RESUMEN
Biophysical fragment screening of a thermostabilized ß1-adrenergic receptor (ß1AR) using surface plasmon resonance (SPR) enabled the identification of moderate affinity, high ligand efficiency (LE) arylpiperazine hits 7 and 8. Subsequent hit to lead follow-up confirmed the activity of the chemotype, and a structure-based design approach using protein-ligand crystal structures of the ß1AR resulted in the identification of several fragments that bound with higher affinity, including indole 19 and quinoline 20. In the first example of GPCR crystallography with ligands derived from fragment screening, structures of the stabilized ß1AR complexed with 19 and 20 were determined at resolutions of 2.8 and 2.7 Å, respectively.
Asunto(s)
Fenómenos Biofísicos , Diseño de Fármacos , Piperazinas/química , Piperazinas/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Piperazina , Unión Proteica , Conformación Proteica , Receptores Adrenérgicos beta 1/química , Resonancia por Plasmón de SuperficieRESUMEN
Biophysical studies with G-protein-coupled receptors (GPCRs) are typically very challenging due to the poor stability of these receptors when solubilized from the cell membrane into detergent solutions. However, the stability of a GPCR can be greatly improved by introducing a number of point mutations into the protein sequence to give a stabilized receptor or StaR®. Here, we present the utility of StaRs for biophysical studies and the screening of fragment libraries. Two case studies are used to illustrate the methods: first, the screening of a library of fragments by surface plasmon resonance against the adenosine A(2A) receptor StaR, demonstrating how very small and weakly active xanthine fragments can be detected binding to the protein on chips; second, the screening and detection of fragment hits of a larger fragment library in an NMR format called TINS (target-immobilized NMR screening) against the ß(1) adrenergic StaR.
Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Receptores Acoplados a Proteínas G/genética , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/farmacología , Resonancia Magnética Nuclear Biomolecular , Receptor de Adenosina A2A/química , Receptores Acoplados a Proteínas G/química , SolubilidadRESUMEN
Nicotinic acid has been used clinically for over 40 years in the treatment of dyslipidemia producing a desirable normalization of a range of cardiovascular risk factors, including a marked elevation of high density lipoprotein and a reduction in mortality. The precise mechanism of action of nicotinic acid is unknown, although it is believed that activation of a G(i)-G protein-coupled receptor may contribute. Utilizing available information on the tissue distribution of nicotinic acid receptors, we identified candidate orphan receptors. The selected orphan receptors were screened for responses to nicotinic acid, in an assay for activation of G(i)-G proteins. Here we describe the identification of the G protein-coupled receptor HM74 as a low affinity receptor for nicotinic acid. We then describe the subsequent identification of HM74A in follow-up bioinformatics searches and demonstrate that it acts as a high affinity receptor for nicotinic acid and other compounds with related pharmacology. The discovery of HM74A as a molecular target for nicotinic acid may facilitate the discovery of superior drug molecules to treat dyslipidemia.