RESUMEN
This work reveals, by imaging in vivo measurements in the Cd/Zn hyperaccumulator Arabidopsis halleri, in how far Cd stress affects macronutrient (Ca, K) and micronutrient (Fe, Zn) distribution in the leaves. We directly correlate these changes with biophysics of the photosynthetic light reactions. Plants were grown for 2 months at 10 µM Zn (=control), and supplemented with 10, 15, 50 or 75 µM Cd. Direct imaging of OJIP transients revealed that bundle sheath cells were more sensitive to Cd toxicity than mesophyll cells further from the vein. Progressive inhibition of photosystem (PS) II reaction centres and decrease in quantum yield of electron transport between QA and QB and further to PSI acceptors was observed. This was correlated with the decreased dynamics of QA re-oxidation and lower operating efficiency of PSII. Analysis by a benchtop micro X-ray fluorescence device showed that Cd mostly accumulated in the veins, and restricted Fe and Zn distribution from the veins, especially in the 75 µM Cd, while K concentration increased in the whole leaf. Calcium distribution was apparently not affected by Cd, but Cd excess inhibited trichome formation and thereby diminished total Ca concentration in the leaves. The results point to differential tissue sensitivity to Cd, evident by heterogeneous inhibition of photosynthesis. Part of this may be a result of selective disturbances in the leaf nutrient homeostasis. The better photosynthetic performance away from the veins compared to the bundle sheath cells, however, indicates that direct inhibition of photosynthesis by Cd dominates over inhibition caused by micronutrient deficiency.
Asunto(s)
Arabidopsis/efectos de los fármacos , Cadmio/toxicidad , Fotosíntesis , Estrés Fisiológico , Arabidopsis/fisiología , Clorofila , Micronutrientes , Hojas de la Planta , Tricomas , Zinc/metabolismoRESUMEN
Pollination is an early and critical step in plant reproduction, leading to successful fertilization. It consists of many sequential processes, including adhesion of pollen grains onto the surface of stigmatic papilla cells, foot formation to strengthen pollen-stigma interaction, pollen hydration and germination, and pollen tube elongation and penetration. We have focused on an examination of the expressed genes in papilla cells, to increase understanding of the molecular systems of pollination. From three representative species of Brassicaceae (Arabidopsis thaliana, A. halleri and Brassica rapa), stigmatic papilla cells were isolated precisely by laser microdissection, and cell type-specific gene expression in papilla cells was determined by RNA sequencing. As a result, 17,240, 19,260 and 21,026 unigenes were defined in papilla cells of A. thaliana, A. halleri and B. rapa, respectively, and, among these, 12,311 genes were common to all three species. Among the17,240 genes predicted in A. thaliana, one-third were papilla specific while approximately half of the genes were detected in all tissues examined. Bioinformatics analysis revealed that genes related to a wide range of reproduction and development functions are expressed in papilla cells, particularly metabolism, transcription and membrane-mediated information exchange. These results reflect the conserved features of general cellular function and also the specific reproductive role of papilla cells, highlighting a complex cellular system regulated by a diverse range of molecules in these cells. This study provides fundamental biological knowledge to dissect the molecular mechanisms of pollination in papilla cells and will shed light on our understanding of plant reproduction mechanisms.