Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155344, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493721

RESUMEN

BACKGROUND: Among adults, stroke is the main causes of mortality and permanent disability. Neuroinflammation is one of the main causes of stoke-mediated neuronal death. Our previous study revealed that (E)-5-(2-(Quinolin-4-yl) vinyl) benzene-1, 3-diol (RV01), a quinolinyl analog of resveratrol, inhibits microglia-induced neuroinflammation and safeguards neurons from inflammatory harm. The preventive role of RV01 in ischemic stroke and its underlying cellular mechanisms and molecular targets remain poorly understood. PURPOSE: To investigate whether RV01 alleviates ischemia-reperfusion (I/R) injury by inhibiting microglia-mediated neuroinflammation and determine the potential molecular mechanisms and targets by which RV01 inhibits the I/R-mediated microglia activation. METHODS: Rat middle cerebral artery occlusion and reperfusion (MCAO/R) and BV-2 or primary microglial cells oxygen-glucose deprivation and reperfusion (OGD/R) models were established. The neurological behavior scores, 2, 3, 5-triphenyl tetrazolium chloride staining and immunofluorescence were used to detect the neuroprotective effect of RV01 in the MCAO/R rats. In addition, the mRNA expression levels of IL-6, TNF-α, and IL-1ß were detected to reveal the antineuroinflammatory effect of RV01. Moreover, a western blot assay was performed to explore the protein expression changes in NF-κB-mediated neuroinflammation. Finally, we identified TLR4 as an RV01 target through molecular docking, drug sensitivity target stability analysis, cellular thermal shift analysis, and surface plasmon resonance techniques. RESULTS: RV01 reduced the infarct volume and neurological deficits, increased the rotarod duration, and decreased the number of rightward deflections in the MCAO/R rats. RV01 inhibited the NF-κB signaling pathway in vitro and in vivo, as demonstrated by the reduction in the transcription factor p65-mediated expression of several inflammatory factors including IL-6, TNF-α, and IL-1ß. Further studies showed that its protective effect was associated with targeting the TLR4 protein. Notably, the anti-inflammatory effect of RV01 was markedly reinforced by the TLR4 knockdown, but inhibited by the overexpression of TLR4. Results revealed that the conditioned medium derived from the RV01-treated BV-2 cells significantly decreased the OGD/R-mediated neuronal damage. CONCLUSION: Our results are the first to reveal the protective effects of RV01 on cerebral ischemia, depending on its inhibitory effect on the NF-κB pathway by targeting TLR4. RV01 could be a potential protective agent in ischemic stroke treatment.


Asunto(s)
Antiinflamatorios , Infarto de la Arteria Cerebral Media , Microglía , Fármacos Neuroprotectores , Ratas Sprague-Dawley , Daño por Reperfusión , Resveratrol , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Masculino , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Microglía/efectos de los fármacos , Resveratrol/farmacología , Fármacos Neuroprotectores/farmacología , Ratas , Antiinflamatorios/farmacología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Modelos Animales de Enfermedad , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA