RESUMEN
Millions of seasonal and pandemic influenza vaccine doses containing oil-in-water emulsion adjuvant have been administered in order to enhance and broaden immune responses and to facilitate antigen sparing. Despite the enactment of a Global Action Plan for Influenza Vaccines and a multi-fold increase in production capabilities over the past 10 years, worldwide capacity for pandemic influenza vaccine production is still limited. In developing countries, where routine influenza vaccination is not fully established, additional measures are needed to ensure adequate supply of pandemic influenza vaccines without dependence on the shipment of aid from other, potentially impacted first-world countries. Adaptation of influenza vaccine and adjuvant technologies by developing country influenza vaccine manufacturers may enable antigen sparing and corresponding increases in global influenza vaccine coverage capacity. Following on previously described work involving the technology transfer of oil-in-water emulsion adjuvant manufacturing to a Romanian vaccine manufacturing institute, we herein describe the preclinical evaluation of inactivated split virion H5N1 influenza vaccine with emulsion adjuvant, including immunogenicity, protection from virus challenge, antigen sparing capacity, and safety. In parallel with the evaluation of the bioactivity of the tech-transferred adjuvant, we also describe the impact of concurrent antigen manufacturing optimization activities. Depending on the vaccine antigen source and manufacturing process, inclusion of adjuvant was shown to enhance and broaden functional antibody titers in mouse and rabbit models, promote protection from homologous virus challenge in ferrets, and facilitate antigen sparing. Besides scientific findings, the operational lessons learned are delineated in order to facilitate adaptation of adjuvant technologies by other developing country institutes to enhance global pandemic influenza preparedness.
Asunto(s)
Adyuvantes Inmunológicos , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza , Transferencia de Tecnología , Evaluación Preclínica de Medicamentos , Emulsiones/química , Humanos , Subtipo H5N1 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Aceites , Pandemias/prevención & control , Rumanía , Virión/fisiología , Inactivación de VirusRESUMEN
Egg phosphatidylcholine is commonly used as an emulsifier in formulations administered parenterally. However, synthetic phosphatidylcholine (PC) emulsifiers are now widely available and may be desirable substitutes for egg-derived phospholipids due to stability, purity, and material source considerations. In earlier work, we demonstrated that a squalene-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) emulsion provided equivalent physical stability compared to a squalene-egg PC emulsion. In the present manuscript, we evaluate the physical stability of vaccine adjuvant emulsions containing a range of other synthetic phosphatidylcholine emulsifiers. Besides the POPC emulsion, the 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) emulsion showed good particle size and visual stability compared to emulsions made with other synthetic phospholipids. Moreover, comparable immune responses were elicited by squalene emulsions employing various synthetic PC or egg PC emulsifiers in combination with an inactivated influenza vaccine or a recombinant malaria antigen, and these responses were generally enhanced compared to antigen without adjuvant. Therefore, we show that (1) some synthetic PCs (DMPC, POPC, and to a lesser extent 1,2-dioleoyl-sn-glycero-3-phosphocholine) are effective stabilizers of squalene emulsion over a range of storage temperatures while others are not (1,2-distearoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and 1,2-dilauroyl-sn-glycero-3-phosphocholine) and (2) the immunogenicity of stable squalene emulsions is similar regardless of PC source.
Asunto(s)
Adyuvantes Inmunológicos , Emulsionantes/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Malaria/inmunología , Fosfatidilcolinas/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/química , Animales , Anticuerpos/sangre , Química Farmacéutica , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/inmunología , Estabilidad de Medicamentos , Emulsionantes/administración & dosificación , Emulsionantes/química , Emulsiones , Femenino , Humanos , Inmunización , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Inyecciones Intramusculares , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/química , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Fosfatidilcolinas/administración & dosificación , Fosfatidilcolinas/química , Escualeno/química , Escualeno/inmunología , Tecnología Farmacéutica/métodos , Factores de TiempoRESUMEN
Squalene-based oil-in-water emulsions have been used for years in some seasonal and pandemic influenza vaccines. However, concerns have been expressed regarding squalene source and potential biological activities. Little information is available regarding the immunomodulatory activity of squalene in comparison with other metabolizable oils in the context of oil-in-water emulsions formulated with vaccines. The present work describes the manufacture and physical characterization of emulsions composed of different classes of oils, including squalene, long chain triglycerides, a medium chain triglyceride, and a perfluorocarbon, all emulsified with egg phosphatidylcholine. Some differences were apparent among the non-squalene oils in terms of emulsion stability, including higher size polydispersity in the perfluorocarbon emulsion, more rapid visual instability at 60°C for the long-chain triglyceride and perfluorocarbon emulsions, and an increased creaming rate in the medium-chain triglyceride emulsion at 60°C as detected by laser scattering optical profiling. The biological activity of each of these emulsions was compared when formulated with either a recombinant malaria antigen or a split-virus inactivated influenza vaccine. Overall, vaccines containing the squalene emulsion elicited higher antibody titers and more abundant long-lived plasma cells than vaccines containing emulsions based on other oils. Since squalene-based emulsions show higher adjuvant potency compared to the other oils tested, non-squalene oils may be more suitable as carriers of amphiphilic or hydrophobic immunostimulatory molecules (such as TLR agonists) rather than as stand-alone adjuvants.
Asunto(s)
Adyuvantes Inmunológicos , Aceites , Vacunas Virales/inmunología , Adyuvantes Inmunológicos/efectos adversos , Adyuvantes Inmunológicos/química , Anticuerpos Antivirales/biosíntesis , Huevos , Emulsiones , Fluorocarburos/efectos adversos , Fluorocarburos/inmunología , Humanos , Factores Inmunológicos , Aceites/efectos adversos , Fosfatidilcolinas/inmunología , Escualeno/efectos adversos , Escualeno/inmunologíaRESUMEN
Development and characterization of stable and biocompatible oil-in-water emulsions is important for improved drug and vaccine delivery. In this work, two-component emulsions consisting of squalene and phosphatidylcholine have been developed. The reproducibility of the manufacturing process is established and production efficiency is improved by altering the order of component addition. The effects of emulsifier concentration and composition on emulsion stability and biocompatibility are assessed through dynamic light scattering, zeta potential measurement, viscosity, and hemolytic activity. High concentrations of egg phosphatidylcholine emulsifier decreased initial particle size and increased initial size polydispersity. However, high emulsifier concentrations also appeared to decrease long-term emulsion stability as well as absolute zeta potential values. Substitution of naturally derived egg phosphatidylcholine with synthetic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) produced an emulsion with similar physicochemical properties and stability.
Asunto(s)
Emulsionantes/química , Emulsiones/química , Fosfatidilcolinas/química , Escualeno/química , Adyuvantes Inmunológicos/química , Bioensayo , Sistemas de Liberación de Medicamentos , Humanos , Aceites/química , Tamaño de la Partícula , Reproducibilidad de los Resultados , Viscosidad , Agua/químicaRESUMEN
Oil-in-water emulsions have shown promise as safe and effective adjuvant formulations for vaccines. In particular, formulations consisting of metabolizable oils such as shark-derived squalene and detergents such as egg phosphatidylcholine have been used to produce stable vaccine emulsion formulations. However, there is an emphasis in pharmaceutical regulatory bodies on using synthetic or plant-derived components from sustainable sources instead of animal-derived components. This study compares the physicochemical properties and biological efficacy of emulsions consisting of oil and detergent components from animal, plant, and synthetic sources. In particular, effects of component structure and source on emulsion stability and biological activity are examined. It is shown that oil-in-water emulsions using animal-derived components can be substituted with synthetic or plant-derived materials while still exhibiting satisfactory physicochemical and biological properties.