Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Diabetologia ; 66(12): 2320-2331, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37670017

RESUMEN

AIMS/HYPOTHESIS: Metformin is increasingly used therapeutically during pregnancy worldwide, particularly in the treatment of gestational diabetes, which affects a substantial proportion of pregnant women globally. However, the impact on placental metabolism remains unclear. In view of the association between metformin use in pregnancy and decreased birthweight, it is essential to understand how metformin modulates the bioenergetic and anabolic functions of the placenta. METHODS: A cohort of 55 placentas delivered by elective Caesarean section at term was collected from consenting participants. Trophoblasts were isolated from the placental samples and treated in vitro with clinically relevant doses of metformin (0.01 mmol/l or 0.1 mmol/l) or vehicle. Respiratory function was assayed using high-resolution respirometry to measure oxygen concentration and calculated [Formula: see text]. Glycolytic rate and glycolytic stress assays were performed using Agilent Seahorse XF assays. Fatty acid uptake and oxidation measurements were conducted using radioisotope-labelled assays. Lipidomic analysis was conducted using LC-MS. Gene expression and protein analysis were performed using RT-PCR and western blotting, respectively. RESULTS: Complex I-supported oxidative phosphorylation was lower in metformin-treated trophoblasts (0.01 mmol/l metformin, 61.7% of control, p<0.05; 0.1 mmol/l metformin, 43.1% of control, p<0.001). The proton efflux rate arising from glycolysis under physiological conditions was increased following metformin treatment, up to 23±5% above control conditions following treatment with 0.1 mmol/l metformin (p<0.01). There was a significant increase in triglyceride concentrations in trophoblasts treated with 0.1 mmol/l metformin (p<0.05), particularly those of esters of long-chain polyunsaturated fatty acids. Fatty acid oxidation was reduced by ~50% in trophoblasts treated with 0.1 mmol/l metformin compared with controls (p<0.001), with no difference in uptake between treatment groups. CONCLUSIONS/INTERPRETATION: In primary trophoblasts derived from term placentas metformin treatment caused a reduction in oxidative phosphorylation through partial inactivation of complex I and potentially by other mechanisms. Metformin-treated trophoblasts accumulate lipids, particularly long- and very-long-chain polyunsaturated fatty acids. Our findings raise clinically important questions about the balance of risk of metformin use during pregnancy, particularly in situations where the benefits are not clear-cut and alternative therapies are available.


Asunto(s)
Metformina , Placenta , Humanos , Femenino , Embarazo , Metformina/farmacología , Metformina/uso terapéutico , Metformina/metabolismo , Trofoblastos/metabolismo , Cesárea , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo
2.
Nat Genet ; 53(8): 1233-1242, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34326545

RESUMEN

The agouti viable yellow (Avy) allele is an insertional mutation in the mouse genome caused by a variably methylated intracisternal A particle (VM-IAP) retrotransposon. Avy expressivity is sensitive to a range of early-life chemical exposures and nutritional interventions, suggesting that environmental perturbations can have long-lasting effects on the methylome. However, the extent to which VM-IAP elements are environmentally labile with phenotypic implications is unknown. Using a recently identified repertoire of VM-IAPs, we assessed the epigenetic effects of different environmental contexts. A longitudinal aging analysis indicated that VM-IAPs are stable across the murine lifespan, with only small increases in DNA methylation detected for a subset of loci. No significant effects were observed after maternal exposure to the endocrine disruptor bisphenol A, an obesogenic diet or methyl donor supplementation. A genetic mouse model of abnormal folate metabolism exhibited shifted VM-IAP methylation levels and altered VM-IAP-associated gene expression, yet these effects are likely largely driven by differential targeting by polymorphic KRAB zinc finger proteins. We conclude that epigenetic variability at retrotransposons is not predictive of environmental susceptibility.


Asunto(s)
Metilación de ADN , Disruptores Endocrinos/toxicidad , Obesidad/genética , Retroelementos , Animales , Compuestos de Bencidrilo/toxicidad , Metilación de ADN/efectos de los fármacos , Dieta/efectos adversos , Epigénesis Genética , Femenino , Ferredoxina-NADP Reductasa/genética , Ácido Fólico/genética , Ácido Fólico/metabolismo , Deficiencia de Ácido Fólico/genética , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Obesidad/etiología , Fenoles/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal
3.
FASEB J ; 35(5): e21477, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33891326

RESUMEN

Chronic fetal hypoxia is one of the most common outcomes in complicated pregnancy in humans. Despite this, its effects on the long-term health of the brain in offspring are largely unknown. Here, we investigated in rats whether hypoxic pregnancy affects brain structure and function in the adult offspring and explored underlying mechanisms with maternal antioxidant intervention. Pregnant rats were randomly chosen for normoxic or hypoxic (13% oxygen) pregnancy with or without maternal supplementation with vitamin C in their drinking water. In one cohort, the placenta and fetal tissues were collected at the end of gestation. In another, dams were allowed to deliver naturally, and offspring were reared under normoxic conditions until 4 months of age (young adult). Between 3.5 and 4 months, the behavior, cognition and brains of the adult offspring were studied. We demonstrated that prenatal hypoxia reduced neuronal number, as well as vascular and synaptic density, in the hippocampus, significantly impairing memory function in the adult offspring. These adverse effects of prenatal hypoxia were independent of the hypoxic pregnancy inducing fetal growth restriction or elevations in maternal or fetal plasma glucocorticoid levels. Maternal vitamin C supplementation during hypoxic pregnancy protected against oxidative stress in the placenta and prevented the adverse effects of prenatal hypoxia on hippocampal atrophy and memory loss in the adult offspring. Therefore, these data provide a link between prenatal hypoxia, placental oxidative stress, and offspring brain health in later life, providing insight into mechanism and identifying a therapeutic strategy.


Asunto(s)
Ácido Ascórbico/uso terapéutico , Atrofia/tratamiento farmacológico , Hipoxia Fetal/complicaciones , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Animales , Animales Recién Nacidos , Antioxidantes/uso terapéutico , Atrofia/etiología , Atrofia/metabolismo , Atrofia/patología , Suplementos Dietéticos , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Embarazo , Complicaciones del Embarazo/tratamiento farmacológico , Complicaciones del Embarazo/etiología , Complicaciones del Embarazo/metabolismo , Complicaciones del Embarazo/patología , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Ratas , Ratas Wistar
4.
Int J Obes (Lond) ; 44(9): 1946-1957, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32719434

RESUMEN

BACKGROUND: Though it is well established that neonatal nutrition plays a major role in lifelong offspring health, the mechanisms underpinning this have not been well defined. Early postnatal accelerated growth resulting from maternal nutritional status is associated with increased appetite and body weight. Likewise, slow growth correlates with decreased appetite and body weight. Food consumption and food-seeking behaviour are directly modulated by central serotonergic (5-hydroxytryptamine, 5-HT) pathways. This study examined the effect of a rat maternal postnatal low protein (PLP) diet on 5-HT receptor mediated food intake in offspring. METHODS: Microarray analyses, in situ hybridization or laser capture microdissection of the ARC followed by RT-PCR were used to identify genes up- or down-regulated in the arcuate nucleus of the hypothalamus (ARC) of 3-month-old male PLP rats. Third ventricle cannulation was used to identify altered sensitivity to serotonin receptor agonists and antagonists with respect to food intake. RESULTS: Male PLP offspring consumed less food and had lower growth rates up to 3 months of age compared with Control offspring from dams fed a normal diet. In total, 97 genes were upregulated including the 5-HT5A receptor (5-HT5AR) and 149 downregulated genes in PLP rats compared with Controls. The former obesity medication fenfluramine and the 5-HT receptor agonist 5-Carboxamidotryptamine (5-CT) significantly suppressed food intake in both groups, but the PLP offspring were more sensitive to d-fenfluramine and 5-CT compared with Controls. The effect of 5-CT was antagonized by the 5-HT5AR antagonist SB699551. 5-CT also reduced NPY-induced hyperphagia in both Control and PLP rats but was more effective in PLP offspring. CONCLUSIONS: Postnatal low protein programming of growth in rats enhances the central effects of serotonin on appetite by increasing hypothalamic 5-HT5AR expression and sensitivity. These findings provide insight into the possible mechanisms through which a maternal low protein diet during lactation programs reduced growth and appetite in offspring.


Asunto(s)
Apetito/fisiología , Peso Corporal/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Hipotálamo/metabolismo , Receptores de Serotonina , Animales , Dieta , Femenino , Masculino , Obesidad/metabolismo , Ratas , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Transcriptoma/genética
5.
Dis Model Mech ; 9(4): 401-12, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26769798

RESUMEN

Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.


Asunto(s)
Crecimiento y Desarrollo , Hipotálamo/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Animales , Animales Recién Nacidos , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Peso Corporal/efectos de los fármacos , Proteínas en la Dieta/farmacología , Conducta Alimentaria/efectos de los fármacos , Femenino , Fenfluramina/administración & dosificación , Fenfluramina/farmacología , Feto/efectos de los fármacos , Feto/metabolismo , Crecimiento y Desarrollo/efectos de los fármacos , Hipotálamo/anatomía & histología , Hipotálamo/efectos de los fármacos , Hipotálamo/crecimiento & desarrollo , Captura por Microdisección con Láser , Masculino , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Tamaño de los Órganos/efectos de los fármacos , Embarazo , Ratas Wistar , Reproducibilidad de los Resultados , Serotonina/metabolismo , Factores de Tiempo , Triptófano/metabolismo
6.
Am J Clin Nutr ; 103(2): 579-88, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26718412

RESUMEN

BACKGROUND: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. OBJECTIVES: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. DESIGN: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed "recuperated"). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase-polymerase chain reaction. RESULTS: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 µm) than in controls (5 ± 0.5 µm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 µg/mL per µg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). CONCLUSIONS: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was associated with higher indexes of oxidative stress and inflammation and hyperinsulinemia. CoQ10 supplementation prevented liver fibrosis accompanied by downregulation of oxidative stress, inflammation, and hyperinsulinemia.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Suplementos Dietéticos , Retardo del Crecimiento Fetal/dietoterapia , Hepatitis/prevención & control , Cirrosis Hepática/prevención & control , Estrés Oxidativo , Ubiquinona/análogos & derivados , Animales , Citocinas/antagonistas & inhibidores , Citocinas/sangre , Citocinas/metabolismo , Dieta con Restricción de Proteínas/efectos adversos , Femenino , Desarrollo Fetal , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/inmunología , Retardo del Crecimiento Fetal/fisiopatología , Hepatitis/etiología , Hepatitis/metabolismo , Hepatitis/patología , Hiperinsulinismo/etiología , Hiperinsulinismo/prevención & control , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Desnutrición/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Complicaciones del Embarazo/fisiopatología , Ratas Wistar , Organismos Libres de Patógenos Específicos , Ubiquinona/uso terapéutico , Destete
7.
Front Neuroendocrinol ; 39: 3-16, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26296796

RESUMEN

A wealth of animal and human studies demonstrate that perinatal exposure to adverse metabolic conditions - be it maternal obesity, diabetes or under-nutrition - results in predisposition of offspring to develop obesity later in life. This mechanism is a contributing factor to the exponential rise in obesity rates. Increased weight gain in offspring exposed to maternal obesity is usually associated with hyperphagia, implicating altered central regulation of energy homeostasis as an underlying cause. Perinatal development of the hypothalamus (a brain region key to metabolic regulation) is plastic and sensitive to metabolic signals during this critical time window. Recent research in non-human primate and rodent models has demonstrated that exposure to adverse maternal environments impairs the development of hypothalamic structure and consequently function, potentially underpinning metabolic phenotypes in later life. This review summarizes our current knowledge of how adverse perinatal environments program hypothalamic development and explores the mechanisms that could mediate these effects.


Asunto(s)
Metabolismo Energético , Desarrollo Fetal , Hipotálamo/fisiopatología , Enfermedades Metabólicas/fisiopatología , Vías Nerviosas/fisiopatología , Animales , Femenino , Humanos , Hipotálamo/crecimiento & desarrollo , Obesidad/fisiopatología , Embarazo
8.
Endocrinology ; 156(10): 3528-37, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26214037

RESUMEN

Low birth weight and rapid postnatal growth increases the risk of developing insulin resistance and type 2 diabetes in later life. However, underlying mechanisms and potential intervention strategies are poorly defined. Here we demonstrate that male Wistar rats exposed to a low-protein diet in utero that had a low birth weight but then underwent postnatal catch-up growth (recuperated offspring) had reductions in the insulin signaling proteins p110-ß (13% ± 6% of controls [P < .001]) and insulin receptor substrate-1 (39% ± 10% of controls [P < .05]) in adipose tissue. These changes were not accompanied by any change in expression of the corresponding mRNAs, suggesting posttranscriptional regulation. Recuperated animals displayed evidence of a proinflammatory phenotype of their adipose tissue with increased IL-6 (139% ± 8% [P < .05]) and IL1-ß (154% ± 16% [P < .05]) that may contribute to the insulin signaling protein dysregulation. Postweaning dietary supplementation of recuperated animals with coenzyme Q (CoQ10) (1 mg/kg of body weight per day) prevented the programmed reduction in insulin receptor substrate-1 and p110-ß and the programmed increased in IL-6. These findings suggest that postweaning CoQ10 supplementation has antiinflammatory properties and can prevent programmed changes in insulin-signaling protein expression. We conclude that CoQ10 supplementation represents an attractive intervention strategy to prevent the development of insulin resistance that results from suboptimal in utero nutrition.


Asunto(s)
Inflamación/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Transducción de Señal , Ubiquinona/análogos & derivados , Tejido Adiposo/metabolismo , Animales , Femenino , Perfilación de la Expresión Génica , Trastornos del Crecimiento/fisiopatología , Insulina/sangre , Lípidos/sangre , Masculino , Exposición Materna , Ratones , MicroARNs/metabolismo , Estrés Oxidativo , Fenotipo , Ratas , Ratas Wistar , Ubiquinona/fisiología
9.
FASEB J ; 28(12): 5398-405, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25172893

RESUMEN

Low birth weight and rapid postnatal growth increases risk of cardiovascular-disease (CVD); however, underlying mechanisms are poorly understood. Previously, we demonstrated that rats exposed to a low-protein diet in utero that underwent postnatal catch-up growth (recuperated) have a programmed deficit in cardiac coenzyme Q (CoQ) that was associated with accelerated cardiac aging. It is unknown whether this deficit occurs in all tissues, including those that are clinically accessible. We investigated whether aortic and white blood cell (WBC) CoQ is programmed by suboptimal early nutrition and whether postweaning dietary supplementation with CoQ could prevent programmed accelerated aging. Recuperated male rats had reduced aortic CoQ [22 d (35±8.4%; P<0.05); 12 m (53±8.8%; P<0.05)], accelerated aortic telomere shortening (P<0.01), increased DNA damage (79±13% increase in nei-endonucleaseVIII-like-1), increased oxidative stress (458±67% increase in NAPDH-oxidase-4; P<0.001), and decreased mitochondrial complex II-III activity (P<0.05). Postweaning dietary supplementation with CoQ prevented these detrimental programming effects. Recuperated WBCs also had reduced CoQ (74±5.8%; P<0.05). Notably, WBC CoQ levels correlated with aortic telomere-length (P<0.0001) suggesting its potential as a diagnostic marker of vascular aging. We conclude that early intervention with CoQ in at-risk individuals may be a cost-effective and safe way of reducing the global burden of CVDs.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Suplementos Dietéticos , Ubiquinona/metabolismo , Animales , Enfermedades Cardiovasculares/enzimología , Femenino , Estrés Oxidativo , Embarazo , Ratas Wistar , Telomerasa/metabolismo , Ubiquinona/administración & dosificación
10.
Mol Metab ; 2(4): 480-90, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24327963

RESUMEN

Studies in human and animals have demonstrated that nutritionally induced low birth-weight followed by rapid postnatal growth increases the risk of metabolic syndrome and cardiovascular disease. Although the mechanisms underlying such nutritional programming are not clearly defined, increased oxidative-stress leading to accelerated cellular aging has been proposed to play an important role. Using an established rodent model of low birth-weight and catch-up growth, we show here that post-weaning dietary supplementation with coenzyme Q10, a key component of the electron transport chain and a potent antioxidant rescued many of the detrimental effects of nutritional programming on cardiac aging. This included a reduction in nitrosative and oxidative-stress, telomere shortening, DNA damage, cellular senescence and apoptosis. These findings demonstrate the potential for postnatal antioxidant intervention to reverse deleterious phenotypes of developmental programming and therefore provide insight into a potential translatable therapy to prevent cardiovascular disease in at risk humans.

11.
Proteomics ; 12(22): 3386-92, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22997143

RESUMEN

Studies of neuronal, endocrine, and metabolic disorders would be facilitated by characterization of the hypothalamus proteome. Protein extracts prepared from 16 whole rat hypothalami were measured by data-independent label-free nano LC-MS/MS. Peptide features were detected, aligned, and searched against a rat Swiss-Prot database using ProteinLynx Global Server v.2.5. The final combined dataset comprised 21 455 peptides, corresponding to 622 unique proteins, each identified by a minimum of two distinct peptides. The majority of the proteins (69%) were cytosolic, and 16% were membrane proteins. Important proteins involved in neurological and synaptic function were identified including several members of the Ras-related protein family and proteins involved in glutamate biosynthesis.


Asunto(s)
Cromatografía Liquida/métodos , Hipotálamo/química , Proteínas del Tejido Nervioso/análisis , Proteoma/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Biomarcadores/análisis , Bases de Datos de Proteínas , Hipotálamo/metabolismo , Punto Isoeléctrico , Proteínas del Tejido Nervioso/química , Fragmentos de Péptidos/análisis , Proteoma/química , Proteómica , Ratas , Ratas Wistar
13.
Vitam Horm ; 82: 201-17, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20472140

RESUMEN

The hormone, leptin, plays a key role in the regulation of energy balance and neuroendocrine function, as well as modulating a range of other physiological systems from immunity to cognition. In the adult brain, leptin regulates food intake and energy expenditure primarily via the hypothalamus. In addition to these well-defined actions in adult life, there is increasing evidence for a role of leptin during development. Leptin receptors are widely expressed in the developing brain from an early stage, and leptin is known to have profound effects on the proliferation, maintenance, and differentiation of neuronal and glial cells. During the early postnatal period, in both rats and mice, there is a surge in circulating leptin concentrations. Despite this elevation in leptin, neonates maintain a high level of food intake, and both feeding behavior and metabolic responses to exogenous leptin administration are absent until around the time of weaning. However, it is during this period that direct neurotrophic actions of leptin have been demonstrated, with leptin promoting neurite outgrowth and the establishment of hypothalamic circuitry. Exactly how leptin exerts these effects remains unknown, but changes in the distribution of hypothalamic leptin receptors during this period may, at least in part, underlie these age-specific effects of leptin.


Asunto(s)
Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Receptores de Leptina/metabolismo , Animales , Animales Recién Nacidos , Metabolismo Energético , Humanos , Leptina/metabolismo , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA