Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 446: 138869, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428075

RESUMEN

Pectin, a complex polysaccharide found in plant cell walls, plays a crucial role in various industries due to its functional properties. The diluted alkali-soluble pectin (DASP) fractions that result from the stepwise extraction of apples and carrots were studied to evaluate their structural and rheological properties. Homogalacturonan and rhamnogalacturonan I, in different proportions, were the main pectin domains that composed DASP from both materials. Atomic force microscopy revealed that the molecules of apple DASP were longer and more branched. A persistence length greater than 40 nm indicated that the pectin molecules deposited on mica behaved as stiff molecules. The weight-averaged molar mass was similar for both samples. Intrinsic viscosity values of 194.91 mL·g-1 and 186.79 mL·g-1 were obtained for apple and carrot DASP, respectively. Rheological measurements showed greater structural strength for apple-extracted pectin, whereas carrot pectin was characterized by a higher linear viscoelasticity limit. This comparison showed that the pectin fractions extracted by diluted alkali are structurally different and have different rheological properties depending on their botanical origin. The acquired insights can enhance the customized use of pectin residue and support further investigations in industries relying on pectin applications.


Asunto(s)
Daucus carota , Malus , Malus/química , Álcalis , Pectinas/química , Polisacáridos
2.
ACS Biomater Sci Eng ; 10(3): 1364-1378, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38330438

RESUMEN

Cell migration profoundly influences cellular function, often resulting in adverse effects in various pathologies including cancer metastasis. Directly assessing and quantifying the nanoscale dynamics of living cell structure and mechanics has remained a challenge. At the forefront of cell movement, the flat actin modules─the lamellipodium and the lamellum─interact to propel cell migration. The lamellipodium extends from the lamellum and undergoes rapid changes within seconds, making measurement of its stiffness a persistent hurdle. In this study, we introduce the fast-quantitative imaging (fast-QI) mode, demonstrating its capability to simultaneously map both the lamellipodium and the lamellum with enhanced spatiotemporal resolution compared with the classic quantitative imaging (QI) mode. Specifically, our findings reveal nanoscale stiffness gradients in the lamellipodium at the leading edge, where it appears to be slightly thinner and significantly softer than the lamellum. Additionally, we illustrate the fast-QI mode's accuracy in generating maps of height and effective stiffness through a streamlined and efficient processing of force-distance curves. These results underscore the potential of the fast-QI mode for investigating the role of motile cell structures in mechanosensing.


Asunto(s)
Actinas , Citoesqueleto , Actinas/química , Movimiento Celular/fisiología , Fibroblastos
3.
Molecules ; 28(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38067437

RESUMEN

(1) Background: DA-Gelucire® 50/13-based solid lipid nanoparticles (SLNs) administering the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) have been prepared by us in view of a possible application for Parkinson's disease (PD) treatment. To develop powders constituted by such SLNs for nasal administration, herein, two different agents, namely sucrose and methyl-ß-cyclodextrin (Me-ß-CD), were evaluated as cryoprotectants. (2) Methods: SLNs were prepared following the melt homogenization method, and their physicochemical features were investigated by Raman spectroscopy, Scanning Electron Microscopy (SEM), atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). (3) Results: SLN size and zeta potential values changed according to the type of cryoprotectant and the morphological features investigated by SEM showed that the SLN samples after lyophilization appear as folded sheets with rough surfaces. On the other hand, the AFM visualization of the SLNs showed that their morphology consists of round-shaped particles before and after freeze-drying. XPS showed that when sucrose or Me-ß-CD were not detected on the surface (because they were not allocated on the surface or completely absent in the formulation), then a DA surfacing was observed. In vitro release studies in Simulated Nasal Fluid evidenced that DA release, but not the GSE one, occurred from all the cryoprotected formulations. Finally, sucrose increased the physical stability of SLNs better than Me-ß-CD, whereas RPMI 2650 cell viability was unaffected by SLN-sucrose and slightly reduced by SLN-Me-ß-CD. (4) Conclusions: Sucrose can be considered a promising excipient, eliciting cryoprotection of the investigated SLNs, leading to a powder nasal pharmaceutical dosage form suitable to be handled by PD patients.


Asunto(s)
Extracto de Semillas de Uva , Nanopartículas , Humanos , Extracto de Semillas de Uva/farmacología , Dopamina , Polvos , Nanopartículas/química , Crioprotectores , Liofilización/métodos , Sacarosa/química , Tamaño de la Partícula
4.
J Microsc ; 292(3): 148-157, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37855555

RESUMEN

People's choice of cosmetics is no longer just 'Follow the trend', but pays more attention to the ingredients of cosmetics, whether the ingredients of cosmetics are beneficial to people's skin health; therefore, more and more skin-healthy ingredients have been discovered and used in cosmetics. In this work, atomic force microscope (AFM) is used to provide physical information about biomolecules and living cells; it brings us a new method of high-precision physical measurement. Centella asiatica (L.) extract has the ability to promote skin wound healing, but its healing effect on damaged HaCaT cells needs to be investigated, which plays a key role in judging the effectiveness of skincare ingredients. The objective of this study was to explore the impact of Centella asiatica (L.) extract on ethanol-damaged human immortalised epidermal HaCaT cells based on AFM. We established a model of cellular damage and evaluated cell viability using the MTT assay. The physical changes of cell height, roughness, adhesion and Young's modulus were measured by AFM. The findings indicated that the Centella asiatica (L.) extract had a good repair effect on injured HaCaT cells, and the optimal concentration was 75 µg/mL.


Asunto(s)
Centella , Células HaCaT , Humanos , Microscopía de Fuerza Atómica , Piel
5.
ACS Appl Mater Interfaces ; 15(18): 21965-21973, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37127843

RESUMEN

Hyperthermia-induced overexpression of heat shock protein 70 (HSP70) leads to the thermoresistance of cancer cells and reduces the efficiency of photothermal therapy (PTT). In contrast, cancer cell-specific membrane-associated HSP70 has been proven to activate antitumor immune responses. The dual effect of HSP70 on cancer cells inspires us that in-depth research of membrane HSP70 (mHSP70) during PTT treatment is essential. In this work, a PTT treatment platform for human breast cancer cells (MCF-7 cells) based on a mPEG-NH2-modified polydopamine (PDA)-coated gold nanorod core-shell structure (GNR@PDA-PEG) is developed. Using the force-distance curve-based atomic force microscopy (FD-based AFM), we gain insight into the PTT-induced changes in the morphology, mechanical properties, and mHSP70 expression and distribution of individual MCF-7 cells with high-resolution at the single-cell level. PTT treatment causes pseudopod contraction of MCF-7 cells and generates a high level of intracellular reactive oxygen species, which severely disrupt the cytoskeleton, leading to a decrease in cellular mechanical properties. The adhesion maps, which are recorded by aptamer A8 functional probes using FD-based AFM, reveal that PTT treatment causes a significant upregulation of mHSP70 expression and it starts to exhibit a partial aggregation distribution on the MCF-7 cell surface. This work not only exemplifies that AFM can be a powerful tool for detecting changes in cancer cells during PTT treatment but also provides a better view for targeting mHSP70 for cancer therapy.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Humanos , Femenino , Terapia Fototérmica , Proteínas HSP70 de Choque Térmico , Neoplasias de la Mama/terapia , Células MCF-7 , Línea Celular Tumoral , Fototerapia
6.
PeerJ ; 11: e15166, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37073273

RESUMEN

Herbaceous peony (Paeonia lactiflora Pall.) is an ancient ornamental crop and, in recent decades, an emerging popular cut flower. Straight stems are a vital criterion for cut herbaceous peony selection, while many cultivars bend as the plant develops. Pectin helps maintain the mechanical strength of the cell wall. However, little is known about its role in the stem bending of herbaceous peony. Two herbaceous peony cultivars with contrasting stem morphologies ('Dong Fang Shao Nv', upright; 'Lan Tian Piao Xiang', bending gradually) at five developmental stages were used as materials to investigate the effects of pectin content and nanostructure on straightness using the carbazole colorimetric method and atomic force microscopy observations. The contents of water-soluble pectin (WSP), CDTA-soluble pectin (CSP), and sodium carbonate-soluble pectin (SSP) differed significantly between the two cultivars, and the contents and angle of the flower and branch showed correlations. For the pectin nanostructure, WSP showed agglomerates and long chains, with a higher proportion of broad agglomerates at the later stages of the bending cultivar than the upright cultivar. CSP showed branched chains, and the proportion of broad chains was higher in the upright cultivar at later stages, while CSP shape changed from agglomerates to chains in the bending cultivar. SSP mainly consisted of short linear main chains, and side chains in the upright stem were stacked, and the bent cultivar had more broad and short chains. It can be concluded that the contents, nanometric shape, and size of the three kinds of pectin are highly likely to affect herbaceous peony stem straightness. This study provides a theoretical basis for the role of pectin in the production and breeding of herbaceous peony cut flowers.


Asunto(s)
Paeonia , Pectinas , Pectinas/análisis , Paeonia/química , Fitomejoramiento , Flores , Pared Celular/química
7.
Adv Sci (Weinh) ; 10(16): e2207165, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029462

RESUMEN

Inhibiting energy metabolism of cancer cells is an effective way to treat cancer but remains a great challenge. Herein, electrostimulation (ES) is applied to effectively suppress energy metabolism of cancer cells to induce rapid cell death, and deeply reveal the underlying mechanisms at the molecular and nanomechanical levels by combined use of fluorescence imaging and atomic force microscopy. Cancer cells are found significantly less tolerant to ES than normal cells; and ES causes "domino effect" to induce mitochondrial dysfunction to impede electron transport chain (ETC) and tricarboxylic acid (TCA) cycle pathways, leading to fatal energy-supply crisis and death of cancer cells. From the perspective of cell mechanics, the Young's modulus decreases and cytoskeleton destruction of MCF-7 cell membranes caused by F-actin depolymerization occurs, along with down-regulation and sporadic distribution of glucose transporter 1 (GLUT1) after ES. Such a double whammy renders ES highly effective and promising for potential clinical cancer treatments.


Asunto(s)
Terapia por Estimulación Eléctrica , Neoplasias , Humanos , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Metabolismo Energético , Neoplasias/terapia , Neoplasias/metabolismo
8.
Small ; 19(9): e2206633, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36517107

RESUMEN

Monkeypox disease is caused by a virus which belongs to the orthopoxvirus genus of the poxviridae family. This disease has recently spread out to several non-endemic countries. While some cases have been linked to travel from endemic regions, more recent infections are thought to have spread in the community without any travel links, raising the risks of a wider outbreak. This state of public health represents a highly unusual event which requires urgent surveillance. In this context, the opportunities and technological challenges of current bio/chemical sensors, nanomaterials, nanomaterial characterization instruments, and artificially intelligent biosystems collectively called "advanced analytical tools" are reviewed here, which will allow early detection, characterization, and inhibition of the monkeypox virus (MPXV) in the community and limit its expansion from endemic to pandemic. A summary of background information is also provided from biological and epidemiological perspective of monkeypox to support the scientific case for its holistic management using advanced analytical tools.


Asunto(s)
Mpox , Nanoestructuras , Humanos , Mpox/diagnóstico , Mpox/epidemiología , Pandemias
9.
Beilstein J Nanotechnol ; 13: 1483-1489, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570617

RESUMEN

Atomic force microscopy (AFM), developed in the early 1980s, has become a powerful characterization tool in micro- and nanoscale science. In the early 1990s, its relevance within biology and medicine research became evident, although its incorporation into healthcare applications remains relatively limited. Here, we briefly explore the reasons for this low level of technological adoption. We also propose a path forward for the incorporation of frequency-dependent nanomechanical measurements into integrated healthcare strategies that link routine AFM measurements with computer analysis, real-time communication with healthcare providers, and medical databases. This approach would be appropriate for diseases such as cancer, lupus, arteriosclerosis and arthritis, among others, which bring about significant mechanical changes in the affected tissues.

10.
Molecules ; 27(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36431850

RESUMEN

Human noroviruses are the most common pathogens known to cause acute gastroenteritis, a condition that can lead to severe illness among immunocompromised individuals such as organ transplant recipients and the elderly. To date, no safe and effective vaccines or therapeutic agents have been approved for treating norovirus infections. Therefore, we aimed to demonstrate the virucidal activity of grape seed extract (GSE), which contains >83% proanthocyanidins, against murine norovirus (MNV), a surrogate for human norovirus. GSE showed virucidal activity against MNV in a dose- and time-dependent manner. Atomic force microscopic analysis showed viral particle aggregates after treatment of MNV with GSE. MNV treated with 50 µg/mL of GSE for 10 min resulted in the absence of pathogenicity in an animal model of infection, indicating that GSE has irreversible virucidal activity against MNV particles. Thus, GSE may aid in the development of treatments for norovirus infections.


Asunto(s)
Infecciones por Caliciviridae , Extracto de Semillas de Uva , Norovirus , Humanos , Ratones , Animales , Anciano , Extracto de Semillas de Uva/farmacología , Fenol , Infecciones por Caliciviridae/tratamiento farmacológico , Fenoles
11.
Int J Biol Macromol ; 223(Pt A): 755-765, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36368361

RESUMEN

Transmissible spongiform encephalopathies (TSEs) or prion diseases are fatal neurodegenerative diseases with no approved therapeutics. TSE pathology is characterized by abnormal accumulation of amyloidogenic and infectious prion protein conformers (PrPSc) in the central nervous system. Herein, we examined the role of gallate group in green tea catechins in modulating the aggregation of human prion protein (HuPrP) using two green tea constituents i.e., epicatechin 3-gallate (EC3G; with intact gallate ring) and epigallocatechin (EGC; without gallate ring). Molecular docking indicated distinct differences in hydrogen bonding and hydrophobic interactions of EC3G and EGC at the ß2-α2 loop of HuPrP. These differences were substantiated by 44-fold higher KD for EC3G as compared to EGC with the former significantly reducing Thioflavin T (ThT) binding aggregates of HuPrP. Conformational alterations in HuPrP aggregates were validated by particle sizing, AFM analysis and A11 and OC conformational antibodies. As compared to EGC, EC3G showed relatively higher reduction in toxicity and cellular internalization of HuPrP oligomers in Neuro-2a cells. Additionally, EC3G also displayed higher fibril disaggregating properties as observed by ThT kinetics and electron microscopy. Our observations were supported by molecular dynamics (MD) simulations that showed markedly reduced α2-α3 and ß2-α2 loop mobilities in presence of EC3G that may lead to constriction of HuPrP conformational space with lowered ß-sheet conversion. In totality, gallate moiety of catechins play key role in modulating HuPrP aggregation, and toxicity and could be a new structural motif for designing therapeutics against prion diseases and other neurodegenerative disorders.


Asunto(s)
Catequina , Enfermedades por Prión , Priones , Humanos , Priones/química , Proteínas Priónicas/química , , Simulación del Acoplamiento Molecular , Catequina/farmacología
12.
Water Res ; 224: 119063, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36122446

RESUMEN

While a variety of chemical cleaning strategies has been studied to control fouling in membrane-based water treatment processes, the removal of irreversible foulants strongly bound on membrane surfaces has not been successful. In this study, we firstly investigated the diluted aqueous solutions of ionic fluid (IF, 1-ethyl-3-methylimidazolium acetate) as a cleaning agent for three model organic foulants (humic acid, HA; bovine serum albumin, BSA; sodium alginate, SA). The real-time monitoring of cleaning progress by optical coherence tomography (OCT) showed that fouling layer was dramatically swelled by introducing IF solution and removed by shear force exerted during cleaning. This phenomenon was induced due to the pre-existing interactions between organic foulants were weakened by the intrusion of IF into the fouling layer, which was analyzed by the measurement of adhesion forces using atomic force microscopy (AFM). In the experiments with model foulants and wastewater effluent, IF was added to alkaline cleaning agents (NaOH) to verify the applicability to be supplemented in commercial cleaning agents, and resulted in the significantly enhanced control of irreversible membrane fouling. Implication of utilizing recyclable IF with negligible volatility is that environmental effects of membrane cleaning solutions could be minimized by decreasing usage of cleaning chemicals, while increasing the cleaning efficiency.


Asunto(s)
Aguas Residuales , Purificación del Agua , Alginatos , Sustancias Húmicas , Membranas Artificiales , Ósmosis , Albúmina Sérica Bovina , Hidróxido de Sodio , Purificación del Agua/métodos
13.
Biomolecules ; 12(6)2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35740944

RESUMEN

It is important for elucidating the regulation mechanism of life activities, as well as for the prevention, diagnosis, and drug design of diseases, to study protein-protein interactions (PPIs). Here, we investigated the interactions of human serum albumin (HSA) in the presence of tyrosine kinase inhibitors (TKIs: imatinib, nilotinib, dasatinib, bosutinib, and ponatinib) using atomic force microscopy (AFM). The distribution of rupture events including the specific interaction force Fi and the non-specific interaction force F0 between HSA pairs was analyzed. Based on the force measurements, Fi and F0 between HSA pairs in the control experiment were calculated to be 47 ± 1.5 and 116.1 ± 1.3 pN. However, Fi was significantly decreased in TKIs, while F0 was slightly decreased. By measuring the rupture forces at various loading rates and according to the Bell equation, the kinetic parameters of the complexes were investigated in greater detail. Molecular docking was used as a complementary means by which to explore the force of this effect. The whole measurements indicated that TKIs influenced PPIs in a variety of ways, among which hydrogen bonding and hydrophobic interactions were the most important. In conclusion, these outcomes give us a better insight into the mechanisms of PPIs when there are exogenous compounds present as well as in different liquid environments.


Asunto(s)
Inhibidores de Proteínas Quinasas , Albúmina Sérica Humana , Dasatinib/farmacología , Humanos , Microscopía de Fuerza Atómica , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
14.
Food Chem ; 394: 133533, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35752125

RESUMEN

This study aimed to better understand the effects of acidic electrolysed water (AEW, 4 mg/L) and levulinic acid (LA, food grade, 2%) combination on organic strawberry over 7 days. This combined method reduced the population of strawberry's natural microbiota by 1-2 log CFU/g and kept the level of inoculated Escherichia coli O157:H7 and Salmonella below the detection limit (2 log CFU/g) during the whole storage period. Meanwhile, AEW + LA did not affect the physicochemical qualities of strawberries significantly, maintaining most texture and biochemical attributes at an acceptable level (e.g., firmness, colour, soluble solids content and organic acid content). Atomic force microscopy further revealed that the treatment containing LA preserved the sodium carbonate soluble pectin (SSP) nanostructure best by maintaining their length and height, and slowed the breakdown of SSP chains by promoting acid-induced bonding and soluble pectin precipitation. These results demonstrated that low concentration AEW and LA combination is a promising sanitising approach for organic strawberry preservation.


Asunto(s)
Fragaria , Nanoestructuras , Recuento de Colonia Microbiana , Microbiología de Alimentos , Ácidos Levulínicos , Pectinas , Polisacáridos , Agua
15.
Nano Res ; 15(5): 4251-4257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574260

RESUMEN

Cation-π interaction is an electrostatic interaction between a cation and an electron-rich arene. It plays an essential role in many biological systems as a vital driving force for protein folding, stability, and receptor-ligand interaction/recognition. To date, the discovery of most cation-π interactions in proteins relies on the statistical analyses of available three-dimensional (3D) protein structures and corresponding computational calculations. However, their experimental verification and quantification remain sparse at the molecular level, mainly due to the limited methods to dynamically measure such a weak non-covalent interaction in proteins. Here, we use atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of protein neutrophil gelatinase-associated lipocalin (also known as NGAL, siderocalin, lipocalin 2) that can bind iron through the cation-π interactions between its three cationic residues and the iron-binding tri-catechols. Based on a site-specific cysteine engineering and anchoring method, we first characterized the stability and unfolding pathways of apo-NGAL. Then, the same NGAL but bound with the iron-catechol complexes through the cation-π interactions as a holo-form was characterized. AFM measurements demonstrated stronger stabilities and kinetics of the holo-NGAL from two pulling sites, F122 and F133. Here, NGAL is stretched from the designed cysteine close to the cationic residues for a maximum unfolding effect. Thus, our work demonstrates high-precision detection of the weak cation-π interaction in NGAL. Electronic Supplementary Material: Supplementary material (additional SDS-PAGE, UV-vis, protein sequences, and more experimental methods) is available in the online version of this article at 10.1007/s12274-021-4065-9.

16.
Cells ; 11(8)2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35455990

RESUMEN

Salvia miltiorrhiza Bunge, commonly called danshen, is widely used in traditional Chinese medicine for its cardiovascular and neuroprotective effects, which include antioxidative, anti-inflammatory, and antifibrotic properties. The purpose of this study was to evaluate the preclinical potential of S. miltiorrhiza extracts for the treatment of COVID-19. First, the impact of the extract on the binding between SARS-CoV-2 and the cellular ACE2 receptors was assessed using atomic force microscopy (AFM), showing a significant reduction in binding by the extract at concentrations in the µg/mL range. Second, the interference of this extract with the inflammatory response of blood mononuclear cells (PBMCs) was determined, demonstrating potent inhibitory properties in the same concentration range on pro-inflammatory cytokine release and interference with the activation of NFκB signaling. Together, these in vitro data demonstrate the potential of S. miltiorrhiza against COVID-19, consisting first of the blockade of the binding of SARS-CoV-2 to the ACE2 receptor and the mitigation of the inflammatory response from leukocytes by interfering with NFκB signaling. This dataset prompts the launch of a clinical trial to address in vivo the clinical benefits of this promising agent.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Salvia miltiorrhiza , Enzima Convertidora de Angiotensina 2 , Medicina Tradicional China , FN-kappa B , SARS-CoV-2 , Salvia miltiorrhiza/química
17.
Lasers Med Sci ; 37(7): 2855-2863, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35394552

RESUMEN

Photobiomodulation (PBM) therapy utilizes low-power lasers to modulate the viability of living human cells and leads to changes in proliferation, differentiation, adhesion and gene expression, even though the rearrangement of cytoskeleton was not previously studied. The present study aims to evaluate the photobiological effects on the elastic behavior of human osteosarcoma cells (MG-63) and their morphological changes. Fluorescence staining, confocal imaging and atomic force microscopy (AFM) topography were performed to study the effects of PBM therapy with the exposure of 532 nm-25mW, 650 nm-3mW, 650 nm-150mW and 780 nm-70mW beams following the 5-min continuous irradiation. The area of each beam was 3.14cm2 with a source-surface distance of 20 cm. Besides the cell proliferation assessment, the migratory potential of MG-63 was determined with the wound healing technique. The results indicated an increase in stiffness and shape index of radiation-induced cells 24 h after exposure along with the obvious F-actins changes. But, cell stiffening was not observed 72 h after 532 nm laser irradiation. Also, a decrease in the migration rate was seen in all of the groups after 72 h of irradiation except cells treated with 532 nm wavelength. However, 532 nm laser beams increase the migratory potential 24 h after exposure. Within 72 h after irradiation, the cell proliferation was only affected by applying 532 nm and 650 nm-150mW laser beams. It was concluded that applying photobiomodulation with wavelengths of 650 nm (at both utilized powers) and 780 nm alters the migration capability and provides a quantitative description of cytoskeletal changes. Moreover, membrane stiffening can be considered as the biological marker of PBM treatments.


Asunto(s)
Terapia por Luz de Baja Intensidad , Osteosarcoma , Proliferación Celular/efectos de la radiación , Citoesqueleto , Módulo de Elasticidad , Humanos , Terapia por Luz de Baja Intensidad/métodos , Osteosarcoma/radioterapia
18.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409059

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disorder characterized by progressive replacement of cardiomyocytes by fibrofatty tissue, ventricular dilatation, cardiac dysfunction, arrhythmias, and sudden cardiac death. Interest in molecular biomechanics for these disorders is constantly growing. Atomic force microscopy (AFM) is a well-established technic to study the mechanobiology of biological samples under physiological and pathological conditions at the cellular scale. However, a review which described all the different data that can be obtained using the AFM (cell elasticity, adhesion behavior, viscoelasticity, beating force, and frequency) is still missing. In this review, we will discuss several techniques that highlight the potential of AFM to be used as a tool for assessing the biomechanics involved in ACM. Indeed, analysis of genetically mutated cells with AFM reveal abnormalities of the cytoskeleton, cell membrane structures, and defects of contractility. The higher the Young's modulus, the stiffer the cell, and it is well known that abnormal tissue stiffness is symptomatic of a range of diseases. The cell beating force and frequency provide information during the depolarization and repolarization phases, complementary to cell electrophysiology (calcium imaging, MEA, patch clamp). In addition, original data is also presented to emphasize the unique potential of AFM as a tool to assess fibrosis in cardiac tissue.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Arritmias Cardíacas/metabolismo , Cardiomiopatías/metabolismo , Módulo de Elasticidad/fisiología , Humanos , Microscopía de Fuerza Atómica/métodos , Miocitos Cardíacos/metabolismo
19.
Skin Res Technol ; 28(3): 419-426, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35285552

RESUMEN

BACKGROUND: There is scarcity of imaging and image processing techniques for accurate discrimination and quantitation of the dermal extracellular matrix (ECM), primarily collagen. The aim of this study was to develop and demonstrate a holistic imaging and image processing approach to visualize and quantify collagen remodeling at the macro-, micro- and nano-scale using histochemical imaging, Reflectance Confocal Microscopy (RCM), and Atomic Force Microscopy (AFM), respectively. MATERIAL AND METHODS: For proof-of-concept, a commercial anti-aging product known to induce collagen neo-synthesis and re-organization was tested ex vivo on human skin biopsies from two aged females. RESULTS: Relative to untreated skin, collagen fibers (RCM) and fibrils (AFM) were longer and aligned after treatment. The content of collagen and elastin (histochemical imaging and ELISA) statistically improved after treatment. CONCLUSION: Based on our findings, we can conclude: (1) AFM, RCM, and histochemical imaging can accurately discriminate collagen from other ECM components in the skin and (2) the image processing methods can enable quantitation and hence capture small improvements in collagen remodeling after treatment (commercial cosmetic product with collagen organizer technology as proof-of-concept). The reported holistic imaging approach has direct clinical implications for scientists and dermatologists to make quick, real-time, and accurate decisions in skin research and diagnostics.


Asunto(s)
Colágeno , Matriz Extracelular , Anciano , Envejecimiento , Femenino , Humanos , Microscopía Confocal/métodos , Piel/diagnóstico por imagen
20.
Microsc Res Tech ; 85(5): 1964-1975, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35045209

RESUMEN

We introduce a study of image analysis of kefir biofilms associated with Acai extract prepared by fermentation of fresh kefir grains natural. Atomic force microscopy data were studied, aiming to understand how the concentration of acai berry (Euterpe oleracea Mart.) influences the surface morphology as well as the texture complexity, evaluated by the fractal dimension. The results showed that the superficial morphology was affected by the increase of Acai concentration in the biofilms, as well as the fractal dimension. It has also been observed that the surface of the biofilm presented saturation when concentration changes from 40 to 60 ml. On the other hand, it was observed that the intermediate sample produced with 20 ml of acai berry seems to be the best point for biofilms production that can serve as a skin dressing since other studies related to mechanical properties and in vitro and in vivo tests can confirm this applicability. Thus, the characterization of the surface morphology of kefir biofilms by the evaluation of surface statistical parameters and fractal geometry may provide promising results regarding the applicability of these films. RESEARCH HIGHLIGHTS: We characterized the structural complexity of the 3-D surface of the kefir biofilms associated with açaí extract. The 3-D surface analysis of the samples was performed using an atomic force microscope operating in contact mode. We determined the stereometric and fractal dimension of the analyzed samples.


Asunto(s)
Euterpe , Kéfir , Biopelículas , Euterpe/química , Fractales , Kéfir/análisis , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA