Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Des Devel Ther ; 16: 2569-2587, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959419

RESUMEN

Introduction: Bone fracture is a common reason causing human disability. The delay union and nonunion rates are approximately 5-10% despite patients receiving active treatment. Currently, there is a limited number of drugs directly accelerating bone healing, especially direct extracts from plants. Moreover, the pharmacological effects of Ilex cornuta bark are still unknown. This study aimed to explore the effects and mechanisms of Ilex cornuta bark in bone healing. Methods and Results: First, the promoting effects of Ilex cornuta bark on bone healing were verified by the mice femur fracture model as Ilex cornuta bark increased the callus formation and enhanced the biomechanical stability during the bone healing process. Second, the target gene of Ilex cornuta bark in bone healing identified by bioinformatics analysis and immunofluorescence validation was ADORA2A. Third, 410 main compound compositions of Ilex cornuta bark were explored by a non-target metabolomic analysis, where 190 of them were neg ion mode, and 220 were pos ion mode. Molecular docking was used to predict the regulatory effect of the compounds on adora2a (adenosine A2A receptor), and ursonic acid had the lowest binding energy with adora2a. Finally, nfkb1 was the transcription factor (TF) of adora2a, and ursonic acid also had the lowest binding energy by bioinformatic analysis and molecular docking. Conclusion: Overall, Ilex cornuta bark water extract was a new plant extract on promoting bone healing; in addition, the mechanism of it might be activating adora2a though Nfkb1.


Asunto(s)
Ilex , Animales , Humanos , Ilex/química , Ratones , Simulación del Acoplamiento Molecular , Corteza de la Planta , Extractos Vegetales/farmacología , Receptor de Adenosina A2A
2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(7): 889-895, 2022 Jul 15.
Artículo en Chino | MEDLINE | ID: mdl-35848187

RESUMEN

Objective: To study the effects of morroniside (MOR) on the proliferation and osteogenic differentiation of mouse MC3T3-E1 cells. Methods: The 4th generation MC3T3-E1 cells were randomly divided into 6 groups: control group (group A), MOR low dose group (10 µmol/L, group B), MOR medium-low dose group (20 µmol/L, group C), MOR medium dose group (40 µmol/L, group D), MOR medium-high dose group (80 µmol/L, group E), and MOR high dose group (100 µmol/L, group F). The proliferation activity of each group was detected by cell counting kit 8 (CCK-8) assay; the bone differentiation and mineralized nodule formation of each group were detected by alizarin red staining; real-time fluorescence quantitative PCR (RT-qPCR) was performed to detect cyclin-dependent kinase inhibitor 1A (P21), recombinant Cyclin D1 (CCND1), proliferating cell nuclear antigen (PCNA), alkaline phosphatase (ALP), collagen type Ⅰ (COL-1), bone morphogenetic protein 2 (BMP-2), and adenosine A2A receptor (A2AR) mRNA expressions; Western blot was used to detecte the expressions of osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), and adenosine A2AR protein. Results: The CCK-8 assay showed that the absorbance ( A) values of groups B to F were significantly higher than that of group A at 24 hours of culture, with group C significantly higher than the rest of the groups ( P<0.05). The MOR concentration (20 µmol/L) of group C was selected for the subsequent CCK-8 assay; the results showed that the A values of group C were significantly higher than those of group A at 24, 48, and 72 hours of culture ( P<0.05). Alizarin red staining showed that orange-red mineralized nodules were visible in all groups and the number of mineralized nodules was significantly higher in groups B and C than in group A ( P<0.05). RT-qPCR showed that the relative expressions of P21, CCND1, and PCNA mRNAs were significantly higher in group C than in group A ( P<0.05). The expressions of ALP, BMP-2, COL-1, and adenosine A2AR mRNAs in groups B to E were significantly higher than those in group A, with the expressions of ALP, BMP-2, COL-1 mRNAs in group C significantly higher than the rest of the groups ( P<0.05). Compared with group A, the expressions of OPN and RUNX2 proteins in groups B and C were significantly increased, while those in group D and E were significantly inhibited ( P<0.05). There was no significant difference between groups B and C and between groups D and E ( P>0.05). The relative expression of adenosine A2AR protein in groups B to E was significantly higher than that in group A, with group C significantly higher than the rest of the groups ( P<0.05). Conclusion: MOR can promote the proliferation and osteogenic differentiation of MC3T3-E1 cells; the mechanism of MOR may be achieved by interacting with adenosine A2AR.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteogénesis , Adenosina/farmacología , Fosfatasa Alcalina , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/farmacología , Glicósidos , Ratones , Osteoblastos , Antígeno Nuclear de Célula en Proliferación/farmacología
3.
Hum Exp Toxicol ; 41: 9603271221077684, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35196174

RESUMEN

OBJECTIVE: Shenfu injection (SFI) is commonly used for cardiac dysfunction in China. Adenosine receptors have been reported to exert anti-fibrosis effects. The intent of this study was to evaluate that SFI attenuates cardiac fibrosis through activating of adenosine A2a receptor (A2aR) in rats with myocardial ischemia-reperfusion (MI/R). METHODS: Sprague Dawley male rats were randomly divided into five groups, nine rats in each group. Injections in all rat groups were carried out prior to reperfusion, and in the sham and MI/R groups, only vehicle was injected. Injections in the remaining group were as follows: 5 mL/kg in the SFI group; 15 mg/kg nicorandil in the A2R agonist group; and 5 mL/kg SFI plus 5 mg/kg MSX-3 in the SFI + A2aR antagonist group. Changes in cyclic adenosine monophosphate (cAMP) and the development of myocardial infarction and cardiac fibrosis were documented among the groups. Additionally, the levels of A2aR, collagen Ⅰ, collagen Ⅲ, fibronectin, and matrix metalloproteinase-9 (MMP-9) were measured. RESULTS: Following injection with SFI or nicorandil, the cAMP concentration, infarct area, and cardiac fibrosis induced by MI/R injury were significantly decreased (p < 0.05). Additionally, the levels of collagen Ⅰ, collagen Ⅲ, fibronectin, and MMP-9 were clearly suppressed by SFI or nicorandil when compared with the MI/R group (p<0.01). However, the protective effects of SFI were counteracted by MSX-3. A negative correlation between A2aR and collagen I and collagen III was found (p = 0.00). CONCLUSION: SFI activated the A2aR to reduce myocardial fibrosis caused by MI/R injury, which provided an underlying mechanism of action of SFI.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/uso terapéutico , Antiarrítmicos/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Fibrosis/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Nicorandil/uso terapéutico , Receptor de Adenosina A2A/efectos de los fármacos , Animales , Antiarrítmicos/administración & dosificación , China , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/administración & dosificación , Humanos , Masculino , Nicorandil/administración & dosificación , Ratas , Ratas Sprague-Dawley
4.
Mov Disord ; 37(4): 853-857, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35001424

RESUMEN

BACKGROUND: Coffee intake can decrease the risk for Parkinson's disease (PD). Its beneficial effects are allegedly mediated by caffeine through adenosine A2A receptor (A2A R) antagonist action. OBJECTIVE: We aimed to calculate occupancy rates of striatal A2A Rs by caffeine after coffee intake in PD. METHODS: Five patients with PD underwent 11 C-preladenant positron emission tomography scanning at baseline and after intake of coffee containing 129.5 mg (n = 3) or 259 mg (n = 2) of caffeine. Concurrently, serum caffeine levels were measured. RESULTS: The mean serum caffeine level (µg/mL) was 0.374 at baseline and increased to 4.48 and 8.92 by 129.5 and 259 mg of caffeine, respectively. The mean occupancy rates of striatal A2A Rs by 129.5 and 259 mg of caffeine were 54.2% and 65.1%, respectively. CONCLUSIONS: A sufficient A2A R occupancy can be obtained by drinking a cup of coffee, which is equivalent to approximately 100 mg of caffeine. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Adenosina , Cafeína/farmacología , Café , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Receptor de Adenosina A2A
5.
Biochem Biophys Res Commun ; 586: 20-26, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34823218

RESUMEN

Curcumin is a natural polyphenol derived from the turmeric plant (Curcuma longa) which exhibits numerous beneficial effects on different cell types. Inhibition of platelet activation by curcumin is well known, however molecular mechanisms of its action on platelets are not fully defined. In this study, we used laser diffraction method for analysis of platelet aggregation and Western blot for analysis of intracellular signaling mechanisms of curcumin effects on platelets. We identified two new molecular mechanisms involved in the inhibitory effects of curcumin on platelet activation. Firstly, curcumin by activation of adenosine A2A receptor stimulated protein kinase A activation and phosphorylation of Vasodilator-stimulated phosphoprotein. Secondly, we demonstrated that curcumin even at low doses, which did not inhibit platelet aggregation, potentiated inhibitory effect of ADP receptor P2Y12 antagonist cangrelor which partly could be explained by activation of adenosine A2A receptor.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Plaquetas/efectos de los fármacos , Moléculas de Adhesión Celular/genética , Curcumina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de Microfilamentos/genética , Fosfoproteínas/genética , Activación Plaquetaria/efectos de los fármacos , Receptor de Adenosina A2A/genética , Adenosina Difosfato/farmacología , Adenosina Monofosfato/farmacología , Plaquetas/citología , Plaquetas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Curcuma/química , Curcumina/aislamiento & purificación , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Sinergismo Farmacológico , Regulación de la Expresión Génica , Humanos , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Extractos Vegetales/química , Inhibidores de Agregación Plaquetaria/farmacología , Cultivo Primario de Células , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptor de Adenosina A2A/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Transducción de Señal
6.
Molecules ; 26(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34885946

RESUMEN

In this work, we evaluated the conformational effect promoted by the isosteric exchange of sulfur by selenium in the heteroaromatic ring of new N-acylhydrazone (NAH) derivatives (3-8, 13, 14), analogues of the cardioactive compounds LASSBio-294 (1) and LASSBio-785 (2). NMR spectra analysis demonstrated a chemical shift variation of the iminic Csp2 of NAH S/Se-isosters, suggesting a stronger intramolecular chalcogen interaction for Se-derivatives. To investigate the pharmacological profile of these compounds at the adenosine A2A receptor (A2AR), we performed a previously validated functional binding assay. As expected for bioisosteres, the isosteric-S/Se replacement affected neither the affinity nor the intrinsic efficacy of our NAH derivatives (1-8). However, the N-methylated compounds (2, 6-8) presented a weak partial agonist profile at A2AR, contrary to the non-methylated counterparts (1, 3-5), which appeared as weak inverse agonists. Additionally, retroisosterism between aromatic rings of NAH on S/Se-isosters mimicked the effect of the N-methylation on intrinsic efficacy at A2AR, while meta-substitution in the phenyl ring of the acyl moiety did not. This study showed that the conformational effect of NAH-N-methylation and aromatic rings retroisosterism changed the intrinsic efficacy on A2AR, indicating the S/Se-chalcogen effect to drive the conformational behavior of this series of NAH.


Asunto(s)
Hidrazonas/química , Receptor de Adenosina A2A/metabolismo , Selenio/química , Azufre/química , Tiofenos/química , Agonistas del Receptor de Adenosina A2/química , Agonistas del Receptor de Adenosina A2/farmacología , Animales , Humanos , Hidrazonas/farmacología , Masculino , Modelos Moleculares , Ratas Wistar , Selenio/farmacología , Azufre/farmacología , Tiofenos/farmacología
7.
Neurochem Int ; 148: 105066, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34004240

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects more than 10 million people worldwide. Oxidative stress and mitochondrial dysfunction play a significant role in altering the homeostasis of energy production and free radical generation. Current PD therapies are focused on reducing the cardinal symptoms rather than preventing disease progression in the patients. Adenosine A2A receptor (A2A R) antagonist (Istradephylline) combined with levodopa shows a promising therapy for PD. In animal studies, caffeine administration showed to improve motor functions and neuroprotective effect in the neurons. Caffeine is probably the most extensively used psychoactive substance. In this current study, we investigated the neuroprotective effect of caffeine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration. Here, we demonstrate that caffeine improves behavioral and neurotransmitter recovery against MPTP-induced toxicity. Caffeine restores endogenous antioxidant levels and suppresses neuroinflammation. Our finding suggests that the blockage of A2AR is a promising disease-modifying therapy for PD. Target engagement strategies could be more beneficial in preventing disease progression rather than symptomatic reliefs in PD patients.


Asunto(s)
Cafeína/farmacología , Suplementos Dietéticos , Neuronas Dopaminérgicas/efectos de los fármacos , Intoxicación por MPTP/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Animales , Antioxidantes/farmacología , Conducta Animal/efectos de los fármacos , Intoxicación por MPTP/patología , Intoxicación por MPTP/psicología , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Sustancia Negra/metabolismo , Sustancia Negra/patología
8.
Am J Chin Med ; 49(3): 661-676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33683190

RESUMEN

Ulcerative Colitis (UC) is a chronic inflammation disease, and the incidence of UC is increasing recently. Both clinical trials and animal experiments show that moxibustion is a complementary and alternative treatment for UC. Previous studies showed that moxibustion can improve UC by regulating the balance of Tregs and Th17 (Sun et al., 2017). Treg cells is one subset of CD4[Formula: see text] T cells that exert the immunosuppressive function. CD39 and CD73, expressed on the surface of Tregs, hydrolyze ATP to AMP and are further involved in the immunosuppressive function of Tregs. In this study, we investigated the effect of moxibustion on CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in dextran sulfate sodium (DSS) induced UC mice. The A2a receptor (A2aR), one of the targets of adenosine, was also detected. The results showed that moxibustion could increase the expression of CD39, CD73, and A2aR in colonic tissue and improve the proportion of CD39[Formula: see text] Tregs and CD73[Formula: see text] Tregs in peripheral blood, inguinal draining lymph nodes and spleen in the UC model. Additionally, A2aR agonists enhanced the cell viability of colonic epithelial cells and inhibit the production of cytokines IL-6 and TNF-[Formula: see text] in vitro, which may further influence the pathway of ATP purine signal metabolism and alleviates the gut inflammation of UC mice. Taken together, this study provides supplemental evidence to reveal the immune related mechanism of moxibustion in the treatment of UC.


Asunto(s)
5'-Nucleotidasa/metabolismo , Antígenos CD/metabolismo , Apirasa/metabolismo , Colitis Ulcerosa/genética , Colitis Ulcerosa/terapia , Sulfato de Dextran/efectos adversos , Moxibustión/métodos , Receptor de Adenosina A2A/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Animales , Supervivencia Celular , Colitis Ulcerosa/etiología , Colitis Ulcerosa/metabolismo , Colon/citología , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Interleucina-6/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo
9.
Phytomedicine ; 83: 153474, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33548867

RESUMEN

BACKGROUND: Limonene, a common terpene found in citrus fruits, is assumed to reduce stress and mood disorders. Dopamine and γ-aminobutyric acid (GABA) have been reported to play an important role in modulating anxiety in different parts of the brain. HYPOTHESIS/PURPOSE: Herein, we report the anxiolytic activity of limonene. In addition, we identified a possible mechanism underlying the effect of limonene on DAergic and GABAergic neurotransmission. STUDY DESIGN: In this study, mice were injected with saline in the control group and limonene in the test group before behavioral analysis. We performed immunoblotting and high-performance liquid chromatography (HPLC) analysis after the behavioral study. RESULTS: The limonene treated group showed increased locomotor activity and open-arm preference in the elevated plus maze experiment. Limonene treatment increased the expression of both tyrosine hydroxylase and GAD-67 proteins and significantly upregulated dopamine levels in the striatum. Furthermore, tissue dopamine levels were increased in the striatum of mice following limonene treatment, and depolarization-induced GABA release was enhanced by limonene pre-treatment in PC-12 cells. Interestingly, limonene-induced anxiolytic activity and GABA release augmentation were blocked by an adenosine A2A receptor (A2AR) antagonist. CONCLUSION: Our results suggest that limonene inhibits anxiety-related behavior through A2A receptor-mediated regulation of DAergic and GABAergic neuronal activity.


Asunto(s)
Ansiolíticos/farmacología , Cuerpo Estriado/efectos de los fármacos , Limoneno/farmacología , Receptor de Adenosina A2A/metabolismo , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Conducta Animal/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Locomoción/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratas , Transmisión Sináptica/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Ácido gamma-Aminobutírico/metabolismo
10.
Neuropharmacology ; 178: 108250, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32726599

RESUMEN

Volitional control is at the core of brain-machine interfaces (BMI) adaptation and neuroprosthetic-driven learning to restore motor function for disabled patients, but neuroplasticity changes and neuromodulation underlying volitional control of neuroprosthetic learning are largely unexplored. To better study volitional control at annotated neural population, we have developed an operant neuroprosthetic task with closed-loop feedback system by volitional conditioning of population calcium signal in the M1 cortex using fiber photometry recording. Importantly, volitional conditioning of the population calcium signal in M1 neurons did not improve within-session adaptation, but specifically enhanced across-session neuroprosthetic skill learning with reduced time-to-target and the time to complete 50 successful trials. With brain-behavior causality of the neuroprosthetic paradigm, we revealed that proficiency of neuroprosthetic learning by volitional conditioning of calcium signal was associated with the stable representational (plasticity) mapping in M1 neurons with the reduced calcium peak. Furthermore, pharmacological blockade of adenosine A2A receptors facilitated volitional conditioning of neuroprosthetic learning and converted an ineffective volitional conditioning protocol to be the effective for neuroprosthetic learning. These findings may help to harness neuroplasticity for better volitional control of neuroprosthetic training and suggest a novel pharmacological strategy to improve neuroprosthetic learning in BMI adaptation by targeting striatal A2A receptors.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Señalización del Calcio/fisiología , Neuroestimuladores Implantables , Aprendizaje/fisiología , Corteza Motora/metabolismo , Receptor de Adenosina A2A/metabolismo , Volición/fisiología , Animales , Interfaces Cerebro-Computador , Señalización del Calcio/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Corteza Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fotometría/instrumentación , Fotometría/métodos , Purinas/farmacología , Volición/efectos de los fármacos
11.
Neuropharmacology ; 155: 10-21, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31103616

RESUMEN

Patients under cannabis-based therapies are usually chronically exposed to cannabinoids. Chronic treatment with a cannabinoid receptor agonist, WIN 55,212-2, affects brain metabolism and modifies functional connectivity between brain areas responsible for memory and learning. Therefore, it is of uttermost importance to discover strategies to mitigate the negative side-effects of cannabinoid-based therapies. Previously, we showed that a single treatment with the synthetic cannabinoid WIN 55,212-2 disrupts recognition memory, an effect mediated by cannabinoid receptor 1 (CB1R) and cancelled by concomitant administration of adenosine A2A receptor (A2AR) antagonists. We herein evaluate if memory deficits induced by chronic exposure to WIN 55,212-2 can also be reverted by A2AR antagonism, and assessed the synaptic mechanisms that could be involved in that reversal. We show that chronic administration of KW-6002 (istradefylline) (3 mg/kg/28days) reverts memory deficits (evaluated through the Novel Object Recognition Test) induced by chronic cannabinoid exposure (WIN 55,212-2, 1 mg/kg/28 days). Long Term Potentiation (LTP) of synaptic potentials recorded from the CA1 area of the hippocampus was impaired by WIN 55,212-2 (300 nM), an effect partially rescued by the A2AR antagonist, SCH 58261 (100 nM). Chronic administration of KW-6002 or WIN 55,212-2 did not affect A2AR or CB1R binding in the hippocampus and in the prefrontal cortex. These results, showing that A2AR antagonism can still revert memory deficits after chronic administration of a cannabinoid, an effect that involves mitigation of synaptic plasticity impairment, strongly indicate that adenosine A2ARs are appropriate targets to tackle side-effects of putative therapies involving the activation of cannabinoid receptors.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/uso terapéutico , Cannabinoides/toxicidad , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/prevención & control , Receptor de Adenosina A2A , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Benzoxazinas/toxicidad , Masculino , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Morfolinas/toxicidad , Naftalenos/toxicidad , Purinas/farmacología , Purinas/uso terapéutico , Receptor de Adenosina A2A/metabolismo
12.
Neuropharmacology ; 144: 122-132, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30336152

RESUMEN

Insomnia is one of the most common sleep problems with an estimated prevalence of 10%-15% in the general population. Although adenosine A2A receptor (A2AR) agonists strongly induce sleep, their cardiovascular effects preclude their use in treating sleep disorders. Enhancing endogenous A2AR signaling, however, may be an alternative strategy for treating insomnia, because adenosine levels in the brain accumulate during wakefulness. In the present study, we found that 3,4-difluoro-2-((2-fluoro-4-iodophenyl)amino)benzoic acid, denoted A2AR positive allosteric modulator (PAM)-1, enhanced adenosine signaling at the A2AR and induced slow wave sleep (SWS) without affecting body temperature in wild-type male mice after intraperitoneal administration, whereas the SWS-inducing effect of this benzoic acid derivative was abolished in A2AR KO mice. In contrast to the A2AR agonist CGS 21680, the A2AR PAM-1 did not affect blood pressure or heart rate. These findings indicate that enhancing A2AR signaling promotes SWS without cardiovascular effects. Therefore, small molecules that allosterically modulate A2ARs could help people with insomnia to fall asleep.


Asunto(s)
Agonistas del Receptor de Adenosina A2/farmacología , Hipnóticos y Sedantes/farmacología , Sueño de Onda Lenta/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacología , Agonistas del Receptor de Adenosina A2/síntesis química , Regulación Alostérica , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Temperatura Corporal/efectos de los fármacos , Células CHO , Cricetulus , Evaluación Preclínica de Medicamentos , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenetilaminas/farmacología , Distribución Aleatoria , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Transducción de Señal/efectos de los fármacos , Sueño de Onda Lenta/fisiología , Vigilia/efectos de los fármacos , Vigilia/fisiología
13.
BMC Complement Altern Med ; 18(1): 330, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30541517

RESUMEN

BACKGROUND: Baicalin is a flavonoid compound that exerts specific pharmacological effect in attenuating the proliferation, migration, and apoptotic resistance of hypoxia-induced pulmonary artery smooth muscle cells (PASMCs). However, the underlying mechanism has not been fully elucidated yet. Although our previous studies had indicated that activation of A2aR attenuates CXCR expression, little is known about the relationship between A2aR and SDF-1/CXCR4 axis in hypoxic PASMCs. In this study, we aimed to investigate the effect of A2aR on the SDF-1/CXCR4 axis in hypoxic PASMCs, the mechanism underlying this effect, and whether baicalin exerts its protective functions though A2aR. METHODS: Rat PASMCs were cultured under normoxia/hypoxia and divided into nine groups: normoxia, hypoxia, hypoxia + AMD3100 (a CXCR4 antagonist), hypoxia + baicalin, hypoxia + negative virus, normoxia + A2aR knockdown, hypoxia + A2aR knockdown, hypoxia + CGS21680 (an A2aR agonist), and hypoxia + A2aR knockdown + baicalin. Lentiviral transfection methods were used to establish the A2aR knockdown model in PASMCs. Cells were incubated under hypoxic conditions for 24 h. Expression levels of A2aR, SDF-1, and CXCR4 were detected using RT-qPCR and western blot. The proliferation and migration rate were observed via CCK-8 and Transwell methods. Cell cycle distribution and cell apoptosis were measured by flow cytometry (FCM) and the In-Situ Cell Death Detection kit (Fluorescein). RESULTS: Under hypoxic conditions, levels of A2aR, SDF-1, and CXCR4 were significantly increased compared to those under normoxia. The trend of SDF-1 and CXCR4 being inhibited when A2aR is up-regulated was more obvious in the baicalin intervention group. Baicalin directly enhanced A2aR expression, and A2aR knockdown weakened the function of baicalin. SDF-1 and CXCR4 expression levels were increased in the hypoxia + A2aR knockdown group, as were the proliferation and migration rates of PASMCs, while the apoptotic rate was decreased. Baicalin and CGS21680 showed opposite effects. CONCLUSIONS: Our data indicate that baicalin efficiently attenuates hypoxia-induced PASMC proliferation, migration, and apoptotic resistance, as well as SDF-1 secretion, by up-regulating A2aR and down-regulating the SDF-1/CXCR4 axis.


Asunto(s)
Apoptosis/efectos de los fármacos , Hipoxia de la Célula , Quimiocina CXCL12/metabolismo , Flavonoides/farmacología , Receptor de Adenosina A2A/metabolismo , Receptores CXCR4/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CXCL12/análisis , Quimiocina CXCL12/genética , Masculino , Miocitos del Músculo Liso , Arteria Pulmonar/citología , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A/análisis , Receptor de Adenosina A2A/genética , Receptores CXCR4/análisis , Receptores CXCR4/genética , Regulación hacia Arriba/efectos de los fármacos
14.
J Immunother Cancer ; 6(1): 57, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914571

RESUMEN

Immune checkpoint antagonists (CTLA-4 and PD-1/PD-L1) and CAR T-cell therapies generate unparalleled durable responses in several cancers and have firmly established immunotherapy as a new pillar of cancer therapy. To extend the impact of immunotherapy to more patients and a broader range of cancers, targeting additional mechanisms of tumor immune evasion will be critical. Adenosine signaling has emerged as a key metabolic pathway that regulates tumor immunity. Adenosine is an immunosuppressive metabolite produced at high levels within the tumor microenvironment. Hypoxia, high cell turnover, and expression of CD39 and CD73 are important factors in adenosine production. Adenosine signaling through the A2a receptor expressed on immune cells potently dampens immune responses in inflamed tissues. In this article, we will describe the role of adenosine signaling in regulating tumor immunity, highlighting potential therapeutic targets in the pathway. We will also review preclinical data for each target and provide an update of current clinical activity within the field. Together, current data suggest that rational combination immunotherapy strategies that incorporate inhibitors of the hypoxia-CD39-CD73-A2aR pathway have great promise for further improving clinical outcomes in cancer patients.


Asunto(s)
Adenosina/metabolismo , Biomarcadores de Tumor , Neoplasias/inmunología , Neoplasias/metabolismo , Transducción de Señal , Animales , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Inmunomodulación/efectos de los fármacos , Inmunoterapia , Neoplasias/diagnóstico , Neoplasias/terapia , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento , Escape del Tumor
15.
Pharmacol Rep ; 68(6): 1285-1292, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27689756

RESUMEN

BACKGROUND: It has recently been suggested that the adenosine A2A receptor plays a role in several animal models of depression. Additionally, A2A antagonists have reversed behavioral deficits and exhibited a profile similar to classical antidepressants. METHODS: In the present study, imidazo- and pyrimido[2,1-f]purinedione derivatives (KD 66, KD 167, KD 206) with affinity to A2A receptors but poor A1 affinity were evaluated for their antidepressant- and anxiolytic-like activity. The activity of these derivatives was tested using a tail suspension and forced swim test, two widely-used behavioral paradigms for the evaluation of antidepressant-like activity. In turn, the anxiolytic activity was evaluated using the four-plate test. RESULTS: The results showed the antidepressant-like activity of pyrimido- and imidazopurinedione derivatives (i.e. KD 66, KD 167 and KD 206) in acute and chronic behavioral tests in mice. KD 66 revealed an anxiolytic-like effect, while KD 167 increased anxiety behaviors. KD 206 had no effect on anxiety. Furthermore, none of the tested compounds increased locomotor activity. CONCLUSION: Available data support the proposition that the examined compounds with adenosine A2A receptor affinity may be an interesting target for the development of antidepressant and/or anxiolytic agents.


Asunto(s)
Ansiolíticos/metabolismo , Ansiolíticos/uso terapéutico , Antidepresivos/metabolismo , Antidepresivos/uso terapéutico , Purinérgicos/metabolismo , Purinérgicos/uso terapéutico , Animales , Ansiolíticos/química , Antidepresivos/química , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Ansiedad/psicología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Depresión/psicología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Inmovilización/métodos , Inmovilización/psicología , Masculino , Ratones , Purinérgicos/química
16.
J Comput Aided Mol Des ; 30(10): 863-874, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27629350

RESUMEN

In this work, we present a case study to explore the challenges associated with finding novel molecules for a receptor that has been studied in depth and has a wealth of chemical information available. Specifically, we apply a previously described protocol that incorporates explicit water molecules in the ligand binding site to prospectively screen over 2.5 million drug-like and lead-like compounds from the commercially available eMolecules database in search of novel binders to the adenosine A2A receptor (A2AAR). A total of seventy-one compounds were selected for purchase and biochemical assaying based on high ligand efficiency and high novelty (Tanimoto coefficient ≤0.25 to any A2AAR tested compound). These molecules were then tested for their affinity to the adenosine A2A receptor in a radioligand binding assay. We identified two hits that fulfilled the criterion of ~50 % radioligand displacement at a concentration of 10 µM. Next we selected an additional eight novel molecules that were predicted to make a bidentate interaction with Asn2536.55, a key interacting residue in the binding pocket of the A2AAR. None of these eight molecules were found to be active. Based on these results we discuss the advantages of structure-based methods and the challenges associated with finding chemically novel molecules for well-explored targets.


Asunto(s)
Receptor de Adenosina A2A/química , Agonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/química , Sitios de Unión , Simulación por Computador , Bases de Datos Factuales , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Ensayo de Unión Radioligante , Relación Estructura-Actividad , Agua
17.
Am J Physiol Lung Cell Mol Physiol ; 310(10): L985-92, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27016586

RESUMEN

Agonists of adenosine A2A receptors (A2ARs) suppress the activation of most immune cells and reduce acute inflammatory responses. Asthma is characterized by sensitization in response to initial allergen exposure and by airway hyperreactivity in response to allergen rechallenge. We sought to determine if A2AR activation with CGS-21680 (CGS) is more effective when CGS is administered during sensitization or rechallenge. C57BL/6 wild-type mice and Adora2a(f/f)LysMCre(+/-) mice, which lack A2ARs on myeloid cells, were sensitized with intranasal ovalbumin (OVA) and LPS. Airway sensitization was characterized by a rapid increase in numbers of IL-6(+) and IL-12(+) macrophages and dendritic cells in lungs. A2AR activation with CGS (0.1 µg·kg(-1)·min(-1) sc) only during sensitization reduced numbers of IL-6(+) and IL-12(+) myeloid cells in the lungs and reversed the effects of OVA rechallenge to increase airway hyperresponsiveness to methacholine. CGS treatment during sensitization also reduced the expansion of lung T helper (Th1 and Th17) cells and increased expansion of regulatory T cells in response to OVA rechallenge. Most of the effects of CGS administered during sensitization were eliminated by myeloid-selective A2AR deletion. Administration of CGS only during OVA rechallenge failed to reduce airway hyperresponsiveness. We conclude that myeloid cells are key targets of adenosine during sensitization and indirectly modify T cell polarization. The results suggest that a clinically useful strategy might be to use A2AR agonists to inhibit sensitization to new aeroallergens. We speculate that adenosine production by macrophages engulfing bacteria contributes to the curious suppression of sensitization in response to early-life infections.


Asunto(s)
Agonistas del Receptor de Adenosina A2/farmacología , Adenosina/farmacología , Asma/inmunología , Factores Inmunológicos/farmacología , Células Mieloides/inmunología , Animales , Polaridad Celular , Células Cultivadas , Evaluación Preclínica de Medicamentos , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos C57BL , Células Mieloides/efectos de los fármacos , Receptor de Adenosina A2A/metabolismo , Linfocitos T/inmunología
18.
Expert Opin Pharmacother ; 15(8): 1097-107, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24673462

RESUMEN

INTRODUCTION: Adenosine A2A receptors are localized in the brain, mainly within the caudate and putamen nuclei of the basal ganglia. Their activation leads to stimulation of the 'indirect' pathway. Conversely, administration of A2A receptor antagonists leads to inhibition of this pathway, which was translated into reduced hypomotility in several animal models of parkinsonism. AREAS COVERED: In this review, the effects of two A2A receptor antagonists, istradefylline and tozadenant, on parkinsonian symptoms in animal and humans will be discussed. EXPERT OPINION: Animal studies have shown potent antiparkinsonian effects for several A2A receptor antagonists, including istradefylline. In clinical trials, istradefylline reduced OFF time when administered with levodopa, but results are inconclusive. Results with tozadenant are scarce. Modification of thalamic blood flow compatible with reduced inhibition was noted in one small trial, followed by a significant reduction in OFF time in a larger one. Therefore, both drugs show promising efficacy for the reduction of OFF time in levodopa-treated Parkinson's disease patients, but further research is needed in order to obtain definitive conclusions.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/uso terapéutico , Antiparkinsonianos/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Purinas/uso terapéutico , Antagonistas del Receptor de Adenosina A2/farmacocinética , Animales , Antiparkinsonianos/farmacocinética , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Levodopa/uso terapéutico , Purinas/farmacocinética , Resultado del Tratamiento
19.
Pharmacol Biochem Behav ; 119: 72-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23680573

RESUMEN

There is mounting evidence that the neuropeptide oxytocin is a possible candidate for the treatment of drug addiction. Oxytocin was shown to reduce methamphetamine self-administration, conditioned place-preference, hyperactivity and reinstatement in rodents, highlighting its potential for the management of methamphetamine addiction. Thus, we hypothesised that the central endogenous oxytocinergic system is dysregulated following chronic methamphetamine administration. We tested this hypothesis by examining the effect of chronic methamphetamine administration on oxytocin receptor density in mice brains with the use of quantitative receptor autoradiographic binding. Saline (4ml/kg/day, i.p.) or methamphetamine (1mg/kg/day, i.p.) was administered daily for 10 days to male, CD1 mice. Quantitative autoradiographic mapping of oxytocin receptors was carried out with the use of [(125)I]-vasotocin in brain sections of these animals. Chronic methamphetamine administration induced a region specific upregulation of oxytocin receptor density in the amygdala and hypothalamus, but not in the nucleus accumbens and caudate putamen. As there is evidence suggesting an involvement of central adenosine A2A receptors on central endogenous oxytocinergic function, we investigated whether these methamphetamine-induced oxytocinergic neuroadaptations are mediated via an A2A receptor-dependent mechanism. To test this hypothesis, autoradiographic oxytocin receptor binding was carried out in brain sections of male CD1 mice lacking A2A receptors which were chronically treated with methamphetamine (1mg/kg/day, i.p. for 10 days) or saline. Similar to wild-type animals, chronic methamphetamine administration induced a region-specific upregulation of oxytocin receptor binding in the amygdala and hypothalamus of A2A receptor knockout mice and no genotype effect was observed. These results indicate that chronic methamphetamine use can induce profound neuroadaptations of the oxytocinergic receptor system in brain regions associated with stress, emotionality and social bonding and that these neuroadaptations are independent on the presence of A2A receptors. These results may at least partly explain some of the behavioural consequences of chronic methamphetamine use.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Metanfetamina/farmacología , Receptor de Adenosina A2A/metabolismo , Receptores de Oxitocina/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Femenino , Hipotálamo/metabolismo , Masculino , Metanfetamina/administración & dosificación , Ratones , Ratones Noqueados , Receptores de Oxitocina/metabolismo
20.
Biomol Ther (Seoul) ; 20(1): 27-35, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24116271

RESUMEN

Oroxylin A is a flavone isolated from a medicinal herb reported to be effective in reducing the inflammatory and oxidative stresses. It also modulates the production of brain derived neurotrophic factor (BDNF) in cortical neurons by the transactivation of cAMP response element-binding protein (CREB). As a neurotrophin, BDNF plays roles in neuronal development, differentiation, synaptogenesis, and neural protection from the harmful stimuli. Adenosine A2A receptor colocalized with BDNF in brain and the functional interaction between A2A receptor stimulation and BDNF action has been suggested. In this study, we investigated the possibility that oroxylin A modulates BDNF production in cortical neuron through the regulation of A2A receptor system. As ex-pected, CGS21680 (A2A receptor agonist) induced BDNF expression and release, however, an antagonist, ZM241385, prevented oroxylin A-induced increase in BDNF production. Oroxylin A activated the PI3K-Akt-GSK-3ß signaling pathway, which is inhibited by ZM241385 and the blockade of the signaling pathway abolished the increase in BDNF production. The physiological roles of oroxylin A-induced BDNF production were demonstrated by the increased neurite extension as well as synapse formation from neurons. Overall, oroxylin A might regulate BDNF production in cortical neuron through A2A receptor stimulation, which promotes cellular survival, synapse formation and neurite extension.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA