RESUMEN
Biophysical fragment screening of a thermostabilized ß1-adrenergic receptor (ß1AR) using surface plasmon resonance (SPR) enabled the identification of moderate affinity, high ligand efficiency (LE) arylpiperazine hits 7 and 8. Subsequent hit to lead follow-up confirmed the activity of the chemotype, and a structure-based design approach using protein-ligand crystal structures of the ß1AR resulted in the identification of several fragments that bound with higher affinity, including indole 19 and quinoline 20. In the first example of GPCR crystallography with ligands derived from fragment screening, structures of the stabilized ß1AR complexed with 19 and 20 were determined at resolutions of 2.8 and 2.7 Å, respectively.
Asunto(s)
Fenómenos Biofísicos , Diseño de Fármacos , Piperazinas/química , Piperazinas/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Piperazina , Unión Proteica , Conformación Proteica , Receptores Adrenérgicos beta 1/química , Resonancia por Plasmón de SuperficieRESUMEN
The discovery and hit-to-lead exploration of a novel series of selective IKK-ß kinase inhibitors is described. The initial lead fragment 3 was identified by pharmacophore-directed virtual screening. Homology model-driven SAR exploration of the template led to potent inhibitors, such as 12, which demonstrate efficacy in cellular assays and possess encouraging developability profiles.