Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Chin J Integr Med ; 30(9): 835-841, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38532154

RESUMEN

As ethnic medicine, the whole grass of plants in Cirsium was used as antimicrobial. This review focuses on the antimicrobial activity of plants in Cirsium, including antimicrobial components, against different types of microbes and bacteriostatic mechanism. The results showed that the main antimicrobial activity components in Cirsium plants were flavonoids, triterpenoids and phenolic acids, and the antimicrobial ability varied according to the species and the content of chemicals. Among them, phenolic acids showed a strong antibacterial ability against Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococcus faecium. The antibacterial mechanisms include: (1) damaging the cell membrane, cell walls, mitochondria and nucleus of bacteria; (2) inhibiting the synthesis of proteins and nucleic acids; (3) suppressing the synthesis of enzymes for tricarboxylic acid cycle pathways and glycolysis, and then killing the bacteria via inhibition of energy production. Totally, most research results on antimicrobial activity of Cirsium plants are reported based on in vitro assays. The evidence from clinical data and comprehensive evaluation are needed.


Asunto(s)
Antibacterianos , Cirsium , Cirsium/química , Antibacterianos/farmacología , Humanos
2.
Appl Microbiol Biotechnol ; 107(24): 7417-7425, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37906278

RESUMEN

In recent years, metal-based complexes including selenium (Se) and zinc (Zn)-containing compounds have been widely explored for their therapeutic properties due to their roles in biological processes and modulation of diverse molecular targets. Humic acid, as a metal complexing agent, is also widely used in biomedical field. In this work, three kinds of modified sodium humate (HNa), including Zn-HNA, Se-HNa, and Zn/Se-HNa, were prepared by ion exchange reaction method. The modified HNa was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and elemental mapping. The bacteriostatic activity and mechanism of modified HNa against gram-positive and gram-negative bacteria were investigated by testing bacterial inhibition zone, minimum inhibitory concentration, and capacity to destroy integrity of the bacterial membrane, promoting ROS generation level and prevention of biofilms. FTIR results showed that HNa could combine with zinc ions and selenite ions. The main XRD peaks did not change significantly. In the modified HNa, the particle shape was irregular. Compared to HNa, Zn-HNA, and Se-HNa, Zn/Se-HNa showed the strongest bacteriostatic activity. Zn/Se-HNa exhibited high bacteriostatic activity against gram-negative bacteria (Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae) and gram-positive bacteria (Staphylococcus aureus), but showed weak antibacterial activity against another gram-positive bacteria, Bacillus subtilis. The bacteriostasis was achieved by altering the permeability of bacterial cell membranes, generating ROS, and preventing the formation of biofilms. In conclusion, Zn/Se-HNa has high bacteriostatic activity, making it a suitable alternative to antibiotics in fields like the treatment of trauma infections and animal husbandry. KEY POINTS: • Preparate and characterize zinc- and selenium-loaded sodium humate (Zn/Se-HNa). • The combination of Zn and Se enhanced the bacteriostatic activity of HNa. • Zn/Se-HNa alters the permeability of bacterial cell membranes and promotes generation of ROS.


Asunto(s)
Selenio , Zinc , Animales , Zinc/farmacología , Selenio/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Sodio , Especies Reactivas de Oxígeno , Bacterias Gramnegativas , Bacterias Grampositivas , Bacterias , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Iones
3.
Front Microbiol ; 14: 1190624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415810

RESUMEN

The dried tuber of Alisma orientale (Sam.) Juzep. (AOJ) is a traditional Chinese medicine with high medicinal value. The endophytic fungi of medicinal plants are a treasure house of natural compounds. However, there is a lack of research on the diversity and biological activity of endophytic fungi of AOJ. In this study, high-throughput sequencing technology was used to study the diversity of endophytic fungi in the roots and stems of AOJ, and endophytic fungi with a high output of phenols and flavonoids were screened by chromogenic reaction, and the antioxidant and antibacterial activities and chemical constituents of crude extracts of their fermentation broth were studied. A total of 3,426 amplicon sequence variants (ASVs) belonging to 9 phyla, 27 classes, 64 orders, 152 families, and 277 genera were identified from AOJ. There were significant differences in the endophytic fungal communities of AOJ roots and stems, as well as in the endophytic fungal communities of triangular AOJ and circular AOJ. In addition, 31 strains of endophytic fungi were isolated from AOJ, of which 6 strains had good antioxidant and antibacterial activities. The crude extract of YG-2 had the strongest free radical scavenging ability and bacteriostatic ability, and its IC50 DPPH, IC50 ABTS, and IC50⋅OH values were 0.009 ± 0.000 mg/mL, 0.023 ± 0.002 mg/mL, and 0.081 ± 0.006 mg/mL, respectively. The results of LC-MS showed that the main component of the crude extract of YG-2 was caffeic acid (10.12 µmol/g). Overall, the results of this study preliminarily elucidated the diversity and community composition of endophytic fungi of AOJ, indicating that AOJ endophytic fungi have abundant secondary metabolites and good antioxidant and antibacterial activities. This study provides an important reference for further research, development and utilization of AOJ endophytic fungi and a theoretical basis for the further development of the endophytic fungus YG-2 (Chaetomium globosum) as a source of antioxidants.

4.
Foodborne Pathog Dis ; 20(7): 294-302, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37347934

RESUMEN

Staphylococcus aureus can cause bacterial food intoxication and seriously affect human health. Tea polyphenols (TP) are a kind of natural, safe, and broad-spectrum bacteriostatic substances, with a wide range of bacteriostatic effects. In the study, we explored the possible bacteriostatic mode of TP. The minimum inhibitory concentration of TP against S. aureus was 64 µg/mL. Protein, DNA, and K+ leak experiments, fluorescence microscopy, and transmission electron microscopy suggested that TP disrupt cell membranes, leading to intracellular component loss. By studying the effect of TP on the toxicity of S. aureus, it was found that the expression levels of two toxin genes, coa and spa, were downregulated by 2.37 and 32.6, respectively. Furthermore, after treatment with TP, a large number of reactive oxygen species (ROS) were propagated and released, leading to oxidative stress in cells. We speculated that the bacteriostatic mechanism of TP may be through the destruction of the cell membrane and ROS-mediated oxidative stress. Meanwhile, the hemolysis activity proved the safety of TP. Our results suggested that TP may be a potential antimicrobial agent for food.


Asunto(s)
Polifenoles , Staphylococcus aureus , Humanos , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Polifenoles/farmacología , , Membrana Celular
5.
ACS Infect Dis ; 9(4): 993-1003, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36994948

RESUMEN

Bioactive molecules and immune factors in the bovine colostrum (BC) are important elements of passive immunity that prevent bacterial infection. However, the mechanisms underlying the antimicrobial activity of BC are not fully understood. We assessed the antibacterial properties of BC-derived exosomes (BC-Exo) and found that they had bacteriostatic, anti-hemolytic, and biofilm-eradication effects on Staphylococcus aureus. Moreover, cell surface deformation and reduced ATP production were observed following BC-Exo treatment. The most reasonable explanation for this finding is that BC-Exo has a strong inhibitory effect on the oxidative phosphorylation pathway in S. aureus. We demonstrated, for the first time, that BC-Exo can exhibit clear antimicrobial activity against S. aureus. Our findings constitute an important basis for future antibiotic discovery.


Asunto(s)
Exosomas , Infecciones Estafilocócicas , Femenino , Embarazo , Animales , Bovinos , Staphylococcus aureus , Exosomas/metabolismo , Calostro , Antibacterianos/farmacología , Antibacterianos/metabolismo
6.
Food Res Int ; 163: 112285, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596191

RESUMEN

This study explores the relationship between the storage quality and bacterial microflora in the mushroom Lyophyllum decastes. The surface bacteria of L. decastes were separated by combining the traditional culture plate separation and 16S rRNA sequencing method, to study the effects of ultrasonic (US) treatment on the surface bacteria of L. decastes during storage. The results demonstrated that Pantoea agglomerans and Pseudomonas fluorescens were among the 15 culturable bacteria isolated with traditional plate method during storage, belonging to 2 phyla and 7 genera. US treatment could inhibit the growth and significantly increase cell membrane permeability, and contents extravasation in P. agglomerans, though its inhibitory effect on P. fluorescens was less. The 16S rRNA sequencing revealed, bacteria from 9 phyla and 35 genera were isolated, and P. fluorescens was the dominant species throughout the storage time. These results indicated that the composition of mushroom surface microflora of Control (CK) and US groups are similar, and the bacterial microflora networks analysis also showed a positive correlation. The KEGG annotation for the functional classification of the bacteria showed that a total of 328 pathways were acquired at the KEGG l3 level, and the relative abundance of membrane transport, amino acid metabolism, carbohydrate metabolism, and energy metabolism pathway was high. Moreover, the relative abundance of the surface bacteria of L. decastes also decreased. Hence, the US treatment had a better bacteriostatic effect, maintained the whiteness index and firmness, and improved the sensory quality of L. decastes during storage.


Asunto(s)
Agaricales , Ultrasonido , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Agaricales/química , Bacterias
7.
Foods ; 12(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38231758

RESUMEN

In this study, we isolated and identified pathogenic fungi from the naturally occurring fruits of red grapes, studied their biological characteristics, screened fifteen essential oil components to find the best natural antibacterial agent with the strongest inhibitory effect, and then compared the incidence of postharvest diseases and storage potential of red grapes treated with two concentrations (0.5 EC50/EC50) of essential oil components (inoculated with pathogenic fungi) during storage for 12 d at room temperature. In our research, Alternaria alternata was the primary pathogenic fungus of red grapes. Specifically, red grapes became infected which caused diseases, regardless of whether they were inoculated with Alternaria alternata in an injured or uninjured state. Our findings demonstrated that the following conditions were ideal for Alternaria alternata mycelial development and spore germination: BSA medium, D-maltose, ammonium nitrate, 28 °C, pH 6, and exposure to light. For the best Alternaria alternata spore production, OA medium, mannitol, urea, 34 °C, pH 9, and dark conditions were advised. Furthermore, with an EC50 value of 36.71 µg/mL, carvacrol demonstrated the highest inhibitory impact on Alternaria alternata among the 15 components of essential oils. In the meantime, treatment with EC50 concentration of carvacrol was found to be more effective than 0.5 EC50 concentration for controlling Alternaria alternata-induced decay disease of red grapes. The fruits exhibited remarkable improvements in the activity of defense-related enzymes, preservation of the greatest hardness and total soluble solids content, reduction in membrane lipid peroxidation in the peel, and preservation of the structural integrity of peel cells. Consequently, carvacrol was able to prevent the Alternaria alternata infestation disease that affects red grapes, and its EC50 concentration produced the greatest outcomes.

8.
Drug Dev Ind Pharm ; 48(2): 58-68, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35786126

RESUMEN

OBJECTIVE: The network pharmacology approach combined the technologies of molecular docking and in vitro bacteriostatic validation to explore the active compounds, core targets, and mechanism of Mung Bean against bacterial infection. METHODS: A Mung Bean target and anti-bacterial infection-related gene set was established using TCMSP and GeneCards databases. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein-protein interaction network were performed using DAVID and STRING database. The combination of core targets and active compounds was predicted by molecular docking. The bacteriostatic experiment in vitro was performed to verify the antibacterial activity of the active compounds. RESULT: 32 potential targets and 5 active compounds of Mung Bean against bacterial infection were obtained by bioinformatics analysis. SRC, EGFR, and MAPK8 might be the candidate targets of Mung Bean. There were 137 GO items (p < 0.05) and 60 signaling pathways (p < 0.05) in GO and KEGG enrichment analysis. The PI3K-AKT pathway, TNF signaling pathway, MAPK signaling pathway might play a significant role in Mung Bean against bacterial infection. Molecular docking results showed that sitosterol and vitamin-e had a high binding affinity with the core targets, which might be the key compounds of Mung bean. In vitro bacteriostatic experimental verified that vitamin-e had a significant bacteriostatic effect. CONCLUSION: Sitosterol and vitamin-E in Mung bean might act on MAPK1, regulate inflammation and immune response to play a role in anti-bacterial infection.


Asunto(s)
Medicamentos Herbarios Chinos , Vigna , Medicamentos Herbarios Chinos/química , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Sitoesteroles , Vitaminas
9.
Bioprocess Biosyst Eng ; 45(7): 1201-1210, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35704072

RESUMEN

Dental decay is known in the world as the most common human infectious disease. Ascending process of dental caries index in the world shows the failure of oral disease prevention. Streptococcus mutans bacteria cause acid damage and tooth decay by producing acid over time. Nanomaterials with suitable functionality, high permeability, extremely large surface area, significant reactivity, unique mechanical features, and non-bacterial resistance can be considered as promising agents for antimicrobial and antiviral applications. In this study, nickel oxide (NiO) nanoparticles with size range from 2 to 16 nm containing Stevia natural sweetener were eco-friendly synthesized via a simple method. Additionally, their various concentrations were evaluated on S. mutans bacteria by applying the broth dilution method. The results demonstrated that these spherical NiO nanoparticles had efficient bacteriostatic activity on this gram-positive coccus.


Asunto(s)
Caries Dental , Nanopartículas , Antibacterianos/farmacología , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana , Níquel , Extractos Vegetales/farmacología , Streptococcus mutans
10.
Curr Top Med Chem ; 22(13): 1093-1103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35352660

RESUMEN

The coevolution in microbes has generated major functional consequences leading bacteria to develop resistance to antibiotics. Indeed, bacterial strains have been able to develop and adapt to the action of antibiotics via several resistance mechanisms. In this context, researchers are currently conducting many studies to screen natural antibacterial substances such as secondary metabolites of medicinal plants. Indeed, the potential of many plants used in traditional medicine in the treatment of infectious diseases was confirmed experimentally, namely Anethum graveolens, Elettaria cardamomum, Foeniculum vulgare, Trachyspermum ammi, Viola odorata, Dioscorea dregeana, Cheilanthes viridis, Vernonia colorata, etc. Bioactive molecules from different medicinal plants include terpenoids, flavonoids, and phenolic acids, which were shown to have significant anti- bacterial effects. The mechanisms of action of these molecules are different and can include structural, cellular, and molecular levels, which suggests them as real candidates for the development of natural antibiotics. However, the clinical trials of these molecules have not been very well studied which limits their clinical use against infectious diseases of bacterial origin.


Asunto(s)
Plantas Medicinales , Terpenos/farmacología , Antibacterianos/farmacología , Bacterias , Flavonoides , Extractos Vegetales/química , Plantas Medicinales/química , Terpenos/química
11.
Int J Mol Sci ; 22(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34884815

RESUMEN

BACKGROUND: New strategies are needed to combat multidrug-resistant bacteria. The restriction of iron uptake by bacteria is a promising way to inhibit their growth. We aimed to suppress the growth of Vibrio bacterial species by inhibiting their ferric ion-binding protein (FbpA) using food components. METHODS: Twenty spices were selected for the screening of FbpA inhibitors. The candidate was applied to antibacterial tests, and the mechanism was further studied. RESULTS: An active compound, rosmarinic acid (RA), was screened out. RA binds competitively and more tightly than Fe3+ to VmFbpA, the FbpA from V. metschnikovii, with apparent KD values of 8 µM vs. 17 µM. Moreover, RA can inhibit the growth of V. metschnikovii to one-third of the control at 1000 µM. Interestingly, sodium citrate (SC) enhances the growth inhibition effect of RA, although SC only does not inhibit the growth. The combination of RA/SC completely inhibits the growth of not only V. metschnikovii at 100/100 µM but also the vibriosis-causative pathogens V. vulnificus and V. parahaemolyticus, at 100/100 and 1000/100 µM, respectively. However, RA/SC does not affect the growth of Escherichia coli. CONCLUSIONS: RA/SC is a potential bacteriostatic agent against Vibrio species while causing little damage to indigenous gastrointestinal bacteria.


Asunto(s)
Cinamatos/farmacología , Depsidos/farmacología , Hierro/metabolismo , Citrato de Sodio/farmacología , Vibrio parahaemolyticus/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cinamatos/química , Cinamatos/metabolismo , Depsidos/química , Depsidos/metabolismo , Sinergismo Farmacológico , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Unión Proteica , Vibrio parahaemolyticus/metabolismo , Ácido Rosmarínico
12.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830146

RESUMEN

The widespread of carbapenem-resistant Acinetobacter baumannii (CRAB) is of great concern in clinical settings worldwide. It is urgent to develop new therapeutic agents against this pathogen. This study aimed to evaluate the therapeutic potentials of compound 62520, which has been previously identified as an inhibitor of the ompA promoter activity of A. baumannii, against CRAB isolates, both in vitro and in vivo. Compound 62520 was found to inhibit the ompA expression and biofilm formation in A. baumannii ATCC 17978 at sub-inhibitory concentrations in a dose-dependent manner. These inhibitory properties were also observed in clinical CRAB isolates belonging to sequence type (ST) 191. Additionally, compound 62520 exhibited a bacteriostatic activity against clinical clonal complex (CC) 208 CRAB isolates, including ST191, and ESKAPE pathogens. This bacteriostatic activity was not different between STs of CRAB isolates. Bacterial clearance was observed in mice infected with bioimaging A. baumannii strain 24 h after treatment with compound 62520. Compound 62520 was shown to significantly increase the survival rates of both immunocompetent and neutropenic mice infected with A. baumannii ATCC 17978. This compound also increased the survival rates of mice infected with clinical CRAB isolate. These results suggest that compound 62520 is a promising scaffold to develop a novel therapeutic agent against CRAB infections.


Asunto(s)
Infecciones por Acinetobacter/prevención & control , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Acinetobacter baumannii/fisiología , Animales , Antibacterianos/administración & dosificación , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple/genética , Femenino , Humanos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana/métodos , Regiones Promotoras Genéticas/genética , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/farmacología , Análisis de Supervivencia
13.
Arch Microbiol ; 203(7): 4025-4032, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34041558

RESUMEN

This study examined the antibacterial activity of the biological pesticide Liangguoan against Staphylococcus aureus and Escherichia coli as a potential replacement for chemical pesticide use in the fruit and vegetable industry. We measured the minimum inhibitory concentration and observed the changes in bacterial morphology, mortality, conductivity, nucleic acid content, and ATP content in response to the bactericide. The minimum inhibitory concentration of Liangguoan was 20 mg/mL for S. aureus and 40 mg/mL for E. coli. After treatment with Liangguoan, the mortality rates of S. aureus and E. coli reached 78.3% and 63.7%, respectively. We observed that the cells were scattered and that the cell morphology was altered in that the cells shortened. The interconnection effect and ATP content decreased, whereas cell conductivity and the nucleic acid content increased. In summary, Liangguoan inhibited S. aureus and E. coli by destroying their cell structure and disrupting their metabolism.


Asunto(s)
Escherichia coli , Extractos Vegetales , Staphylococcus aureus , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Frutas/microbiología , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Staphylococcus aureus/efectos de los fármacos , Verduras/microbiología
14.
Nanotechnology ; 32(31)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33794506

RESUMEN

To overcome multi-drug resistance in microbes, highly efficient antimicrobial substances are required that have a controllable antibacterial effect and are biocompatible. In the present study, an efficient phototherapeutic antibacterial agent, human serum albumin (HSA)/reduced graphene oxide (rGO)/Cladophora glomeratabionanocomposite was synthesized by the incorporation of rGO nanoparticles with HSA, forming protein-rGO, and decorated with a natural freshwater seaweedCladophora glomerata. The prepared HSA/rGO/Cladophora glomeratabionanocomposite was characterized by spectroscopic (UV-vis, FTIR, XRD and Raman) and microscopic (TEM and SEM) techniques. The as-synthesized bionanocomposite showed that sunlight/NIR irradiation stimulated ROS-generating dual-phototherapic effects against antibiotic-resistant bacteria. The bionanocomposite exerted strong antibacterial effects (above 96 %) against amoxicillin-resistantP. aeruginosaandS. aureus, in contrast to single-model-phototherapy. The bionanocomposite not only generated abundant ROS for killing bacteria, but also expressed a fluorescence image for bacterial tracking under sunlight/NIR irradiation. Additionally, the bionanocomposite displayed pronounced antioxidant activity.


Asunto(s)
Chlorophyta/fisiología , Grafito/química , Estrés Oxidativo/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Albúmina Sérica Humana/química , Staphylococcus aureus/crecimiento & desarrollo , Carga Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Células HeLa , Humanos , Viabilidad Microbiana/efectos de los fármacos , Nanocompuestos , Tamaño de la Partícula , Fotoquimioterapia , Terapia Fototérmica , Pseudomonas aeruginosa/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/efectos de los fármacos
15.
Poult Sci ; 100(4): 101003, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33676095

RESUMEN

Previously, a fungus was isolated from a diseased pigeon group clinically suspected of being infected with Candida. The fungus was subsequently identified as Candida glabrata using morphology, physiology, biochemistry, and molecular biology testing methods. In the present study, to determine the controlling effects of Chinese herbal medicine for C. glabrata, the bacteriostatic effects of the ethanol extracts Acorus gramineus, Sophora flavescens, Polygonum hydropiper, Cassia obtusifolia, Pulsatilla chinensis, Dandelion, and Cortex phellodendri on C. glabrata in vitro were analyzed. The results showed that the minimum inhibitory concentrations (MIC80) of Cortex phellodendri was 0.25 µg/µL. Meanwhile, that of S. flavescens was 32 µg/µL; C. obtusifolia was 56 µg/µL; A. gramineus and Polygonum hydropiper was 64 µg/µL; and P. chinensis was 112 µg/µL. However, MIC80 for Dandelion was undetectable. In addition, improved drug sensitivity tests revealed that colonies had grown after 24 h in the blank group, as well as the Polygonum hydropiper, P. chinensis, Dandelion, and ethanol groups. The colonies first appeared at the 48-hour point in the other drug-sensitive medium of Chinese herbal medicine. However, no colony growth was found in Cortex phellodendri medium, and the formation of the maximum colony diameter in that group was later than the blank group (e.g., 96 h in the blank group and 120 h in the Chinese herbal medicine group). It was observed that only 17 colony-forming units had grown in 125 µg/µL of the S. flavescens medium, which was significantly different from other groups. Also, the final colony diameter was significantly smaller than that of the other experimental groups. Therefore, it was determined that the A. gramineus, S. flavescens, Polygonum hydropiper, Cassia obtusifolia, P. chinensis, and Cortex phellodendri had certain inhibitory effects on the growth of the C. glabrata. Among those, it was observed that the Cortex phellodendri had the strongest inhibitory effects, followed by the S. flavescens. In the future, these Chinese herbal medicines are expected to be used to treat the fungal infections related to C. glabrata in poultry to improve production performance.


Asunto(s)
Candida glabrata , Medicamentos Herbarios Chinos , Animales , Antibacterianos/farmacología , Enfermedades de las Aves/tratamiento farmacológico , Enfermedades de las Aves/microbiología , Candida glabrata/clasificación , Candida glabrata/efectos de los fármacos , Candida glabrata/aislamiento & purificación , Columbidae/microbiología , Medicamentos Herbarios Chinos/farmacología , Pruebas de Sensibilidad Microbiana/veterinaria
16.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008738

RESUMEN

The aim of the present investigation was to determine the active ingredients in Amaranthus tricolor L. leaves and develop a biological pesticide. Organic solvent extraction, column chromatography, liquid chromatography, ODS-C18 reverse elution, Sephadex LH-20 gel filtration, H spectrum, and C spectrum were used to isolate the pure product for an assessment of the agricultural activity and bacteriostatic mechanisms. The results showed that the activity of the crude extract following carbon powder filtration was 1.63-fold that of the non-filtered extract. Further isolation was performed to obtain two pure products, namely, hydroxybenzoic acid (HBA) and benzo[b]furan-2-carboxaldehyde (BFC), and their molecular formulas and molecular weights were C7H6O3 and 138.12, and C9H6O2 and 146.12, respectively. Our study is the first to determine that HBA has bacteriostatic activity (MIC 125 µg/mL) and is also the first to isolate BFC from A. tricolor. The ultrastructure observation results showed that HBA caused the bacteria to become shriveled, distorted, and deformed, as well as exhibit uneven surfaces. After HBA treatment, 70 differentially expressed metabolites were detected in the bacteria, of which 9 were downregulated and 61 were upregulated. The differentially expressed metabolites were mainly strigolactones, organic acids and derivatives, fatty acids, benzene and substituted benzene derivatives, amino acids and associated metabolites, and alcohols and amines. Among all of the downregulated differentially expressed metabolites, MEDP1280 was the most critical, as it participates in many physiological and biochemical processes. The enrichment analysis showed that the differentially expressed metabolites mainly participate in tyrosine metabolism, biosynthesis of amino acids, cysteine and methionine metabolism, and arginine and proline metabolism. Additionally, HBA was found to disrupt cell membrane permeability and integrity, causing the leakage of substances and apoptosis. The physiological and biochemical test results showed that HBA could increase the pyruvate levels in bacteria but could decrease the activities of respiratory enzymes (malate dehydrogenase (MDH) and NADH oxidase) and antioxidant enzymes (superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX)). Inverse molecular docking was used to study the binding between HBA and respiratory and antioxidant enzymes. The results showed that HBA could bind to MDH, NADH oxidase, SOD, and GSH-PX, suggesting that these enzymes may be the effector targets of HBA. Conclusion: The optimal active ingredient in A. tricolor that can inhibit Acidovorax avenae subsp. citrulli was identified as HBA. HBA mainly disrupts the cell membrane, damages the metabolic system, and inhibits respiration and antioxidant enzyme activity to control bacterial growth. These results provide a reference for the further development of biological pesticides.


Asunto(s)
Acetatos/química , Amaranthus/química , Antibacterianos/farmacología , Comamonadaceae/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Antifúngicos/farmacología , Antioxidantes/metabolismo , Bacterias/efectos de los fármacos , Bacterias/ultraestructura , Espectroscopía de Resonancia Magnética con Carbono-13 , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ésteres/aislamiento & purificación , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacología , Metaboloma/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Espectroscopía de Protones por Resonancia Magnética , Ácido Pirúvico/metabolismo
17.
Digestion ; 101(6): 659-666, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32980836

RESUMEN

In recent times, there has been an increased attention on gastrointestinal tract (GIT) diseases, with GIT diseases becoming one of the greatest crises to human health. In China, traditional Chinese medicine, Medicated leaven (ML), has been applied to treat gastrointestinal diseases for thousands of years. However, its mechanism remains unclear till date. Here we review both the antibacterial and antiviral effects of ML, the mechanisms for improving human immunity, antioxidant and anti-inflammatory activities, the role of digestive function, and the role of its secondary metabolite. ML may be a new hope for GIT diseases.


Asunto(s)
Enfermedades Gastrointestinales , Medicina Tradicional China , China , Enfermedades Gastrointestinales/terapia , Tracto Gastrointestinal , Humanos
18.
Environ Geochem Health ; 42(11): 3507-3527, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32607701

RESUMEN

This article aims to draw an overview on the actual knowledge on bacteriostatic and bactericidal natural clays. Particular emphasis is given to the role of clay itself, the action of reduced metals located either in the structure of clay minerals or external to them as constituents of associate minerals, and the definition of the mechanisms of action based on the achievements found in all available studies being carried out so far. The term bactericidal is herein used when a clay or a clay mineral kill the bacteria, whereas the term bacteriostatic is used when those minerals stop bacteria growth and replication. The second part of this article deals with experimental studies on bactericidal natural clay, experience and perspective for the preparation of bactericidal natural clays, interesting on the authors perspective and experience for the preparation of pathogens safe both therapeutic and cosmetic natural mud/natural peloid, and better yet of both therapeutic 87oooand cosmetic peloid itself and designed and engineered peloid. The authors also show how to convert non-antimicrobial clay into antimicrobial one, opening the way in the field of pelotherapy to the preparation of sanitary safe peloids addressed, for instance, to the treatment of rheumatic disabilities, as well as to the preparation of antimicrobial peloids and, in particular, of dermatological ointments, all able to fight infectious skin disorders.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Arcilla , Arcilla/química , Sistemas de Liberación de Medicamentos , Humanos , Metales/química , Minerales/química , Peloterapia
19.
Int Immunopharmacol ; 79: 106109, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31865242

RESUMEN

Diabetic ulcers, gangrene, local infections and other traumatic symptoms of wound healing are all directly related. Promoting the early healing of diabetic cutaneous ulcers (DCU) and reducing the disability and treatment costs is an important research project integrating traditional Chinese and Western medicine. Nitric oxide (NO) is a key component of wound healing, and endogenous NO secretion is insufficient during the development of DCU. It has been reported that exogenous NO can promote wound healing, but exogenous NO has a short half-life and is difficult to adhere to the skin. Asiaticoside (AC) is extracted from the traditional Chinese medicine Centella asiatica, and has angiogenic, anticancer, antioxidant, anti-inflammatory, and wound-healing effects. Therefore, our study is based on the hypothesis that the combination of AC and NO to treat DCU is possible. In this study we considered gels of AC and NO, and evaluated the effects of the gel on DCU healing. Based on our study, it was found that the combined effect of asiaticoside and NO could accelerate the healing rate of DCU wounds. The asiaticoside NO gel can inhibit the growth of bacteria in the wound surface, alleviate the inflammatory reaction of wound, and increase the expression of VEGF, iNOS, eNOS and CD34. Our research shows that asiaticoside NO gel may promote DCU wound healing by regulating Wnt/ß-Catenin signaling pathway. It will provide new targets and strategies for the diagnosis and treatment of DCU.


Asunto(s)
Antiinflamatorios/uso terapéutico , Complicaciones de la Diabetes/terapia , Óxido Nítrico/uso terapéutico , Úlcera Cutánea/terapia , Piel/metabolismo , Triterpenos/uso terapéutico , Animales , Centella , Terapia Combinada , Geles , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Piel/patología , Vía de Señalización Wnt , Cicatrización de Heridas/efectos de los fármacos , beta Catenina/metabolismo
20.
Artículo en Chino | WPRIM | ID: wpr-872963

RESUMEN

Objective::To select volatile oils from 16 species of plants (Cymbopogon citratus, Pelargonium graveolens, Pinus tabulieformis, Litsea cubeba, Mentha haplocalyx, Zingiber officinale, Syzygium aromaticum, Curcuma longa, Zanthoxylum bungeanum, Cinnamomum cassia, Ocimum basilicum, Rosmarinus officinalis, Zanthoxylum schinifolium, Zanthoxylum armatum, Illicium verum, Myristica fragrans) that have good inhibitory effect on the growth of Aspergillus flavus. Method::Aspergillus flavus was isolated from the surface of Platycladi Semen medicinal materials by plate culture method. The volatile oils of 16 plants were extracted by steam distillation. The colony diameter of Aspergillus flavus was determined by fumigation of filter paper, and the effect of volatile oils on the growth of Aspergillus flavus was systematically studied. Result::Aspergillus flavus was successfully isolated from Platycladi Semen by means of morphological, microscopic and DNA barcoding identification methods, the bacteriostatic rates of the above 16 kinds of volatile oils against Aspergillus flavus were 2.93%, 0.05%, 0.37%, 76.07%, 0.34%, 0.15%, 50.05%, 8.51%, 1.43%, 58.20%, 0.07%, 2.60%, 8.73%, 100.00%, 52.62%, 0.07%, respectively. Conclusion::The volatile oils of 16 plants all have different degrees of antibacterial activities for Aspergillus flavus, and volatile oils of Zanthoxylum armatum, Litsea cubeba and Cinnamomum cassia have good inhibitory effect. This study can provide a theoretical basis for the prevention and control of Aspergillus flavus in the growth and storage of Platycladi Semen, and provide a basis for further research on plant volatile oil as bacteriostatic agents in the storage process of traditional Chinese medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA