RESUMEN
High Pathogenicity Avian Influenza (HPAI) H5N1 outbreaks continue to wreak havoc on the global poultry industry and threaten the health of wild bird populations, with sporadic spillover in humans and other mammals, resulting in widespread calls to vaccinate poultry. Bangladesh has been vaccinating poultry since 2012, presenting a prime opportunity to study the effects of vaccination on HPAI H5N1circulation in both poultry and wild birds. We investigated the efficacy of vaccinating commercial poultry against HPAI H5N1 along with climatic and socio-economic factors considered potential drivers of HPAI H5N1 outbreak risk in Bangladesh. Using a multivariate modeling approach, we estimated that the rate of outbreaks was 18 times higher before compared to after vaccination, with winter months having a three times higher chance of outbreaks than summer months. Variables resulting in small but significant increases in outbreak rate were relatively low ambient temperatures for the time of year, literacy rate, chicken and duck density, crop density, and presence of highways; this may be attributable to low temperatures supporting viral survival outside the host, higher literacy driving reporting rate, density of the host reservoir, and spread of the virus through increased connectivity. Despite the substantial impact of vaccination on outbreaks, we note that HPAI H5N1 is still enzootic in Bangladesh; vaccinated poultry flocks have high rates of H5N1 prevalence, and spillover to wild birds has increased. Vaccination in Bangladesh thus bears the risk of supporting "silent spread," where the vaccine only provides protection against disease and not also infection. Our findings underscore that poultry vaccination can be part of holistic HPAI mitigation strategies when accompanied by monitoring to avoid silent spread.
RESUMEN
Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation.