Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
F1000Res ; 12: 29, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38021404

RESUMEN

Background and aims: Natural compounds extracted from medicinal plants have recently gained attention in therapeutics as they are considered to have lower Toxicity and higher tolerability relative to chemically synthesized compounds. Bakuchiol from Psoralea corylifolia L. is one such compound; it is a type of meroterpene derived from the leaves and seeds of Psoralea corylifolia plants. Natural sources of bakuchiol have been used in traditional Chinese and Indian medicine for centuries due to its preventive benefits against tumors and inflammation. It plays a strong potential role as an antioxidant with impressive abilities to remove Reactive Oxygen Species (ROS). This review has focused on bakuchiol's extraction, therapeutic applications, and pharmacological benefits. Methods: A search strategy has been followed to retrieve the relevant newly published literature on the pharmacological benefits of bakuchiol. After an extensive study of the retrieved articles and maintaining the inclusion and exclusion criteria, 110 articles were finally selected for this review. Results: Strong support of primary research on the protective effects via antitumorigenic, anti-inflammatory, antioxidative, antimicrobial, and antiviral activities are delineated. Conclusions: From ancient to modern life, medicinal plants have always been drawing the attention of human beings to alleviate ailments for a healthy and balanced lifestyle. This review is a comprehensive approach to highlighting bona fide essential pharmacological benefits and mechanisms underlying their therapeutic applications.


Asunto(s)
Fabaceae , Plantas Medicinales , Psoralea , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Psoralea/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
2.
Adv Pharmacol Pharm Sci ; 2022: 8305271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237756

RESUMEN

Alzheimer's disease (AD) is a progressive neurological disorder characterized by loss of memory and cognition. Stephania japonica is being used as traditional medicine in the treatment of different neurological problems. In this study, we evaluated the anticholinesterase and antioxidant activities of the crude methanol extract of S. japonica and its fractions in vitro and the neuroprotective effect of the most active fraction in the scopolamine-induced mouse model of memory impairment. Among the crude extract and its fractions, chloroform fraction exerted strong inhibition of acetylcholinesterase and butyrylcholinesterase enzymes with IC50 values of 40.06 and 18.78 µg/mL, respectively. Similarly, the chloroform fraction exhibited potent antioxidant activity and effectively inhibited the peroxidation of brain lipid in vitro. The phytochemical profile revealed the high content of polyphenolics and alkaloids in the chloroform fraction. Pearson's correlation studies showed a significant association of anticholinesterase and antioxidant activity with alkaloid and phenolic contents. Kinetic analysis showed that the chloroform fraction exhibited a noncompetitive type of inhibition. In experimental mice, the chloroform fraction restored the impaired learning and memory induced by scopolamine as evidenced by a significant decrease in latency time and increase of quadrant time in probe trial in Morris water maze task. The chloroform fraction also significantly reduced the activity of acetylcholinesterase and oxidative stress in mice. Our results suggest that the chloroform fraction of S. japonica may represent a potential candidate for the prevention and treatment of AD.

3.
BMC Res Notes ; 14(1): 301, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34362451

RESUMEN

OBJECTIVE: MPDB 2.0 is built to be the continuation of MPDB 1.0, to serve as a more comprehensive data repertoire for Bangladeshi medicinal plants, and to provide a user-friendly interface for researchers, health practitioners, drug developers, and students who wish to study the various medicinal & nutritive plants scattered around Bangladesh and the underlying phytochemicals contributing to their efficacy in Bangladeshi folk medicine. RESULTS: MPDB 2.0 database ( https://www.medicinalplantbd.com/ ) comprises a collection of more than five hundred Bangladeshi medicinal plants, alongside a record of their corresponding scientific, family, and local names together with their utilized parts, information regarding ailments, active compounds, and PubMed ID of related publications. While medicinal plants are not limited to the borders of any country, Bangladesh and its Southeast Asian neighbors do boast a huge collection of potent medicinal plants with considerable folk-medicinal history compared to most other countries in the world. Development of MPDB 2.0 has been highly focused upon human diseases, albeit many of the plants indexed here can serve in developing biofuel (e.g.: Jatropha curcas used in biofuel) or bioremediation technologies (e.g.: Amaranthus cruentus helps to reduce cadmium level in soil) or nutritive diets (Terminalia chebula can be used in nutritive diets) or cosmetics (Aloe vera used in cosmetics), etc.


Asunto(s)
Plantas Medicinales , Bangladesh , Etnicidad , Humanos , Medicina Tradicional , Fitoterapia
4.
BMC Complement Med Ther ; 21(1): 204, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315449

RESUMEN

BACKGROUND: Wedelia chinensis has been reported as a folk medicine for the treatment of different diseases including neurodegenerative disease. Although the plant has been studied well for diverse biological activities, the effect of this plant in neurological disorder is largely unknown. The present study was undertaken to evaluate the cholinesterase inhibitory and antioxidant potential of W. chinensis. METHODS: The extract and fractions of the plant were evaluated for acetylcholinesterase and butyrylcholinesterase inhibitory activity by modified Ellman method. The antioxidant activity was assessed in several in vitro models/assays such as reducing power, total antioxidant capacity, total phenolic and flavonoid content, scavenging of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) free radical and hydroxyl radical, and inhibition of brain lipid peroxidation. Chromatographic and spectroscopic methods were used to isolate and identify the active compound from the extract. RESULTS: Among the fractions, aqueous fraction (AQF) and ethylacetate fraction (EAF) exhibited high inhibition against acetylcholinesterase (IC50: 40.02 ± 0.16 µg/ml and 57.76 ± 0.37 µg/ml) and butyrylcholinesterase (IC50: 31.79 ± 0.18 µg/ml and 48.41 ± 0.05 µg/ml). Similarly, the EAF and AQF had high content of phenolics and flavonoids and possess strong antioxidant activity in several antioxidant assays including DPPH and hydroxyl radical scavenging, reducing power and total antioxidant activity. They effectively inhibited the peroxidation of brain lipid in vitro with IC50 values of 45.20 ± 0.10 µg/ml and 25.53 ± 0.04 µg/ml, respectively. A significant correlation was observed between total flavonoids and antioxidant and cholinesterase inhibitory activity. Activity guided chromatographic separation led to the isolation of a major active compound from the EAF and its structure was elucidated as apigenin by spectral analysis. CONCLUSIONS: The potential ability of W. chinensis to inhibit the cholinesterase activity and peroxidation of lipids suggest that the plant might be useful for the management of AD.


Asunto(s)
Antioxidantes/farmacología , Apigenina/aislamiento & purificación , Inhibidores de la Colinesterasa/farmacología , Wedelia , Apigenina/farmacología , Peroxidación de Lípido/efectos de los fármacos , Fotoquímica , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología
5.
Heliyon ; 7(6): e07240, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34189299

RESUMEN

Nature has always been an excellent source for many therapeutic compounds providing us with many medicinal plants and microorganisms producing beneficial chemicals. Therefore, the demand for medicinal plants, cosmetics, and health products is always on the rise. One such plant from the Leguminosae family is licorice and the scientific name is Glycyrrhiza glabra Linn. It is an herb-type plant with medicinal value. In the following article, we shall elaborately look at the plants' phytochemical constituents and the pharmacological impact of those substances. Several compounds such as glycyrrhizin, glycyrrhizinic acid, isoliquiritin, and glycyrrhizic acid have been found in this plant, which can provide pharmacological benefit to us with its anti-cancer, anti-atherogenic, anti-diabetic, anti-asthmatic, anti-inflammatory, anti-microbial, and antispasmodic activity. Alongside, these products have a different role in hepatoprotective, immunologic, memory-enhancing activity. They can stimulate hair growth, control obesity, and have anti-depressants, sedatives, and anticoagulant activity. This review examines recent studies on the phytochemical and pharmacological data and describes some side effects and toxicity of licorice and its bioactive components.

6.
Int J Food Sci ; 2021: 8862025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33506005

RESUMEN

Enhydra fluctuans, a popular vegetable in Bangladesh, is used in folk medicine to treat diseases of the nervous system. The objective of this study was to investigate the phytochemical profile and cholinesterase inhibitory and antioxidant potential of the extracts of E. fluctuans. Among the four tested extracts, the chloroform extract was found to exert the highest inhibition against both the acetylcholinesterase and butyrylcholinesterase enzymes with the IC50 (concentration required for 50% inhibition) values of 83.90 µg/mL and 48.14 µg/mL, respectively. Likewise, the chloroform extract showed the highest radical scavenging activity and reducing power. In DPPH radical scavenging assay, the IC50 value was found to be 113.27 µg/mL, and in reducing power assay, the absorbance was found to be 1.916 at a concentration of 50 µg/mL. Phytochemical analyses revealed that the chloroform extract contained 19.16 mg gallic acid equivalent (GAE)/g extract of phenolics and 41.84 mg catechin equivalent (CE)/g extract of flavonoids, which appeared to be the highest among the extracts. A significant correlation was observed between phenolic content and butyrylcholinesterase inhibition and antioxidant activity, while a moderate correlation was seen between flavonoid content and cholinesterase inhibition and antioxidant activity. These findings suggest that E. fluctuans is a natural source of cholinesterase inhibitors and antioxidants, which could be utilized as functional foods for Alzheimer's disease management.

7.
Sci Rep ; 8(1): 10182, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976982

RESUMEN

Despite involvement of melatonin (MT) in plant growth and stress tolerance, its role in sulfur (S) acquisition and assimilation remains unclear. Here we report that low-S conditions cause serious growth inhibition by reducing chlorophyll content, photosynthesis and biomass accumulation. S deficiency evoked oxidative stress leading to the cell structural alterations and DNA damage. In contrast, MT supplementation to the S-deprived plants resulted in a significant diminution in reactive oxygen species (ROS) accumulation, thereby mitigating S deficiency-induced damages to cellular macromolecules and ultrastructures. Moreover, MT promoted S uptake and assimilation by regulating the expression of genes encoding enzymes involved in S transport and metabolism. MT also protected cells from ROS-induced damage by regulating 2-cysteine peroxiredoxin and biosynthesis of S-compounds. These results provide strong evidence that MT can enhance plant tolerance to low-S-induced stress by improving S uptake, metabolism and redox homeostasis, and thus advocating beneficial effects of MT on increasing the sulfur utilization efficiency.


Asunto(s)
Homeostasis/efectos de los fármacos , Melatonina/administración & dosificación , Solanum lycopersicum/fisiología , Estrés Fisiológico/efectos de los fármacos , Azufre/deficiencia , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Peroxirredoxinas/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Suelo/química
8.
J Pineal Res ; 61(3): 291-302, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27264631

RESUMEN

Both selenium (Se) and melatonin reduce cadmium (Cd) uptake and mitigate Cd toxicity in plants. However, the relationship between Se and melatonin in Cd detoxification remains unclear. In this study, we investigated the influence of three forms of Se (selenocysteine, sodium selenite, and sodium selenate) on the biosynthesis of melatonin and the tolerance against Cd in tomato plants. Pretreatment with different forms of Se significantly induced the biosynthesis of melatonin and its precursors (tryptophan, tryptamine, and serotonin); selenocysteine had the most marked effect on melatonin biosynthesis. Furthermore, Se and melatonin supplements significantly increased plant Cd tolerance as evidenced by decreased growth inhibition, photoinhibition, and electrolyte leakage (EL). Se-induced Cd tolerance was compromised in melatonin-deficient plants following tryptophan decarboxylase (TDC) gene silencing. Se treatment increased the levels of glutathione (GSH) and phytochelatins (PCs), as well as the expression of GSH and PC biosynthetic genes in nonsilenced plants, but the effects of Se were compromised in TDC-silenced plants under Cd stress. In addition, Se and melatonin supplements reduced Cd content in leaves of nonsilenced plants, but Se-induced reduction in Cd content was compromised in leaves of TDC-silenced plants. Taken together, our results indicate that melatonin is involved in Se-induced Cd tolerance via the regulation of Cd detoxification.


Asunto(s)
Cadmio/farmacología , Melatonina/metabolismo , Ácido Selénico/farmacología , Selenocisteína/farmacocinética , Selenito de Sodio/farmacología , Solanum lycopersicum/metabolismo , Estrés Fisiológico/efectos de los fármacos , Descarboxilasas de Aminoácido-L-Aromático/biosíntesis , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Proteínas de Plantas/biosíntesis , Selenio/farmacología
9.
Front Plant Sci ; 6: 601, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26322055

RESUMEN

Melatonin is a ubiquitous signal molecule, playing crucial roles in plant growth and stress tolerance. Recently, toxic metal cadmium (Cd) has been reported to regulate melatonin content in rice; however, the function of melatonin under Cd stress, particularly in higher plants, still remains elusive. Here, we show that optimal dose of melatonin could effectively ameliorate Cd-induced phytotoxicity in tomato. The contents of Cd and melatonin were gradually increased over time under Cd stress. However, such increase in endogenous melatonin was incapable to reverse detrimental effects of Cd. Meanwhile, supplementation with melatonin conferred Cd tolerance as evident by plant biomass and photosynthesis. In addition to notable increase in antioxidant enzymes activity, melatonin-induced Cd stress mitigation was closely associated with enhanced H(+)-ATPase activity and the contents of glutathione and phytochelatins. Although exogenous melatonin had no effect on root Cd content, it significantly reduced leaf Cd content, indicating its role in Cd transport. Analysis of Cd in different subcellular compartments revealed that melatonin increased cell wall and vacuolar fractions of Cd. Our results suggest that melatonin-induced enhancements in antioxidant potential, phytochelatins biosynthesis and subsequent Cd sequestration might play a critical role in plant tolerance to Cd. Such a mechanism may have potential implication in safe food production.

10.
J Antimicrob Chemother ; 54(1): 46-55, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15201226

RESUMEN

Plant-derived essential oils with monoterpenoids have been used as antifungal drugs since ancient times, but the mode of action of these natural hydrocarbons at the molecular level is not understood. In order to understand the mechanisms of toxicity of alpha-terpinene (a cyclic monoterpene), a culture of Saccharomyces cerevisiae was exposed to 0.02% alpha-terpinene for 2 h and transcript profiles were obtained using yeast DNA arrays. These profiles, when compared with transcript profiles of untreated cultures, revealed that the expression of 793 genes was affected. For 435 genes, mRNA levels in treated cells compared with control cells differed by more than two-fold, whereas for 358 genes, it was <0.5-fold. Northern blots were performed for selected genes to verify the microarray results. Functional analysis of the up-regulated genes indicates that, similar to commonly used antifungal drugs, alpha-terpinene exposure affected genes involved in ergosterol biosynthesis and sterol uptake. In addition, transcriptional induction of genes related to lipid metabolism, cell wall structure and function, detoxification and cellular transport was observed in response to terpinene toxicity. Notably, the functions of 192 up-regulated genes are still unknown, but their characterization will probably shed light on the mechanisms of drug resistance and sensitivity. Taken together, this study showed that alpha-terpinene has strong antifungal activities and its modes of action resemble those of presently used antifungal drugs.


Asunto(s)
Antifúngicos/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Terpenos/farmacología , Northern Blotting , Pared Celular/genética , Pared Celular/fisiología , Sondas de ADN , ADN Complementario/biosíntesis , ADN de Hongos/biosíntesis , Ergosterol/farmacología , Pruebas de Sensibilidad Microbiana , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfolípidos/biosíntesis , ARN de Hongos/biosíntesis , ARN Mensajero/biosíntesis , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA