Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Syst Evol Microbiol ; 70(5): 3037-3048, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32223835

RESUMEN

Two independent strains of a Leptotrichia species (ES3154-GLUT and ES2714_GLU) were isolated from the oral cavity of northern elephant seals (Mirounga angustirostris) that were admitted to The Marine Mammal Centre facilities in California, USA. The strains were isolated from oral swabs by cultivation in PPLO broth supplemented with serum, penicillin and colistin in anaerobic conditions. The strains were Gram-negative, pleomorphic, indole-, oxidase- and catalase-negative, non-spore-forming, non-motile rods/coccobacilli in short chains. The 16S rRNA gene sequence of these strains shared 94.42 % nucleotide similarity with Oceanivirga salmonicida AVG 2115T but demonstrated ≤86.00-92.50 % nucleotide similarity to the 16S rRNA genes of other species of the family Leptotrichiaceae. The genome was sequenced for strain ES3154-GLUT. Average nucleotide identity values between strain ES3154-GLUT and 15 type strain genomes from the family Leptotrichiaceae ranged from 66.74 % vs. Sebaldella termitidis to 73.35 % vs. O. salmonicida. The whole genome phylogeny revealed that the novel species was most closely related to O. salmonicida AVG 2115T. This relationship was also confirmed by nucleotide similarity and multilocus phylogenetic analyses employing various housekeeping genes (partial 23S rRNA, rpoB, rpoC, rpoD, polC, adh, gyrA and gyrB genes). Chemotaxonomic and phenotypical features of strain ES3154-GLUT were in congruence with closely related members of the family Leptotrichiaceae, represented by similar enzyme profiles and fatty acid patterns. MALDI-TOF MS analysis was capable to clearly discriminate strain ES3154-GLUT from all currently described taxa of the family Leptotrichiaceae. Based on these data, we propose a novel species of the genus Oceanivirga, for which the name Oceanivirga miroungae sp. nov. is proposed with the type strain ES3154-GLUT (=DSM 109740T=CCUG 73653T=ATCC TSD-189T=NCTC 14411T) and one representative strain ES2714_GLU. The G+C content is 26.82 %, genome size is 1 356 983 bp.


Asunto(s)
Fusobacterias/clasificación , Boca/microbiología , Filogenia , Phocidae/microbiología , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , California , ADN Bacteriano/genética , Ácidos Grasos/química , Fusobacterias/aislamiento & purificación , Genes Bacterianos , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , ARN Ribosómico 23S , Análisis de Secuencia de ADN
2.
Int J Syst Evol Microbiol ; 70(1): 153-164, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31617839

RESUMEN

Novel ureaplasma strains have been isolated from the genital tract of both sexes of northern elephant seals (Mirounga angustirostris; six strains) and California sea lions (Zalophus californianus; five strains) stranded along the Central California coast, USA. These strains were phenotypically and genetically characterized and compared to other seven known Ureaplasma species. All novel ureaplasma strains hydrolysed urea, but did not metabolize arginine, and all were isolated and propagated using PPLO medium supplemented with urea under aerobic, microaerophilic, and anaerobic atmospheric conditions at +35-37 °C. Transmission electron microscopy revealed typical mollicute cellular morphology. Molecular characterization included assessment of the following genetic loci: 16S rRNA, the 16S-23S ITS, 23S rRNA, rpoB, ftsH, tufB, rpoC, fusA and ureC. Complete 16S rRNA gene sequence analysis of these novel Ureaplasma species indicated that they were most closely related to each other with nucleotide identity 99.87 % and ≤93.08 % related to other known Ureaplasma species. The results of nucleotide analysis of the sequenced housekeeping genes revealed 71.68-93.02 % similarity to corresponding genes of other known Ureaplasma species. The multi-locus genetic characterization and the phylogenetic analysis of the 16S rRNA and rpoB genes of these Ureaplasma species clearly demonstrated their novelty and, reflecting their host specificites, the name Ureaplasma miroungigenitalium sp. nov. is proposed for the Ureaplasma species isolated from northern elephant seals, the type strain is ES2783-GENT (=DSM 24842T=ATCC BAA-2460T), and the name Ureaplasma zalophigenitalium sp. nov. is proposed for the Ureaplasma species isolated from California sea lions, the type strain is CSL7644-GENT (=DSM 24843T=ATCC BAA-2262T).


Asunto(s)
Genitales/microbiología , Filogenia , Leones Marinos/microbiología , Phocidae/microbiología , Ureaplasma/clasificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Secuencia de Bases , California , ADN Bacteriano/genética , Ácidos Grasos/química , Femenino , Genes Bacterianos , Masculino , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Análisis de Secuencia de ADN , Ureaplasma/aislamiento & purificación
3.
Artículo en Inglés | MEDLINE | ID: mdl-29531144

RESUMEN

Human activities create novel food resources that can alter wildlife-pathogen interactions. If resources amplify or dampen, pathogen transmission probably depends on both host ecology and pathogen biology, but studies that measure responses to provisioning across both scales are rare. We tested these relationships with a 4-year study of 369 common vampire bats across 10 sites in Peru and Belize that differ in the abundance of livestock, an important anthropogenic food source. We quantified innate and adaptive immunity from bats and assessed infection with two common bacteria. We predicted that abundant livestock could reduce starvation and foraging effort, allowing for greater investments in immunity. Bats from high-livestock sites had higher microbicidal activity and proportions of neutrophils but lower immunoglobulin G and proportions of lymphocytes, suggesting more investment in innate relative to adaptive immunity and either greater chronic stress or pathogen exposure. This relationship was most pronounced in reproductive bats, which were also more common in high-livestock sites, suggesting feedbacks between demographic correlates of provisioning and immunity. Infection with both Bartonella and haemoplasmas were correlated with similar immune profiles, and both pathogens tended to be less prevalent in high-livestock sites, although effects were weaker for haemoplasmas. These differing responses to provisioning might therefore reflect distinct transmission processes. Predicting how provisioning alters host-pathogen interactions requires considering how both within-host processes and transmission modes respond to resource shifts.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.


Asunto(s)
Infecciones por Bartonella/veterinaria , Quirópteros/inmunología , Inmunidad Innata , Infecciones por Mycoplasma/veterinaria , Reproducción/fisiología , Inmunidad Adaptativa , Animales , Bartonella/inmunología , Infecciones por Bartonella/epidemiología , Infecciones por Bartonella/inmunología , Infecciones por Bartonella/microbiología , Belice/epidemiología , Quirópteros/microbiología , Ingestión de Alimentos/fisiología , Femenino , Interacciones Huésped-Patógeno/inmunología , Inmunoglobulina G , Ganado/fisiología , Linfocitos/inmunología , Linfocitos/microbiología , Masculino , Mycoplasma/inmunología , Infecciones por Mycoplasma/epidemiología , Infecciones por Mycoplasma/inmunología , Infecciones por Mycoplasma/microbiología , Neutrófilos/inmunología , Neutrófilos/microbiología , Perú/epidemiología , Dinámica Poblacional
4.
Arch Microbiol ; 200(5): 819-828, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29508031

RESUMEN

Three independent strains of Neisseria sp. were isolated from the oral cavity of California sea lions (Zalophus californianus) that were admitted to The Marine Mammal Center facilities in California, USA. The strains were isolated from oral swabs by cultivation on Trypticase Soy agar with 5% sheep blood under aerobic conditions. The 16S rRNA gene sequence of these three strains shared 99% similarity, but demonstrated only 97-98% nucleotide similarity to the phylogenetically closest relatives such as N. canis, N. zoodegmatis, N. animaloris, and N. dumasiana. These three strains also shared 99% sequence similarity of their rplF, rpoB, and gyrB gene sequences. Based on the biochemical tests alone (i.e., without genetic analysis of housekeeping genes), it is difficult to discriminate this novel species from N. canis; however, it can be easily discriminated from all phylogenetically closely related species using the sequencing analysis of its housekeeping genes (e.g., rplF, rpoB, or gyrB genes). Thus, genetic testing is indispensable for accurate identification of this species in a routine laboratory practice. The species is an obligate aerobe and able to grow in Mueller-Hinton broth supplemented with 6% NaCl, but the phylogenetically closely related species (N. canis, N. zoodegmatis, N. animaloris, and N. dumasiana) were not. Based on these phenotypic and genotypic characteristics and phylogenetic data, we conclude that these new strains represent a novel species of the genus Neisseria, for which the name Neisseria zalophi sp. nov. is proposed. The type strain is CSL 7565T (= ATCC BAA2455T = DSM 102031T).


Asunto(s)
Boca/microbiología , Neisseria/genética , Leones Marinos/microbiología , Animales , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Genotipo , Tipificación Molecular , Neisseria/aislamiento & purificación , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA