Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 367(1604): 2881-92, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22966143

RESUMEN

Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation.


Asunto(s)
Quirópteros/virología , Enfermedades Transmisibles Emergentes/prevención & control , Virus ARN/patogenicidad , Zoonosis/transmisión , Migración Animal , Animales , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Transmisibles Emergentes/virología , Vectores de Enfermedades , Ecosistema , Política Ambiental , Conducta Alimentaria , Salud Global/legislación & jurisprudencia , Humanos , Dinámica Poblacional
2.
PLoS One ; 3(4): e2011, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18431492

RESUMEN

Many animals in the tropics of Africa, Asia and South America regularly visit so-called salt or mineral licks to consume clay or drink clay-saturated water. Whether this behavior is used to supplement diets with locally limited nutrients or to buffer the effects of toxic secondary plant compounds remains unclear. In the Amazonian rainforest, pregnant and lactating bats are frequently observed and captured at mineral licks. We measured the nitrogen isotope ratio in wing tissue of omnivorous short-tailed fruit bats, Carollia perspicillata, and in an obligate fruit-eating bat, Artibeus obscurus, captured at mineral licks and at control sites in the rainforest. Carollia perspicillata with a plant-dominated diet were more often captured at mineral licks than individuals with an insect-dominated diet, although insects were more mineral depleted than fruits. In contrast, nitrogen isotope ratios of A. obscurus did not differ between individuals captured at mineral lick versus control sites. We conclude that pregnant and lactating fruit-eating bats do not visit mineral licks principally for minerals, but instead to buffer the effects of secondary plant compounds that they ingest in large quantities during periods of high energy demand. These findings have potential implications for the role of mineral licks for mammals in general, including humans.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Minerales/metabolismo , Árboles , Clima Tropical , Silicatos de Aluminio , Animales , Biotransformación , Quirópteros , Arcilla , Dieta , Frutas , Insectos , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA