RESUMEN
AIMS: Recent studies have shown that the choline-derived metabolite trimethylamine N-oxide (TMAO) is a biomarker that promotes cardiovascular disease through the induction of inflammation and stress. Inflammatory responses and stress are involved in the progression of calcified aortic valve disease (CAVD). Here, we examined whether TMAO induces the osteogenic differentiation of aortic valve interstitial cells (AVICs) through endoplasmic reticulum (ER) and mitochondrial stress pathways in vitro and in vivo. METHODS AND RESULTS: Plasma TMAO levels were higher in patients with CAVD (n = 69) than in humans without CAVD (n = 263), as examined by liquid chromatography-tandem mass spectrometry. Western blot and staining probes showed that TMAO-induced an osteogenic response in human AVICs. Moreover, TMAO promoted ER stress, mitochondrial stress, and nuclear factor-κB (NF-κB) activation in vitro. Notably, the TMAO-mediated effects were reversed by the use of ER stress, mitochondrial stress, and NF-κB activation inhibitors and small interfering RNA. Mice treated with supplemental choline in a high-fat diet had markedly increased TMAO levels and aortic valve thicknesses, which were reduced by 3,3-dimethyl-1-butanol (an inhibitor of trimethylamine formation) treatment. CONCLUSIONS: Choline-derived TMAO promotes osteogenic differentiation through ER and mitochondrial stress pathways in vitro and aortic valve lesions in vivo.
Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Metilaminas , Osteogénesis , Animales , Válvula Aórtica/patología , Células Cultivadas , Colina , Humanos , Ratones , FN-kappa B/metabolismoRESUMEN
BACKGROUND: Gastroesophageal reflux and Barrett's esophagus are significant risk factors for the development of esophageal adenocarcinoma. Group IIa secretory phospholipase A2 (sPLA2) catalyzes the production of various proinflammatory metabolites and plays a critical role in promoting reflux-induced inflammatory changes within the distal esophagus. We hypothesized that inhibition of sPLA2 in human Barrett's cells would attenuate adhesion molecule expression via decreased activation of nuclear factor kappa B (NF-κB) and decrease cell proliferation, possibly mitigating the invasive potential of Barrett's esophagus. MATERIALS AND METHODS: Normal human esophageal epithelial cells (HET1A) and Barrett's cells (CPB) were assayed for baseline sPLA2 expression. CPB cells were treated with a specific inhibitor of sPLA2 followed by tumor necrosis factor-α. Protein expression was evaluated using immunoblotting. Cell proliferation was assessed using an MTS cell proliferation assay kit. Statistical analysis was performed using the Student's t-test or analysis of variance, where appropriate. RESULTS: CPB cells demonstrated higher baseline sPLA2 expression than HET1A cells (P = 0.0005). Treatment with 30 µM sPLA2 inhibitor significantly attenuated intercellular adhesion molecule-1 (P = 0.004) and vascular cell adhesion molecule-1 (P < 0.0001) expression as well as decreased NF-κB activation (P = 0.002). sPLA2 inhibition decreased cell proliferation in a dose-dependent manner (P < 0.001 for 15, 20, and 30 µM doses). CONCLUSIONS: sPLA2 inhibition in human Barrett's cells decreases cellular adhesive properties and NF-κB activation as well as decreases cell proliferation, signifying downregulation of the inflammatory response and possible attenuation of cellular malignant potential. These findings identify sPLA2 inhibition as a potential chemopreventive target for premalignant lesions of the esophagus.
Asunto(s)
Esófago de Barrett/patología , Esófago/patología , Fosfolipasas A2 Grupo II/antagonistas & inhibidores , Ácidos Pentanoicos/farmacología , Adenocarcinoma/patología , Adenocarcinoma/prevención & control , Esófago de Barrett/tratamiento farmacológico , Adhesión Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/prevención & control , Esófago/citología , Fosfolipasas A2 Grupo II/metabolismo , Humanos , Ácidos Pentanoicos/uso terapéuticoRESUMEN
BACKGROUND: Stroke is one of the leading causes of death and disability worldwide. Scalp acupuncture and exercise therapy have been proven as two effective methods for the treatment of stroke. However, their combined action and mechanisms have not been fully elucidated. The present study aimed to investigate the protective effect of scalp acupuncture combined with exercise therapy on neurons in rats with ischemic brain injury. METHODS: 100 rats were randomly divided into 5 groups including sham group, model group, acupuncture group, rehabilitation group, and experimental group (scalp acupuncture combined with exercise therapy). Middle cerebral artery occlusion (MCAO) model in rats was established according to Longa modified suture method to mimic ischemic stroke. The modified Bedexer's neurological function score was used to evaluate the neurological deficits of rats and the brain infarct volume was measured using 2, 3, 5-triphenyl tetrazolium chloride monohydrate (TTC) staining. Moreover, the apoptosis in the hippocampus was detected by western blotting and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The pro-inflammatory cytokines such as interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α), reactive oxygen species (ROS) and superoxide dismutase (SOD) were determined by corresponding kits. Immunohistochemistry or immunofluorescence was performed to detect the expression of brain-derived neurotrophic factor (BDNF), S100ß and glial fibrillary acidic protein (GFAP) in the hippocampi of rats. RESULTS: The neurological deficit score, the expression levels of apoptotic factors such as cleaved caspase-3 and Bax, and the TUNEL-positive cell rate of the experimental group were significantly lower than those of the acupuncture group and the rehabilitation group. However, apoptosis inhibitor Bcl-2 showed downregulated expression in the MCAO model rats but this trend was reverted by single and combinatorial treatments. In addition, the contents of TNF-α, IL-1ß and ROS in the acupuncture group and the rehabilitation group were significantly lower than those in the model group, but higher than the experimental group. While the opposite results were obtained in SOD activity. Furthermore, compared with the model group, the ratios of BDNF, S100ß, and GFAP-positive cells in the acupuncture, rehabilitation and experimental groups were significantly increased, and the highest ratios were recorded in the experimental group. CONCLUSIONS: This study demonstrated that scalp acupuncture combined with exercise therapy effectively counteracts ischemic brain injury via the downregulation of pro-inflammatory mediators and ROS, the increased production of the antioxidant enzyme SOD, neurotrophic factor BDNF and astrocyte activities.
Asunto(s)
Puntos de Acupuntura , Terapia por Acupuntura , Apoptosis , Encéfalo/patología , Terapia por Ejercicio , Infarto de la Arteria Cerebral Media/prevención & control , Cuero Cabelludo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Conducta Animal , Encéfalo/metabolismo , Encéfalo/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/psicología , Mediadores de Inflamación/metabolismo , Masculino , Necrosis , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Superóxido Dismutasa/metabolismoRESUMEN
OBJECTIVE: To compare the efficacy and safety of pterygopalatine fossa puncture using one acupuncture needle inserted through the temporal fossa (intervention) and Chinese verum acupuncture (VA) in patients with moderate-to-severe persistent allergic rhinitis. METHODS: The patients were randomized to an intervention group receiving pterygopalatine fossa puncture with one acupuncture needle for 4 weeks (once or twice weekly, 4-8 sessions in total, with a second course performed if required) or to a control group receiving individualized VA for 4 weeks (twice weekly, eight sessions in total). Patients were followed up 4 weeks later. RESULTS: Ninety-six participants were assigned to intervention (n = 48) or VA (n = 48) or VA (P > 0.05 in all cases). Compared with the VA, the time to onset of effect in the intervention group was shorter and the duration of effectiveness was longer. The mean clinical waiting time was significantly shorter in the intervention group than in the control group (6.640 ± 3.035 min and 31.19 ± 10.216 min, respectively). The total number of sessions in the VA group was 384; 7 episodes of subcutaneous bleeding occurred but did not require treatment. The total number of sessions in the intervention group was 185. Two cases of subcutaneous bleeding (one of local hematoma during the intervention and the other one of bruising in the palpebra inferior on the day after intervention) resolved upon withdrawal from the study. CONCLUSIONS: Pterygopalatine fossa puncture using one acupuncture needle resulted in a shorter time to onset of effect, a longer duration of effectiveness, and less clinical waiting time when compared with VA. Though the significant differences for TNSS and TNNSS were shown within intervention and VA groups, there were no differences between the two groups. Although the rate of subcutaneous bleeding was low, these adverse events may influence patient compliance. This trial is registered with ISRCTN21980724.
RESUMEN
BACKGROUND: Calcific aortic stenosis is a chronic inflammatory disease. Proinflammatory stimulation via toll-like receptor 4 (TLR4) causes the aortic valve interstitial cell (AVIC) to undergo phenotypic change. The AVIC first assumes an inflammatory phenotype characterized by the production of inflammatory mediators such as intercellular adhesion molecule-1 (ICAM-1), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1). This change has been linked with an osteogenic phenotypic response. Statins have recently been shown to have anti-inflammatory properties. We therefore hypothesized that statins may have an anti-inflammatory effect on human AVICs by downregulation of TLR4-stimulated inflammatory responses. Our purposes were (1) to determine the effect of simvastatin on TLR4-induced expression of inflammatory mediators in human AVICs and (2) to determine the mechanism(s) through which simvastatin exert this effect. MATERIALS AND METHODS: Human AVICs were isolated from the explanted hearts of four patients undergoing cardiac transplantation. Cells were treated with simvastatin (50 µM) for 1 h before stimulation with TLR4 agonist lipopolysaccharide (LPS, 0.2 µg/mL). Immunoblotting (IB) was used to analyze cell lysates for ICAM-1 expression, and enzyme-linked immunosorbent assay was used to detect IL-8 and MCP-1 in cell culture media. Likewise, lysates were analyzed for TLR4 and nuclear factor-kappa B activation (IB). After simvastatin treatment, lysates were analyzed for TLR4 levels (IB). Statistics were by analysis of variance (P < 0.05). RESULTS: Simvastatin reduced TLR4-induced ICAM-1, IL-8, and MCP-1 expression in AVICs. Simvastatin down-regulated TLR4 levels and suppressed TLR4-induced phosphorylation of nuclear factor-kappa B. CONCLUSIONS: These data demonstrate the potential of a medical therapy (simvastatin) to impact the pathogenesis of aortic stenosis.
Asunto(s)
Estenosis de la Válvula Aórtica/tratamiento farmacológico , Válvula Aórtica/patología , Calcinosis/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Simvastatina/farmacología , Receptor Toll-Like 4/inmunología , Adulto , Válvula Aórtica/citología , Válvula Aórtica/inmunología , Estenosis de la Válvula Aórtica/inmunología , Estenosis de la Válvula Aórtica/patología , Calcinosis/inmunología , Calcinosis/patología , Cardiomiopatía Dilatada/cirugía , Células Cultivadas , Evaluación Preclínica de Medicamentos , Trasplante de Corazón , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Masculino , Persona de Mediana Edad , Miofibroblastos , Cultivo Primario de Células , Simvastatina/uso terapéuticoRESUMEN
BACKGROUND: Paraplegia secondary to spinal cord ischemia-reperfusion injury remains a devastating complication of thoracoabdominal aortic intervention. The complex interactions between injured neurons and activated leukocytes have limited the understanding of neuron-specific injury. We hypothesize that spinal cord neuron cell cultures subjected to oxygen-glucose deprivation (OGD) would simulate ischemia-reperfusion injury, which could be attenuated by specific alpha-2a agonism in an Akt-dependent fashion. MATERIALS AND METHODS: Spinal cords from perinatal mice were harvested, and neurons cultured in vitro for 7-10 d. Cells were pretreated with 1 µM dexmedetomidine (Dex) and subjected to OGD in an anoxic chamber. Viability was determined by MTT assay. Deoxyuridine-triphosphate nick-end labeling staining and lactate dehydrogenase (LDH) assay were used for apoptosis and necrosis identification, respectively. Western blot was used for protein analysis. RESULTS: Vehicle control cells were only 59% viable after 1 h of OGD. Pretreatment with Dex significantly preserves neuronal viability with 88% viable (P < 0.05). Dex significantly decreased apoptotic cells compared with that of vehicle control cells by 50% (P < 0.05). Necrosis was not significantly different between treatment groups. Mechanistically, Dex treatment significantly increased phosphorylated Akt (P < 0.05), but protective effects of Dex were eliminated by an alpha-2a antagonist or Akt inhibitor (P < 0.05). CONCLUSIONS: Using a novel spinal cord neuron cell culture, OGD mimics neuronal metabolic derangement responsible for paraplegia after aortic surgery. Dex preserves neuronal viability and decreases apoptosis in an Akt-dependent fashion. Dex demonstrates clinical promise for reducing the risk of paraplegia after high-risk aortic surgery.