Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 826
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612554

RESUMEN

Root extracts of Ancistrocladus tectorius (AT), a shrub native to China, have been shown to have antiviral and antitumor activities, but the anti-obesity effects of AT aerial parts, mainly the leaves and stems, have not been investigated. This study is the first to investigate the anti-obesity effects and molecular mechanism of AT 70% ethanol extract in 3T3-L1 adipocytes and high-fat diet (HFD)-fed C57BL/6J mice. Treatment with AT extract inhibited lipid accumulation in 3T3-L1 cells and decreased the expression of adipogenesis-related genes. AT extract also upregulated the mRNA expression of genes related to mitochondrial dynamics in 3T3-L1 adipocytes. AT administration for 12 weeks reduced body weight and organ weights, including liver, pancreas, and white and brown adipose tissue, and improved plasma profiles such as glucose, insulin, homeostasis model assessment of insulin resistance, triglyceride (TG), and total cholesterol in HFD-fed mice. AT extract reduced HFD-induced hepatic steatosis with levels of liver TG and lipogenesis-related genes. AT extract upregulated thermogenesis-related genes such as Cidea, Pgc1α, Ucp1, Prdm16, Adrb1, and Adrb3 and mitochondrial dynamics-related genes such as Mff, Opa1, and Mfn2 in brown adipose tissue (BAT). Therefore, AT extract effectively reduced obesity by promoting thermogenesis and the mitochondrial dynamics of BAT in HFD-fed mice.


Asunto(s)
Caryophyllales , Dieta Alta en Grasa , Animales , Ratones , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Dinámicas Mitocondriales , Insulina , Extractos Vegetales/farmacología
2.
Nutrients ; 16(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38613013

RESUMEN

This study aims to investigate the potential mechanisms underlying the protective effects of myo-inositol (MI) supplementation during suckling against the detrimental effects of fetal energy restriction described in animal studies, particularly focusing on the potential connections with BDNF signaling. Oral physiological doses of MI or the vehicle were given daily to the offspring of control (CON) and 25%-calorie-restricted (CR) pregnant rats during suckling. The animals were weaned and then fed a standard diet until 5 months of age, when the diet was switched to a Western diet until 7 months of age. At 25 days and 7 months of age, the plasma BDNF levels and mRNA expression were analyzed in the hypothalamus and three adipose tissue depots. MI supplementation, especially in the context of gestational calorie restriction, promoted BDNF secretion and signaling at a juvenile age and in adulthood, which was more evident in the male offspring of the CR dams than in females. Moreover, the CR animals supplemented with MI exhibited a stimulated anorexigenic signaling pathway in the hypothalamus, along with improved peripheral glucose management and enhanced browning capacity. These findings suggest a novel connection between MI supplementation during suckling, BDNF signaling, and metabolic programming, providing insights into the mechanisms underlying the beneficial effects of MI during lactation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Restricción Calórica , Masculino , Femenino , Embarazo , Animales , Ratas , Tejido Adiposo , Dieta Occidental , Suplementos Dietéticos
3.
Biol Trace Elem Res ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658451

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized by insulin resistance and chronic inflammation. Aerobic training (AT) and magnesium supplementation (Mg) have both been independently shown to have beneficial effects on glucose control and insulin sensitivity in individuals with T2DM. However, the potential synergistic effects of combining AT and Mg supplementation have not been extensively studied. This study aimed to investigate the effects of an 8-week AT and Mg supplementation on serum levels of insulin, glucose, leptin, adiponectin, TNF-α, IL-1ß, IL-6, NF-κB, as well as the expression of mir-155 and mir-21 in the visceral adipose tissue (VAT) of rats with T2DM. METHODS: For this experimental study, 32 male Wistar rats were induced with T2DM by a high-fat diet combined with a low-dose streptozotocin injection. The rats were randomly assigned to four groups: AT and Mg supplementation (AT + Mg), AT (5 days/week for 8 weeks), Mg supplementation (received daily supplementation of Mg chloride), and diabetic control (C). An 8-week AT program was implemented, with gradually increasing the intensity and duration to reach 25 m/min and 60 min in the 8th week, respectively. The training intensity was set at 50-60% of VO2max. The Mg groups were provided with rat diets containing 1000 mg/kg of Mg. The AT + Mg group received both interventions, while the C group served as the untreated control. Serum biomarkers were measured using enzyme-linked immunosorbent assay (ELISA), and VAT samples were collected for gene expression analysis using real-time polymerase chain reaction (PCR). RESULTS: Serum biomarker analysis revealed that the AT + Mg group had a significant decrease in fasting insulin (p = 0.001) and serum glucose (p = 0.001), as well as an increase in adiponectin levels compared to the C group (p = 0.002). Additionally, the AT + Mg group showed a significant reduction in serum leptin, TNF-α, IL-6, IL-1ß, and NF-κB, as well as downregulation of mir-155 and mir-21 in the VAT compared to the other groups. The AT group also showed improvements in several parameters, while the Mg group had fewer significant differences compared to the C group. CONCLUSION: The combination of AT and Mg supplementation provides a synergistic effect that improves serum biomarkers and downregulates pro-inflammatory microRNAs in the VAT of T2DM rats. Meanwhile, Mg supplementation alone does not have a significant effect on pro-inflammatory microRNAs in the VAT. These findings suggest that such combined interventions could be a promising strategy for managing T2DM, potentially ameliorating inflammatory states and improving metabolic health.

4.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542331

RESUMEN

Colorectal cancer (CRC) is a major life-threatening disease, being the third most common cancer and a leading cause of death worldwide. Enhanced adiposity, particularly visceral fat, is a major risk factor for CRC, and obesity-associated alterations in metabolic, inflammatory and immune profiles in visceral adipose tissue (VAT) strongly contribute to promoting or sustaining intestinal carcinogenesis. The role of diet and nutrition in obesity and CRC has been extensively demonstrated, and AT represents the main place where diet-induced signals are integrated. Among the factors introduced with diet and processed or enriched in AT, ω3/ω6 polyunsaturated fatty acids (PUFAs) are endowed with pro- or anti-inflammatory properties and have been shown to exert either promoting or protective roles in CRC. In this study, we investigated the impact of ex vivo exposure to the ω3 and ω6 PUFAs docosahexaenoic and arachidonic acids on VAT adipocyte whole transcription in healthy lean, obese and CRC-affected individuals. High-throughput sequencing of protein-coding and long non-coding RNAs allowed us to identify specific pathways and regulatory circuits controlled by PUFAs and highlighted an impaired responsiveness of obese and CRC-affected individuals as compared to the strong response observed in healthy lean subjects. This further supports the role of healthy diets and balanced ω3/ω6 PUFA intake in the primary prevention of obesity and cancer.


Asunto(s)
Neoplasias Colorrectales , Ácidos Grasos Omega-3 , ARN Largo no Codificante , Humanos , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Neoplasias Colorrectales/genética
5.
Heliyon ; 10(5): e27463, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495187

RESUMEN

Obesity leads to the development of metabolic syndrome and comorbidities. Overweight and obesity continue to be a relentless global issue. Sipyimigwanjung-tang (SGT), a traditional herbal medication, was first mentioned in Dongui Sasang Shinpyun and has been used to treat edema, meteorism, and jaundice, which are common findings associated with obesity. The main physiological feature of obesity is expanded adipose tissue, which causes several impairments in liver metabolism. Therefore, this study aimed to investigate the anti-obesity effects of SGT in the epididymal white adipose tissue (eWAT) and livers of high-fat diet (HFD)-induced obese mice. SGT significantly blocked HFD-induced weight gain in C57BL/6N mice. In addition, SGT effectively reduced the increased weight and adipocyte size in eWAT of HFD-induced obese C57BL/6 N mice. Moreover, SGT significantly decreased the elevated gene expression of Peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, and Sterol regulatory element-binding protein 1 in the eWAT of HFD-induced obese mice. Furthermore, SGT significantly decreased lipid accumulation in the livers of HFD-induced obese mice and differentiated 3T3-L1 adipocytes. Hence, the present study provides substantial evidence that SGT has potential therapeutic effects on obesity.

6.
Zhongguo Zhen Jiu ; 44(3): 333-337, 2024 Mar 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38467510

RESUMEN

Pancreatic adipose tissue serves as a crucial structural basis for the development of glycolipid metabolic disorders. Understanding the mechanisms underlying pancreatic adipose tissue infiltration and regulatory strategies is essential for early intervention in glycolipid metabolic disorders. Pancreatic adipose tissue functions as a significant medium linking systemic immune metabolism, while the pancreatic vascular system emerges as a novel target for sensing pancreatic immune responses and maintaining the body's energy homeostasis, collectively participating in the development of glycolipid metabolic disorders. Acupuncture possesses potential effects in modulating the interaction between resident macrophages and adipocytes in the pancreas, leading to the reversible reduction of excessive pancreatic adipose accumulation, with its action being vascular-dependent.


Asunto(s)
Terapia por Acupuntura , Enfermedades Metabólicas , Humanos , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Páncreas , Enfermedades Metabólicas/terapia , Enfermedades Metabólicas/metabolismo
7.
J Acupunct Meridian Stud ; 17(1): 1-11, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38409809

RESUMEN

Background: : Brown adipose tissue (BAT) is a unique thermogenic tissue in mammals mediated by uncoupling protein 1 (UCP1). The energy generated by glucose and triglyceride metabolism is released and transmitted throughout the body as heat. Understanding the factors influencing BAT function is crucial to determine its metabolic significance and effects on overall health. Although studies have shown that electroacupuncture (EA) at specific acupoints (e.g., ST36) can stimulate BAT, its effects at other acupoints are not well understood. Further research is needed to investigate the potential effects of EA at these acupoints and their association with BAT activation. Objectives: : This study aimed to investigate the effects of EA at the GV20 and EX-HN3 acupoints. Specifically, the effects of EA on BAT thermogenesis were analyzed by infrared thermography, western blotting, and real-time polymerase chain reaction (PCR). Methods: : A total of 12 C57BL/6J mice were randomly divided into the EA and control groups. The EA group received EA at GV20 and EX-HN3 for 20 min once daily for 14 days. The control group underwent the same procedure but without EA. The core body temperature was monitored. Infrared thermal images of the back of each mouse in both groups were captured. BAT samples were collected after euthanasia to analyze UCP1 protein and UCP1 mRNA. Results: : The average skin temperature in the scapular region of the EA group was increased by 1.1℃ compared with that of the C group (p < 0.05). Additionally, the average temperature along the governor vessel in the EA group was increased by 1.6℃ (p = 0.045). EA significantly increased the expression of UCP1 protein (p = 0.001) and UCP1 mRNA (p = 0.002) in BAT, suggesting a potential link between EA and BAT thermogenesis. Conclusion: : EA induced BAT thermogenesis, suggesting GV20 and EX-HN3 as potential acupoints for BAT stimulation. The experimental results also highlighted unique meridian characteristics as demonstrated by elevated skin temperature along the governor vessel in mice.


Asunto(s)
Tejido Adiposo Pardo , Electroacupuntura , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Ratones Endogámicos C57BL , Termogénesis/fisiología , ARN Mensajero/metabolismo , Mamíferos/metabolismo
8.
Nutrition ; 121: 112358, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38401197

RESUMEN

INTRODUCTION: Nutritional intake and dysregulation of fatty acid metabolism play a role in the progression of various tumors, but the consumption of fatty acids is difficult to assess accurately with dietary questionnaires. Biomarkers can objectively assess intake, storage and bioavailability. OBJECTIVE: We studied the association between the polyunsaturated fatty acid (PUFA) composition of abdominal subcutaneous adipose tissue (good indicator of dietary intake over 2-3 years) and all-cause mortality. METHODS: In the multicenter AGARIC study, samples from 203 patients with colorectal cancer (CRC) undergoing curative surgery, were harvested from subcutaneous adipose tissue, which were then analyzed for PUFA composition. RESULTS: After a median follow-up of 45 months, 76 patients died. These patients were more often men (72.4% versus 57.5%, P = 0.04), diabetic (32.9% versus 13.4%, P = 0.001), old (median: 74.5 versus 66.6 years, P < 0.001) and with high alcohol consumption (47.4% versus 30.7%, P = 0.005). An increased risk of death was observed with higher levels of 20:2 ω-6 (hazard ratiotertile3 vstertile1 (HRT3vsT1) 2.12; 95% confidence interval (CI) 1.01-4.42; p-trend = 0.04), 22:4 ω-6 (HRT3vsT1 = 3.52; 95% CI = 1.51-8.17; p-trend = 0.005), and 22:5 ω-6 (HRT3vsT1 = 3.50; 95% CI = 1.56-7.87; p-trend = 0.002). Conversely, the risk of death seemed lower when higher concentrations of 18:3 ω-6 (HRT3vsT1 = 0.52; 95% CI = 0.27-0.99; p-trend = 0.04) and the essential fatty acid, α-linolenic acid 18:3 ω-3 (HRT3vsT1 = 0.47; 95% CI = 0.24-0.93; p-trend = 0.03) were observed. CONCLUSION: The risk of death was increased in CRC patients with higher concentrations of certain ω-6 PUFAs and lower concentrations of α-linolenic acid in their subcutaneous adipose tissue. These results reflect dietary habits and altered fatty acid metabolism. Our exploratory results warrant confirmation in larger studies with further exploration of the mechanisms involved.


Asunto(s)
Neoplasias Colorrectales , Ácidos Grasos Omega-3 , Masculino , Humanos , Ácido alfa-Linolénico , Ácidos Grasos Insaturados , Ácidos Grasos , Tejido Adiposo , Neoplasias Colorrectales/cirugía
9.
Biomaterials ; 307: 122511, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38401482

RESUMEN

Combination of different therapies is an attractive approach for cancer therapy. However, it is a challenge to synchronize different therapies for maximization of therapeutic effects. In this work, a smart composite scaffold that could synchronize magnetic hyperthermia and chemotherapy was prepared by hybridization of magnetic Fe3O4 nanoparticles and doxorubicin (Dox)-loaded thermosensitive liposomes with biodegradable polymers. Irradiation of alternating magnetic field (AMF) could not only increase the scaffold temperature for magnetic hyperthermia but also trigger the release of Dox for chemotherapy. The two functions of magnetic hyperthermia and chemotherapy were synchronized by switching AMF on and off. The synergistic anticancer effects of the composite scaffold were confirmed by in vitro cell culture and in vivo animal experiments. The composite scaffold could efficiently eliminate breast cancer cells under AMF irradiation. Moreover, the scaffold could support proliferation and adipogenic differentiation of mesenchymal stem cells for adipose tissue reconstruction after anticancer treatment. In vivo regeneration experiments showed that the composite scaffolds could effectively maintain their structural integrity and facilitate the infiltration and proliferation of normal cells within the scaffolds. The composite scaffold possesses multi-functions and is attractive as a novel platform for efficient breast cancer therapy.


Asunto(s)
Doxorrubicina/análogos & derivados , Hipertermia Inducida , Neoplasias , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Hipertermia , Fenómenos Magnéticos , Polietilenglicoles
10.
Endocrinology ; 165(4)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417844

RESUMEN

A series of well-described anabolic and catabolic neuropeptides are known to provide short-term, homeostatic control of energy balance. The mechanisms that govern long-term, rheostatic control of regulated changes in energy balance are less well characterized. Using the robust and repeatable seasonal changes in body mass observed in Siberian hamsters, this report examined the role of prolactin in providing long-term rheostatic control of body mass and photoinduced changes in organ mass (ie, kidney, brown adipose tissue, uterine, and spleen). Endogenous circannual interval timing was observed after 4 months in a short photoperiod, indicated by a significant increase in body mass and prolactin mRNA expression in the pituitary gland. There was an inverse relationship between body mass and the expression of somatostatin (Sst) and cocaine- and amphetamine-regulated transcript (Cart). Pharmacological inhibition of prolactin release (via bromocriptine injection), reduced body mass of animals maintained in long photoperiods to winter-short photoperiod levels and was associated with a significant increase in hypothalamic Cart expression. Administration of ovine prolactin significantly increased body mass 24 hours after a single injection and the effect persisted after 3 consecutive daily injections. The data indicate that prolactin has pleiotropic effects on homeostatic sensors of energy balance (ie, Cart) and physiological effectors (ie, kidney, BAT). We propose that prolactin release from the pituitary gland acts as an output signal of the hypothalamic rheostat controller to regulate adaptive changes in body mass.


Asunto(s)
Neuropéptidos , Prolactina , Cricetinae , Animales , Ovinos , Femenino , Prolactina/metabolismo , Estaciones del Año , Hipotálamo/metabolismo , Phodopus/metabolismo , Neuropéptidos/metabolismo , Fotoperiodo
11.
Clin Nutr ; 43(3): 869-880, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38367596

RESUMEN

BACKGROUND & AIMS: Butyric (one of the short-chain fatty acids), a major byproduct of the fermentation of non-digestible carbohydrates (e.g. fiber), is supposed to have anti-obesity and anti-inflammatory properties. However, butyrate's potential and mechanism in preventing obesity and the efficient form of administration remain to be clarified. METHODS: Hence, we studied the effect of oral supplementation with 5% (w/w) sodium butyrate and 4% (w/w) ß-glucan (fiber) on young male mice (C57BL/6J) with high-fat diet-induced obesity (HFD: 60 kcal% of fat + 1% of cholesterol). Six weeks old mice were fed diets based on HFD or control (AIN-93G) diet with/without supplements for 4 weeks. The unique, interdisciplinary approach combining several Raman-based techniques (including Raman microscopy and fiber optic Raman spectroscopy) and next-generation sequencing was used to ex vivo analyze various depots of the adipose tissue (white, brown, perivascular) and gut microbiome, respectively. RESULTS: The findings demonstrate that sodium butyrate more effectively prevent the pathological increase in body weight caused by elevated saturated fatty acids influx linked to a HFD in comparison to ß-glucan, thereby entirely inhibiting diet-induced obesity. Moreover, butyrate significantly affects the white adipose tissue (WAT) reducing the epididymal WAT mass in comparison to HFD without supplements, and decreasing lipid saturation in the epididymal WAT and perivascular adipose tissue of the thoracic aorta. Contrarily, ß-glucan significantly changes the composition and diversity of the gut microbiome, reversing the HFD effect, but shows no effect on the epididymal WAT mass and therefore the weight gain inhibition is not as effective as with sodium butyrate. CONCLUSIONS: Here, oral supplementation with sodium butyrate and ß-glucan (fiber) has been proven to have an anti-obesity effect through two different targets. Administration-dependent effects that butyrate imposes on the adipose tissue (oral administration) and microbiome (fiber-derived) make it a promising candidate for the personalized treatment of obesity.


Asunto(s)
Obesidad , beta-Glucanos , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Ácido Butírico , Obesidad/tratamiento farmacológico , Obesidad/prevención & control , Suplementos Dietéticos , beta-Glucanos/farmacología
12.
J Integr Med ; 22(1): 83-92, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38311542

RESUMEN

OBJECTIVE: Obesity is a global health concern with management strategies encompassing bariatric surgery and anti-obesity drugs; however, concerns regarding complexities and side effects persist, driving research for more effective, low-risk strategies. The promotion of white adipose tissue (WAT) browning has emerged as a promising approach. Moreover, alisol B 23-acetate (AB23A) has demonstrated efficacy in addressing metabolic disorders, suggesting its potential as a therapeutic agent in obesity management. Therefore, in this study, we aimed to investigate the therapeutic potential of AB23A for mitigating obesity by regulating metabolic phenotypes and lipid distribution in mice fed a high-fat diet (HFD). METHODS: An obesity mouse model was established by administration of an HFD. Glucose and insulin metabolism were assessed via glucose and insulin tolerance tests. Adipocyte size was determined using hematoxylin and eosin staining. The expression of browning markers in WAT was evaluated using Western blotting and quantitative real-time polymerase chain reaction. Metabolic cage monitoring involved the assessment of various parameters, including food and water intake, energy metabolism, respiratory exchange rates, and physical activity. Moreover, oil red O staining was used to evaluate intracellular lipid accumulation. A bioinformatic analysis tool for identifying the molecular mechanisms of traditional Chinese medicine was used to examine AB23A targets and associated signaling pathways. RESULTS: AB23A administration significantly reduced the weight of obese mice, decreased the mass of inguinal WAT, epididymal WAT, and perirenal adipose tissue, improved glucose and insulin metabolism, and reduced adipocyte size. Moreover, treatment with AB23A promoted the expression of browning markers in WAT, enhanced overall energy metabolism in mice, and had no discernible effect on food intake, water consumption, or physical activity. In 3T3-L1 cells, AB23A inhibited lipid accumulation, and both AB23A and rapamycin inhibited the mammalian target of rapamycin-sterol regulatory element-binding protein-1 (mTOR-SREBP1) signaling pathway. Furthermore, 3-isobutyl-1-methylxanthine, dexamethasone and insulin, at concentrations of 0.25 mmol/L, 0.25 µmol/L and 1 µg/mL, respectively, induced activation of the mTOR-SREBP1 signaling pathway, which was further strengthened by an mTOR activator MHY1485. Notably, MHY1485 reversed the beneficial effects of AB23A in 3T3-L1 cells. CONCLUSION: AB23A promoted WAT browning by inhibiting the mTOR-SREBP1 signaling pathway, offering a potential strategy to prevent obesity. Please cite this article as: Han LL, Zhang X, Zhang H, Li T, Zhao YC, Tian MH, Sun FL, Feng B. Alisol B 23-acetate promotes white adipose tissue browning to mitigate high-fat diet-induced obesity by regulating mTOR-SREBP1 signaling. J Integr Med. 2024; 22(1): 83-92.


Asunto(s)
Colestenonas , Dieta Alta en Grasa , Obesidad , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Obesidad/tratamiento farmacológico , Tejido Adiposo Blanco/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Glucosa/metabolismo , Insulina/farmacología , Lípidos/farmacología , Lípidos/uso terapéutico , Mamíferos/metabolismo
13.
Int. j. morphol ; 42(1): 197-204, feb. 2024. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1528841

RESUMEN

SUMMARY: Obesity-related pathophysiologies such as insulin resistance and the metabolic syndrome show a markedly increased risk for type 2 diabetes and atherosclerotic cardiovascular disease. This risk appears to be linked to alterations in adipose tissue function, leading to chronic inflammation and the dysregulation of adipocyte-derived factors. Brassica rapa have been used in traditional medicine for the treatment of several diseases, including diabetes. This study aimed to investigate the effect of nutritional stress induced by a high-fat and high-sucrose diet on the pathophysiology of visceral adipose tissue and the therapeutic effect of Brassica rapa in male Wistar rats. We subjected experimental rats to a high-fat (10 %) high-sucrose (20 %)/per day for 11 months and treated them for 20 days with aqueous extract Br (AEBr) at 200 mg/kg at the end of the experiment. At the time of sacrifice, we monitored plasma and tissue biochemical parameters as well as the morpho-histopathology of visceral adipose tissue. We found AEBr corrected metabolic parameters and inflammatory markers in homogenized visceral adipose tissue and reduced hypertrophy, hyperplasia, and lipid droplets. These results suggest that AEBr enhances anti-diabetic, anti-inflammatory and a protective effect on adipose tissue morphology in type 2 diabetes and obesity.


La fisiopatología relacionadas con la obesidad, como la resistencia a la insulina y el síndrome metabólico, muestran un riesgo notablemente mayor de diabetes tipo 2 y enfermedad cardiovascular aterosclerótica. Este riesgo parece estar relacionado con alteraciones en la función del tejido adiposo, lo que lleva a una inflamación crónica y a la desregulación de los factores derivados de los adipocitos. Brassica rapa se ha utilizado en la medicina tradicional para el tratamiento de varias enfermedades, incluida la diabetes. Este estudio tuvo como objetivo investigar el efecto del estrés nutricional inducido por una dieta rica en grasas y sacarosa sobre la fisiopatología del tejido adiposo visceral y el efecto terapéutico de Brassica rapa en ratas Wistar macho. Sometimos a ratas experimentales a una dieta rica en grasas (10 %) y alta en sacarosa (20 %)/por día durante 11 meses y las tratamos durante 20 días con extracto acuoso de Br (AEBr) a 200 mg/kg al final del experimento. En el momento del sacrificio, monitoreamos los parámetros bioquímicos plasmáticos y tisulares, así como la morfohistopatología del tejido adiposo visceral. Encontramos parámetros metabólicos corregidos por AEBr y marcadores inflamatorios en tejido adiposo visceral homogeneizado y reducción de hipertrofia, hiperplasia y gotitas de lípidos. Estos resultados sugieren que AEBr mejora el efecto antidiabético, antiinflamatorio y protector sobre la morfología del tejido adiposo en la diabetes tipo 2 y la obesidad.


Asunto(s)
Animales , Masculino , Ratas , Extractos Vegetales/administración & dosificación , Tejido Adiposo/efectos de los fármacos , Brassica rapa/química , Resistencia a la Insulina , Extractos Vegetales/uso terapéutico , Ratas Wistar , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Grasa Intraabdominal , Glucosa/toxicidad , Inflamación , Lípidos/toxicidad , Obesidad/tratamiento farmacológico
14.
Diabetes Obes Metab ; 26(4): 1430-1442, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38229447

RESUMEN

Brown and white adipose tissue mediate thermogenesis through the thermogenetic centre of the brain, but safe methods for activating thermogensis and knowledge of the associated molecular mechanisms are lacking. We investigated body surface electroacupuncture stimulation (ES) at ST25 (targeted at the abdomen) induction of brown adipose thermogenesis and the neural mechanism of this process. Inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) were collected and the thermogenic protein expression levels were measured to evaluate iBAT thermogenesis capacity. The thermogenic centre activating region and sympathetic outflow were evaluated based on neural electrical activity and c-fos expression levels. iWAT sensory axon plasticity was analysed with whole-mount adipose tissue imaging. ES activated the sympathetic nerves in iBAT and the c-fos-positive cells induced sympathetic outflow activation to the iBAT from the medial preoptic area (MPA), the dorsomedial hypothalamus (DM) and the raphe pallidus nucleus (RPA). iWAT denervation mice exhibited decreased c-fos-positive cells in the DM and RPA, and lower recombinant uncoupling orotein 1 peroxisome proliferator-activated receptor, ß3-adrenergic receptor, and tyrosine hydroxylase expression. Remodelling the iWAT sensory axons recovered the signal from the MPA to the RPA and induced iBAT thermogenesis. The sympathetic denervation attenuated sensory nerve density. ES induced sympathetic outflow from the thermogenetic centres to iBAT, which mediated thermogenesis. iWAT sensory axon remodelling induced the MPA-DM-RPA-iBAT thermogenesis pathway.


Asunto(s)
Electroacupuntura , Ratones , Animales , Sistema Nervioso Simpático/fisiología , Obesidad/terapia , Obesidad/metabolismo , Tejido Adiposo Blanco , Tejido Adiposo Pardo/metabolismo , Termogénesis , Órganos de los Sentidos
15.
J Ethnopharmacol ; 324: 117749, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38219880

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Obesity has become a public burden worldwide due to its booming incidence and various complications, and browning of white adipose tissue (WAT) is recognized as a hopeful strategy to combat it. Blossom of Citrus aurantium L. var. amara Engl. (CAVA) is a popular folk medicine and dietary supplement used for relieving dyspepsia, which is recorded in the Chinese Materia Medica. Our previous study showed that blossom of CAVA had anti-obesity potential, while its role in browning of WAT was still unclear. AIM OF THE STUDY: This study aimed to characterize the constituents in flavonoids from blossom of CAVA (CAVAF) and to clarify the anti-obesity capacities especially the effects on browning of WAT. MATERIALS AND METHODS: Gradient ethanol eluents from blossom of CAVA were obtained by AB-8 macroporous resin. 3T3-L1 cells and pancreatic lipase inhibition assay were employed to investigate the potential anti-obesity effects in vitro. HPLC and UPLC/MS assays were performed to characterize the chemical profiles of different eluents. Network pharmacology and molecular docking assays were used to reveal potential anti-obesity targets. Furthermore, high-fat diet (HFD)-induced mice were constructed to explore the anti-obesity actions and mechanisms in vivo. RESULTS: 30% ethanol eluents with high flavonoid content and great inhibition on proliferation of 3T3-L1 preadipocytes and pancreatic lipase activity were regarded as CAVAF. 19 compounds were identified in CAVAF. Network pharmacology analysis demonstrated that AMPK and PPARα were potential targets for CAVAF in alleviating obesity. Animal studies demonstrated that CAVAF intervention significantly decreased the body weight, WAT weight, serum TG, TC and LDL-C levels in HFD-fed obese mice. HFD-induced insulin resistance and morphological changes in WAT and brown adipose tissue were also markedly attenuated by CAVAF treatment. CAVAF supplementation potently inhibited iWAT inflammation by regulating IL-6, IL-1ß, TNF-α and IL-10 mRNA expression in iWAT of mice. Furthermore, the gene expression levels of thermogenic markers including Cyto C, ATP synthesis, Cidea, Cox8b and especially UCP1 in iWAT of mice were significantly up-regulated by CAVAF administration. CAVAF intervention also markedly increased the expression levels of PRDM16, PGC-1α, SIRT1, AMPK-α1, PPARα and PPARγ mRNA in iWAT of mice. CONCLUSION: CAVAF treatment significantly promoted browning of WAT in HFD-fed mice. These results suggested that flavonoid extracts from blossom of CAVA were probably promising candidates for the treatment of obesity.


Asunto(s)
Citrus , Flavonoides , Ratones , Animales , Flavonoides/farmacología , Flavonoides/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Proteínas Quinasas Activadas por AMP/metabolismo , Simulación del Acoplamiento Molecular , PPAR alfa , Tejido Adiposo Blanco , Obesidad/metabolismo , Etanol/farmacología , Citrus/química , ARN Mensajero , Lipasa , Ratones Endogámicos C57BL
16.
Lasers Med Sci ; 39(1): 46, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270723

RESUMEN

This investigation tried to evaluate the combined and solo effects of photobiomodulation (PBM) and conditioned medium derived from human adipose tissue-derived stem cells (h-ASC-CM) on the inflammatory and proliferative phases of an ischemic infected delayed healing wound model (IIDHWM) in rats with type I diabetes mellitus (TIDM). The present investigation consisted of four groups: group 1 served as the control, group 2 treated with h-ASC-CM, group 3 underwent PBM treatment, and group 4 received a combination of h-ASC-CM and PBM. Clinical and laboratory assessments were conducted on days 4 and 8. All treatment groups exhibited significantly higher wound strength than the group 1 (p = 0.000). Groups 4 and 3 demonstrated significantly greater wound strength than group 2 (p = 0.000). Additionally, all therapeutic groups showed reduced methicillin -resistant Staphylococcus aureus (MRSA) in comparison with group 1 (p = 0.000). While inflammatory reactions, including neutrophil and macrophage counts, were significantly lower in all therapeutic groups rather than group 1 on days 4 and 8 (p < 0.01), groups 4 and 3 exhibited superior results compared to group 2 (p < 0.01). Furthermore, proliferative activities, including fibroblast and new vessel counts, as well as the measurement of new epidermal and dermal layers, were significantly increased in all treatment groups on 4 and 8 days after the surgery (p < 0.001). At the same times, groups 4 and 3 displayed significantly higher proliferative activities compared to group 2 (p < 0.001). The treatment groups exhibited significantly higher mast cell counts and degranulation phenotypes in comparison with the group 1 on day 4 (p < 0.05). The treatment groups showed significantly lower mast cell counts and degranulation phenotypes than group 1 on day 8 (p < 0.05).The combined and individual application of h-ASC-CM and PBM remarkably could accelerate the proliferation phase of wound healing in the IIDHWM for TIDM in rats, as indicated by improved MRSA control, wound strength, and stereological evaluation. Furthermore, the combination of h-ASC-CM and PBM demonstrated better outcomes compared to the individual application of either h-ASC-CM or PBM alone.


Asunto(s)
Diabetes Mellitus , Terapia por Luz de Baja Intensidad , Staphylococcus aureus Resistente a Meticilina , Humanos , Animales , Ratas , Medios de Cultivo Condicionados/farmacología , Recuento de Leucocitos , Células Madre , Cicatrización de Heridas , Proliferación Celular
17.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255934

RESUMEN

A hypercaloric fatty diet predisposes an individual to metabolic syndrome and cardiovascular complications. Sirtuin1 (SIRT1) belongs to the class III histone deacetylase family and sustains anabolism, mitochondrial biogenesis, and fat distribution. Epididymal white adipose tissue (eWAT) is involved in inflammation, whilst interscapular brown adipose tissue (iBAT) drives metabolism in obese rodents. Melatonin, a pineal indoleamine, acting as a SIRT1 modulator, may alleviate cardiometabolic damage. In the present study, we morphologically characterized the heart, eWAT, and iBAT in male heterozygous SIRT1+/- mice (HET mice) on a high-fat diet (60%E lard) versus a standard rodent diet (8.5% E fat) and drinking melatonin (10 mg/kg) for 16 weeks. Wild-type (WT) male C57Bl6/J mice were similarly fed for comparison. Cardiomyocyte fibrosis and endoplasmic reticulum (ER) stress response worsened in HET mice on a high-fat diet vs. other groups. Lipid peroxidation, ER, and mitochondrial stress were assessed by 4 hydroxy-2-nonenal (4HNE), glucose-regulated protein78 (GRP78), CCAA/enhancer-binding protein homologous protein (CHOP), heat shock protein 60 (HSP60), and mitofusin2 immunostainings. Ultrastructural analysis indicated the prevalence of atypical inter-myofibrillar mitochondria with short, misaligned cristae in HET mice on a lard diet despite melatonin supplementation. Abnormal eWAT adipocytes, crown-like inflammatory structures, tumor necrosis factor alpha (TNFα), and iBAT whitening characterized HET mice on a hypercaloric fatty diet and were maintained after melatonin supply. All these data suggest that melatonin's mechanism of action is strictly linked to full SIRT1 expression, which is required for the exhibition of effective antioxidant and anti-inflammatory properties.


Asunto(s)
Enfermedades Cardiovasculares , Melatonina , Masculino , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Melatonina/farmacología , Sirtuina 1/genética , Suplementos Dietéticos
18.
Cell Metab ; 36(2): 377-392.e11, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38194970

RESUMEN

Recent studies have shown that the hypothalamus functions as a control center of aging in mammals that counteracts age-associated physiological decline through inter-tissue communications. We have identified a key neuronal subpopulation in the dorsomedial hypothalamus (DMH), marked by Ppp1r17 expression (DMHPpp1r17 neurons), that regulates aging and longevity in mice. DMHPpp1r17 neurons regulate physical activity and WAT function, including the secretion of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), through sympathetic nervous stimulation. Within DMHPpp1r17 neurons, the phosphorylation and subsequent nuclear-cytoplasmic translocation of Ppp1r17, regulated by cGMP-dependent protein kinase G (PKG; Prkg1), affect gene expression regulating synaptic function, causing synaptic transmission dysfunction and impaired WAT function. Both DMH-specific Prkg1 knockdown, which suppresses age-associated Ppp1r17 translocation, and the chemogenetic activation of DMHPpp1r17 neurons significantly ameliorate age-associated dysfunction in WAT, increase physical activity, and extend lifespan. Thus, these findings clearly demonstrate the importance of the inter-tissue communication between the hypothalamus and WAT in mammalian aging and longevity control.


Asunto(s)
Envejecimiento , Longevidad , Ratones , Animales , Neuronas/metabolismo , Transmisión Sináptica , Tejido Adiposo/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalámico Dorsomedial/metabolismo , Mamíferos/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo
19.
Cell Rep Med ; 5(2): 101387, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38262411

RESUMEN

Cold exposure activates brown adipose tissue (BAT) and potentially improves cardiometabolic health through the secretion of signaling lipids by BAT. Here, we show that 2 h of cold exposure in young adults increases the levels of omega-6 and omega-3 oxylipins, the endocannabinoids (eCBs) anandamide and docosahexaenoylethanolamine, and lysophospholipids containing polyunsaturated fatty acids. Contrarily, it decreases the levels of the eCBs 1-LG and 2-LG and 1-OG and 2-OG, lysophosphatidic acids, and lysophosphatidylethanolamines. Participants overweight or obese show smaller increases in omega-6 and omega-3 oxylipins levels compared to normal weight. We observe that only a small proportion (∼4% on average) of the cold-induced changes in the plasma signaling lipids are slightly correlated with BAT volume. However, cold-induced changes in omega-6 and omega-3 oxylipins are negatively correlated with adiposity, glucose homeostasis, lipid profile, and liver parameters. Lastly, a 24-week exercise-based randomized controlled trial does not modify plasma signaling lipid response to cold exposure.


Asunto(s)
Enfermedades Cardiovasculares , Ácidos Grasos Omega-3 , Adulto Joven , Humanos , Tejido Adiposo Pardo , Oxilipinas , Obesidad
20.
Heliyon ; 10(1): e23114, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163110

RESUMEN

Obesity is a current global challenge affecting all ages and is characterized by the up-regulated secretion of bioactive factors/pathways which result in adipose tissue inflammation (ATI). Current obesity therapies are mainly focused on lifestyle (diet/nutrition) changes. This is because many chemosynthetic anti-obesogenic medications cause adverse effects like diarrhoea, dyspepsia, and faecal incontinence, among others. As such, it is necessary to appraise the efficacies and mechanisms of action of safer, natural alternatives like plant-sourced compounds, extracts [extractable phenol (EP) and macromolecular antioxidant (MA) extracts], and anti-inflammatory peptides, among others, with a view to providing a unique approach to obesity care. These natural alternatives may constitute potent therapies for ATI linked to obesity. The potential of MA compounds (analysed for the first time in this review) and extracts in ATI and obesity management is elucidated upon, while also highlighting research gaps and future prospects. Furthermore, immune cells, signalling pathways, genes, and adipocyte cytokines play key roles in ATI responses and are targeted in certain therapies. As a result, this review gives an in-depth appraisal of ATI linked to obesity, its causes, mechanisms, and effects of past, present, and future therapies for reversal and alleviation of ATI. Achieving a significant decrease in morbidity and mortality rates attributed to ATI linked to obesity and related comorbidities is possible as research improves our understanding over time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA