RESUMEN
In the validation of protein-ligand docking protocols, performance is mostly measured against native protein conformers, i.e. each ligand is docked into the protein conformation from the structure that contained that ligand. In real-life applications, however, ligands are docked against non-native conformations of the protein, i.e. the apo structure or a structure of a different protein-ligand complex. Here, we have constructed an extensive test set for assessing docking performance against non-native protein conformations. This new test set is built on the Astex Diverse Set (which we recently constructed for assessing native docking performance) and contains 1112 non-native structures for 65 drug targets. Using the protein-ligand docking program GOLD, the Astex Diverse Set and the new Astex Non-native Set, we established that, whereas docking performance (top-ranked solution within 2 A rmsd of the experimental binding mode) is approximately 80% for native docking, this drops to 61% for non-native docking. A similar drop-off is observed for sampling performance (any solution within 2 A): 91% for native docking vs 72% for non-native docking. No significant differences were observed between docking performance against apo and nonapo structures. We found that, whereas small variations in protein conformation are generally tolerated by our rigid docking protocol, larger protein movements result in a catastrophic drop-off in performance. Some docking performance and nearly all sampling performance can be recovered by considering dockings produced against a small number of non-native structures simultaneously. Docking against non-native structures of complexes containing ligands that are similar to the docked ligand also significantly improves both docking performance and sampling performance.
Asunto(s)
Proteínas/química , Sitios de Unión , Simulación por Computador , Bases de Datos de Proteínas , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/estadística & datos numéricos , Informática , Ligandos , Modelos Moleculares , Conformación Proteica , Programas Informáticos , Interfaz Usuario-ComputadorRESUMEN
Fragment-based ligand screening can be a highly effective strategy for drug discovery. In general, fragment hits interact efficiently with the target, and although the potency of these small binders is often low, their optimization into potent leads is tractable. For a hit optimization phase to take full advantage of a good quality fragment binder, we believe it is essential to obtain reliable structural data for the hits. In this review, we describe the methods used for structure-based fragment screening and fragment-to-lead optimization and discuss a number of applications from the literature.