise plus relaxation and placebo WBV versus control, and WBV plus mixed exercise versus mixed exercise and control; two studies had three treatment arms (79 participants) that compared WBV plus mixed exercise versus control and mixed relaxation placebo WBV. We judged the overall risk of bias as low for selection (random sequence generation), detection (objectively measured outcomes), attrition, and other biases; as unclear for selection bias (allocation concealment); and as high for performance, detection (self-report outcomes), and selective reporting biases.The WBV versus control comparison reported on three major outcomes assessed at 12 weeks post intervention based on the Fibromyalgia Impact Questionnaire (FIQ) (0 to 100 scale, lower score is better). Results for HRQL in the control group at end of treatment (59.13) showed a mean difference (MD) of -3.73 (95% confidence interval [CI] -10.81 to 3.35) for absolute HRQL, or improvement of 4% (11% better to 3% worse) and relative improvement of 6.7% (19.6% better to 6.1% worse). Results for withdrawals indicate that 14 per 100 and 10 per 100 in the intervention and control groups, respectively, withdrew from the intervention (RR 1.43, 95% CI 0.27 to 7.67; absolute change 4%, 95% CI 16% fewer to 24% more; relative change 43% more, 95% CI 73% fewer to 667% more). The only adverse event reported was acute pain in the legs, for which one participant dropped out of the program. We judged the quality of evidence for all outcomes as very low. This study did not measure pain intensity, fatigue, stiffness, or physical function. No outcomes in this comparison met the 15% threshold for clinical relevance.The WBV plus mixed exercise (aerobic, strength, flexibility, and relaxation) versus control study (N = 21) evaluated symptoms at six weeks post intervention using the FIQ. Results for HRQL at end of treatment (59.64) showed an MD of -16.02 (95% CI -31.57 to -0.47) for absolute HRQL, with improvement of 16% (0.5% to 32%) and relative change in HRQL of 24% (0.7% to 47%). Data showed a pain intensity MD of -28.22 (95% CI -43.26 to -13.18) for an absolute difference of 28% (13% to 43%) and a relative change of 39% improvement (18% to 60%); as well as a fatigue MD of -33 (95% CI -49 to -16) for an absolute difference of 33% (16% to 49%) and relative difference of 47% (95% CI 23% to 60%); and a stiffness MD of -26.27 (95% CI -42.96 to -9.58) for an absolute difference of 26% (10% to 43%) and a relative difference of 36.5% (23% to 60%). All-cause withdrawals occurred in 8 per 100 and 33 per 100 withdrawals in the intervention and control groups, respectively (two studies, N = 46; RR 0.25, 95% CI 0.06 to 1.12) for an absolute risk difference of 24% (3% to 51%). One participant exhibited a mild anxiety attack at the first session of WBV. No studies in this comparison reported on physical function. Several outcomes (based on the findings of one study) in this comparison met the 15% threshold for clinical relevance: HRQL, pain intensity, fatigue, and stiffness, which improved by 16%, 39%, 46%, and 36%, respectively. We found evidence of very low quality for all outcomes.The WBV plus mixed exercise versus other exercise provided very low quality evidence for all outcomes. Investigators evaluated outcomes on a 0 to 100 scale (lower score is better) for pain intensity (one study, N = 23; MD -16.36, 95% CI -29.49 to -3.23), HRQL (two studies, N = 49; MD -6.67, 95% CI -14.65 to 1.31), fatigue (one study, N = 23; MD -14.41, 95% CI -29.47 to 0.65), stiffness (one study, N = 23; MD -12.72, 95% CI -26.90 to 1.46), and all-cause withdrawal (three studies, N = 77; RR 0.72, 95% CI -0.17 to 3.11). Adverse events reported for the three studies included one anxiety attack at the first session of WBV and one dropout from the comparison group ("other exercise group") due to an injury that was not related to the program. No studies reported on physical function. AUTHORS' CONCLUSIONS: Whether WBV or WBV in addition to mixed exercise is superior to control or another intervention for women with fibromyalgia remains uncertain. The quality of evidence is very low owing to imprecision (few study participants and wide confidence intervals) and issues related to risk of bias. These trials did not measure major outcomes such as pain intensity, stiffness, fatigue, and physical function. Overall, studies were few and were very small, which prevented meaningful estimates of harms and definitive conclusions about WBV safety.


Asunto(s)
Terapia por Ejercicio/métodos , Fibromialgia/terapia , Terapia por Relajación/métodos , Vibración/uso terapéutico , Adulto , Terapia Combinada/métodos , Fatiga/diagnóstico , Femenino , Humanos , Rigidez Muscular , Dimensión del Dolor , Pacientes Desistentes del Tratamiento/estadística & datos numéricos , Calidad de Vida , Resultado del Tratamiento , Vibración/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA