Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 432
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cureus ; 16(3): e56300, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38629020

RESUMEN

Background This study investigates Merremia emarginata's curative effectiveness against colon cancer cells. M. emarginata, often known as Elika jemudu, is a Convolvulaceae family plant. The inhibitory ability of anticancer herbal extracts against cancer cell growth and mediators is tested.  Aim This study aims to evaluate the potent anticancer activity of M. emarginata against colon cancer cell line (HT-29). Materials and methods M. emarginata leaves were gathered and processed using solvent extraction. Anticancer activity on colon cancer cells was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and cysteine aspartic acid protease-3 (caspase 3), B-cell lymphoma 2 (Bcl-2), and B-cell lymphoma-extra large (Bcl-xL) mRNA expressions. The data was reported as the mean ± SD of three separate experiments done in triplicate. The statistical analysis was carried out using one-way analysis of variance (ANOVA), with a p-value less than 0.05 indicating statistical significance. Results The cell viability test showed a gradual decrease in cell growth and proliferation as the concentration increased. The ethanolic extract of M. emarginata was found to be cytotoxic against colon caller cell lines. The extract was able to induce apoptosis of cancer as revealed by Bcl-2, Bcl-xL, and caspase-3 (p<0.05 and p<0.001) signaling pathways. Conclusion M. emarginata extracts showed good anticancer activity against colon cancer cell lines. Further work is required to establish and identify the chemical constituent responsible for its anticancer activity.

2.
Blood Res ; 59(1): 2, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38485822

RESUMEN

BACKGROUND: MYC/BCL2 double expression (DE) is associated with poor prognosis in patients with diffuse large B-cell lymphoma (DLBCL) receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP). This study aimed to determine whether the addition of DE to the National Comprehensive Cancer Network Internal Prognostic Index (NCCN-IPI) could improve the prediction of disease progression in patients with DLBCL treated with R-CHOP. METHODS: This confirmatory prognostic factor study retrospectively recruited patients with newly diagnosed DLBCL between January 1, 2014, and January 31, 2018, at Ramathibodi Hospital (RA) and Thammasat University Hospital (TU). The follow-up period ended on July 1, 2022. Tumors expressing MYC ≥ 40% and BCL2 ≥ 50% were classified as DE. We calculated the hazard ratios (HR) for progression-free survival (PFS) from the date of diagnosis to refractory disease, relapse, or death. Discrimination of the 5-year prediction was based on Cox models using Harrell's concordance index (c-index). RESULTS: A total of 111 patients had DE (39%), NCCN-IPI (8%), and disease progression (46%). The NCCN-IPI adjusted HR of DE was 1.6 (95% confidence interval [CI]: 0.9-2.8; P = 0.117). The baseline NCCN-IPI c-index was 0.63. Adding DE to the NCCN-IPI slightly increased Harrell's concordance index (c-index) to 0.66 (P = 0.119). CONCLUSIONS: Adding DE to the NCCN-IPI may not improve the prognostic value to an acceptable level in resource-limited settings. Multiple independent confirmatory studies from a large cohort of lymphoma registries have provided additional evidence for the clinical utility of DE.

3.
Comput Biol Med ; 173: 108338, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531252

RESUMEN

BACKGROUND: Thrombotic diseases are the leading causes of death worldwide, urging for improvements in treatment strategies. Dahuang Zhechong pill (DHZCP) is a traditional Chinese medicine widely used for treating thrombotic diseases; however, the underlying mechanisms remain unclear. This study aimed to explore the potential mechanisms of DHZCP in treating thrombosis with a focus on bioinformatics and miRNAs. METHODS: We used network pharmacology to explore the targets of thrombosis treated with DHZCP and performed microarray analysis to acquire miRNA profiles and predict the target genes in thrombin-stimulated MEG-01 cells treated with DHZCP. Based on the overlapping of targets, we carried out a component-target-miRNA network and enrichment analysis and validated the selected miRNAs and mRNAs using quantitative reverse transcription-polymerase chain reaction. RESULTS: Our data showed 850 targets of 230 active ingredients of DHZCP and 1214 thrombosis-related genes; 235 targets were common. We identified 32 miRNAs that were regulated by thrombin stimulation but regulated reversely by DHZCP treatment in MEG-01 cells, and predicted 1846 targets with function annotation. We analyzed conjointly 23 integrating targets from network pharmacology and microarray. HIF1A, PIK3CA, MAPK1 and BCL2L1 emerged as key nodes in the network diagrams. We confirmed the differential expression of seven miRNAs, one mRNA (BCL2L1) and platelet surface protein. CONCLUSIONS: This study showed that miRNAs and their targets, such as BCL2L1, played crucial roles in platelet activation during DHZCP intervention in thrombosis, highlighting their potential to alleviate platelet activation and increase cell apoptosis. The study's findings could help develop new strategies for improving thrombosis treatment.


Asunto(s)
Medicamentos Herbarios Chinos , MicroARNs , MicroARNs/genética , Trombina/farmacología , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Análisis por Micromatrices
4.
Phytother Res ; 38(5): 2249-2275, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415799

RESUMEN

Cancer has a considerably higher fatality rate than other diseases globally and is one of the most lethal and profoundly disruptive ailments. The increasing incidence of cancer among humans is one of the greatest challenges in the field of healthcare. A significant factor in the initiation and progression of tumorigenesis is the dysregulation of physiological processes governing cell death, which results in the survival of cancerous cells. B-cell lymphoma 2 (Bcl-2) family members play important roles in several cancer-related processes. Drug research and development have identified various promising natural compounds that demonstrate potent anticancer effects by specifically targeting Bcl-2 family proteins and their associated signaling pathways. This comprehensive review highlights the substantial roles of Bcl-2 family proteins in regulating apoptosis, including the intricate signaling pathways governing the activity of these proteins, the impact of reactive oxygen species, and the crucial involvement of proteasome degradation and the stress response. Furthermore, this review discusses advances in the exploration and potential therapeutic applications of natural compounds and small molecules targeting Bcl-2 family proteins and thus provides substantial scientific information and therapeutic strategies for cancer management.


Asunto(s)
Apoptosis , Productos Biológicos , Neoplasias , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Neoplasias/tratamiento farmacológico , Productos Biológicos/farmacología , Transducción de Señal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos/farmacología
5.
Inflammation ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393550

RESUMEN

Hepatic fibrosis (HF), a precursor to cirrhosis and hepatocellular carcinoma, is caused by abnormal proliferation of connective tissue and excessive accumulation of extracellular matrix in the liver. Notably, activation of hepatic stellate cells (HSCs) is a key link in the development of HF. Phillygenin (PHI, C21H24O6) is a lignan component extracted from the traditional Chinese medicine Forsythiae Fructus, which has various pharmacological activities such as anti-inflammatory, antioxidant and anti-tumour effects. However, whether PHI can directly inhibit HSC activation and ameliorate the mechanism of action of HF has not been fully elucidated. Therefore, the aim of the present study was to investigate the in vitro anti-HF effects of PHI and the underlying molecular mechanisms. Transforming growth factor-ß1 (TGF-ß1)-activated mouse HSCs (mHSCs) and human HSCs (LX-2 cells) were used as an in vitro model of HF and treated with different concentrations of PHI for 24 h. Subsequently, cell morphological changes were observed under the microscope, cell viability was analyzed by MTT assay, cell cycle and apoptosis were detected by flow cytometry, and the mechanism of anti-fibrotic effect of PHI was explored by immunofluorescence, ELISA, RT-qPCR and western blot. The results showed that PHI suppressed the proliferation of TGF-ß1-activated mHSCs and LX-2 cells, arrested the cell cycle at the G0/G1 phase, decreased the levels of α-SMA, Collagen I, TIMP1 and MMP2 genes and proteins, and promoted apoptosis in activated mHSCs and LX-2 cells. Besides, PHI reduced the expression of inflammatory factors in activated mHSCs and LX-2 cells, suggesting a potential anti-inflammatory effect. Mechanically, PHI inhibited TGF-ß1-induced HSC activation and inflammation, at least in part through modulation of the Bax/Bcl-2 and Wnt/ß-catenin pathways. Overall, PHI has significant anti-HF effects and may be a promising agent for the treatment of HF.

6.
J Ethnopharmacol ; 324: 117731, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38218505

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Oxalis corniculata (O. corniculata) is a member of Oxalidaceae family, widely distributed in Asia, Europe, America, and Africa, used extensively as food and its traditional folkloric uses include management of epilepsy, gastric disorders, and neurodegenerative diseases, together with its use in enhancing health. Numerous pharmacological benefits of O. corniculata are linked to its anti-inflammatory and antioxidant abilities. One of the most prevalent neurodegenerative disorders is Alzheimer's disease (AD) in which neuroinflammation and oxidative stress are its main pathogenic processes. AIM OF THE STUDY: Our research aimed to study the neuroprotective effect of the methanolic extract of Oxalis corniculata Linn. (O. corniculata ME), compared to selenium (Se) against AlCl3-induced AD. MATERIALS AND METHODS: Forty male albino rats were allocated into four groups (Gps). Gp I a control group, the rest of the animals received AlCl3 (Gp II-Gp IV). Rats in Gp III and IV were treated with Se and O. corniculata ME, respectively. RESULTS: The chemical profile of O. corniculata ME was studied using ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry, allowing the tentative identification of sixty-six compounds, including organic acids, phenolics and others, cinnamic acid and its derivatives, fatty acids, and flavonoids. AlCl3 showed deterioration in short-term memory and brain histological pictures. Our findings showed that O. corniculata ME and selenium helped to combat oxidative stress produced by accumulation of AlCl3 in the brain and in prophylaxis against AD. Thus, Selenium (Se) and O. corniculata ME restored antioxidant defense, via enhancing Nrf2/HO-1 hub, hampered neuroinflammation, via TLR4/NF-κß/NLRP3, along with dampening apoptosis, Aß generation, tau hyperphosphorylation, BACE1, ApoE4 and LRP1 levels. Treatments also promoted autophagy and modulated Wnt 3/ß-catenin/GSK3ß cue. CONCLUSIONS: It was noted that O. corniculata ME showed a notable ameliorative effect compared to Se on Nrf2/HO-1, TLR4/NF-κß/NLRP3, APOE4/LRP1, Wnt 3/ß-catenin/GSK-3ß and PERK axes.


Asunto(s)
Enfermedad de Alzheimer , Oxalidaceae , Selenio , Ratas , Masculino , Animales , Glucógeno Sintasa Quinasa 3 beta , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Oxalidaceae/química , Señales (Psicología) , Apolipoproteína E4 , Secretasas de la Proteína Precursora del Amiloide , Receptor Toll-Like 4 , Selenio/uso terapéutico , beta Catenina , Enfermedades Neuroinflamatorias , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Ácido Aspártico Endopeptidasas/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
7.
Chin J Integr Med ; 30(1): 52-61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37340203

RESUMEN

OBJECTIVE: To study the in vitro and in vivo antitumor effects of the polysaccharide of Alocasia cucullata (PAC) and the underlying mechanism. METHODS: B16F10 and 4T1 cells were cultured with PAC of 40 µg/mL, and PAC was withdrawn after 40 days of administration. The cell viability was detected by cell counting kit-8. The expression of Bcl-2 and Caspase-3 proteins were detected by Western blot and the expressions of ERK1/2 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A mouse melanoma model was established to study the effect of PAC during long-time administration. Mice were divided into 3 treatment groups: control group treated with saline water, positive control group (LNT group) treated with lentinan at 100 mg/(kg·d), and PAC group treated with PAC at 120 mg/(kg·d). The pathological changes of tumor tissues were observed by hematoxylin-eosin staining. The apoptosis of tumor tissues was detected by TUNEL staining. Bcl-2 and Caspase-3 protein expressions were detected by immunohistochemistry, and the expressions of ERK1/2, JNK1 and p38 mRNA were detected by qRT-PCR. RESULTS: In vitro, no strong inhibitory effects of PAC were found in various tumor cells after 48 or 72 h of administration. Interestingly however, after 40 days of cultivation under PAC, an inhibitory effect on B16F10 cells was found. Correspondingly, the long-time administration of PAC led to downregulation of Bcl-2 protein (P<0.05), up-regulation of Caspase-3 protein (P<0.05) and ERK1 mRNA (P<0.05) in B16F10 cells. The above results were verified by in vivo experiments. In addition, viability of B16F10 cells under long-time administration culture in vitro decreased after drug withdrawal, and similar results were also observed in 4T1 cells. CONCLUSIONS: Long-time administration of PAC can significantly inhibit viability and promote apoptosis of tumor cells, and had obvious antitumor effect in tumor-bearing mice.


Asunto(s)
Alocasia , Ratones , Animales , Alocasia/metabolismo , Sistema de Señalización de MAP Quinasas , Caspasa 3/metabolismo , Apoptosis , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Mini Rev Med Chem ; 24(2): 159-175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36994982

RESUMEN

Compounds from plants that are used in traditional medicine may have medicinal properties. It is well known that plants belonging to the genus Aconitum are highly poisonous. Utilizing substances derived from Aconitum sp. has been linked to negative effects. In addition to their toxicity, the natural substances derived from Aconitum species may have a range of biological effects on humans, such as analgesic, anti-inflammatory, and anti-cancer characteristics. Multiple in silico, in vitro, and in vivo studies have demonstrated the effectiveness of their therapeutic effects. In this review, the clinical effects of natural compounds extracted from Aconitum sp., focusing on aconitelike alkaloids, are investigated particularly by bioinformatics tools, such as the quantitative structure- activity relationship method, molecular docking, and predicted pharmacokinetic and pharmacodynamic profiles. The experimental and bioinformatics aspects of aconitine's pharmacogenomic profile are discussed. Our review could help shed light on the molecular mechanisms of Aconitum sp. compounds. The effects of several aconite-like alkaloids, such as aconitine, methyllycacintine, or hypaconitine, on specific molecular targets, including voltage-gated sodium channels, CAMK2A and CAMK2G during anesthesia, or BCL2, BCL-XP, and PARP-1 receptors during cancer therapy, are evaluated. According to the reviewed literature, aconite and aconite derivatives have a high affinity for the PARP-1 receptor. The toxicity estimations for aconitine indicate hepatotoxicity and hERG II inhibitor activity; however, this compound is not predicted to be AMES toxic or an hERG I inhibitor. The efficacy of aconitine and its derivatives in treating many illnesses has been proven experimentally. Toxicity occurs as a result of the high ingested dose; however, the usage of this drug in future research is based on the small quantity of an active compound that fulfills a therapeutic role.


Asunto(s)
Aconitum , Alcaloides , Medicamentos Herbarios Chinos , Humanos , Aconitina/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Alcaloides/farmacología , Alcaloides/uso terapéutico
9.
Fitoterapia ; 172: 105681, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37743029

RESUMEN

Resistance to apoptosis stands as a roadblock to the successful pharmacological execution of anticancer drug effect. A comprehensive insight into apoptotic signaling pathways and an understanding of the mechanisms of apoptosis resistance are crucial to unveil new drug targets. At this juncture, researchers are heading towards natural sources in particular, mushroom as their potential drugs leads to being the reliable source of potent bioactive compounds. Given the continuous increase in cancer cases, the potent anticancer efficacy of mushrooms has inevitably become a fascinating object to researchers due to their higher safety margin and multitarget. This review aimed to collect and summarize all the available scientific data on mushrooms from their extracts to bioactive molecules in order to suggest their anticancer attributes via a mitochondrion -mediated intrinsic signaling mechanism. Compiled data revealed that bioactive components of mushrooms including polysaccharides, sterols and terpenoids as well as extracts prepared using 15 different solvents from 53 species could be effective in the supportive treatment of 20 various cancers. The underlying therapeutic mechanisms of the studied mushrooms are explored in this review through diverse and complementary investigations: in vitro assays, pre-clinical studies and clinical randomized controlled trials. The processes mainly involved were ROS production, mitochondrial membrane dysfunction, and action of caspase 3, caspase 9, XIAP, cIAP, p53, Bax, and Bcl-2. In summary, the study provides facts pertaining to the potential beneficial effect of mushroom extracts and their active compounds against various types of cancer and is shedding light on the underlying targeted signaling pathways.


Asunto(s)
Agaricales , Antineoplásicos , Neoplasias , Humanos , Estructura Molecular , Neoplasias/tratamiento farmacológico , Mitocondrias , Apoptosis , Transducción de Señal , Antineoplásicos/farmacología
10.
J Ethnopharmacol ; 322: 117571, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38103847

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scoparia dulcis has been identified as a significant ethnopharmacological substance in the Li, Zhuang, and Dai ethnic groups of China. Traditional medicine use S. dulcis to treat numerous illnesses, most notably diabetes. The considerable antidiabetic properties of this herbal remedy have been established by several clinical investigations and animal experiments. The islet is the intended target of S. dulcis, although the cause of its activity and mechanism for diabetes treatment is unclear. The diterpenoids from S. dulcis have been shown in the literature to have significant hypoglycemic efficacy and to protect islet cells in vitro. Diterpenoids may be the components of this herbal remedy that preserve islets, but further research is needed. AIM OF THE STUDY: This study was projected to investigate the new diterpenoid scoparicol E from S. dulcis and examined its islet-protective effect and the potential mechanism both in vitro and in vivo. METHODS: The structure of the novel diterpenoid scoparicol E was clarified by employing a wide range of spectroscopic methods. Using CCK-8 tests, cytotoxicity and antiapoptotic activity of scoparicol E were detected. Serum biochemical analysis and pathologic examination were performed to study the protective effect of scoparicol E against islet damage. The specific mechanism of action of scoparicol E was investigated through the mitochondrial membrane potential, Annexin V-FITC flow cytometry, and western blotting. RESULTS: Scoparicol E reduced MLD-STZ-induced hyperglycemia in mice and increased insulin and islet apoptosis. Scoparicol E effectively suppressed the Bax/Bcl-2/Caspase-3 pathway, according to the in vivo western blot investigation. Scoparicol E showed significant antiapoptotic action in vitro. We also showed that scoparicol E might prevent islet cells from dying by inhibiting the Bax/Bcl-2/Caspase-3 pathway. The Annexin V-FITC flow cytometry results revealed that MIN6 cell apoptosis was considerably decreased following scoparicol E intervention, showing anti-islet cell apoptosis action. Furthermore, the Caspase-3-mediated apoptosis pathway depends on cytochrome c and the potential of the mitochondrial membrane. Scoparicol E prevented the release of cytochrome c, restored the mitochondrial membrane potential, and prevented MIN6 cell apoptosis. CONCLUSION: We demonstrated the new diterpenoid scoparicol E could protect islet cells apoptosis by modulating the Bax/Bcl-2/Caspase-3 pathway.


Asunto(s)
Diabetes Mellitus , Diterpenos , Islotes Pancreáticos , Scoparia , Ratones , Animales , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Scoparia/metabolismo , Citocromos c/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Diabetes Mellitus/metabolismo , Diterpenos/farmacología , Diterpenos/metabolismo
11.
Cells ; 12(23)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067099

RESUMEN

BACKGROUND: Gliomas are the most malignant tumors of the central nervous system. One of the factors in their high drug resistance is avoiding programmed death (PCD) induction. This is related to the overexpression of intracellular survival pathways: PI3K-Akt/PKB-mTOR and Ras-Raf-MEK-ERK. Apoptosis and autophagy are co-existing processes due to the interactions between Bcl-2 and beclin-1 proteins. Their complex may be a molecular "toggle-switch" between PCD types. The aim of this research was to investigate the role of Bcl-2:beclin-1 complex in glioma cell elimination through the combined action of LY294002 and sorafenib. METHODS: Drug cytotoxicity was estimated with an MTT test. The type of cell death was evaluated using variant microscopy techniques (fluorochrome staining, immunocytochemistry, and transmission electron microscopy), as well as the Bcl-2:beclin-1 complex formation and protein localization. Molecular analysis of PCD indicators was conducted through immunoblotting, immunoprecipitation, and ELISA testing. SiRNA was used to block Bcl-2 and beclin-1 expression. RESULTS: The results showed the inhibitors used in simultaneous application resulted in Bcl-2:beclin-1 complex formation and apoptosis becoming dominant. This was accompanied by changes in the location of the tested proteins. CONCLUSIONS: "Switching" between apoptosis and autophagy using PI3K and Raf inhibitors with Bcl-2:beclin-1 complex formation opens new therapeutic perspectives against gliomas.


Asunto(s)
Glioma , Fosfatidilinositol 3-Quinasas , Sorafenib , Humanos , Apoptosis , Autofagia , Beclina-1 , Glioma/tratamiento farmacológico , Glioma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico
12.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111145

RESUMEN

Due to the multifarious nature of cancer, finding a single definitive cure for this dreadful disease remains an elusive challenge. The dysregulation of the apoptotic pathway or programmed cell death, governed by the Bcl-2 family of proteins plays a crucial role in cancer development and progression. Bcl-B stands out as a unique anti-apoptotic protein from the Bcl-2 family that selectively binds to Bax which inhibits its pro-apoptotic function. Although several inhibitors are reported for Bcl-2 family proteins, no specific inhibitors are available against the anti-apoptotic Bcl-B protein. This study aims to address this research gap by using virtual screening of an in-house library of phytochemicals from seven anti-cancer medicinal plants to identify lead molecules against Bcl-B protein. Through pharmacokinetic analysis and molecular docking studies, we identified three lead candidates (Enterolactone, Piperine, and Protopine) based on appreciable drug-likeliness, ADME properties, and binding affinity values. The identified molecules also exhibited specific interactions with critical amino acid residues of the binding cleft, highlighting their potential as lead candidates. Finally, molecular dynamics simulations and MM/PBSA based binding free energy analysis revealed that Enterolactone (CID_114739) and Piperine (CID_638024) molecules were on par with Obatoclax (CID_11404337), which is a known inhibitor of the Bcl-2 family proteins.Communicated by Ramaswamy H. Sarma.

13.
Drug Dev Ind Pharm ; 49(9): 572-579, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37688795

RESUMEN

BACKGROUND: Chemotherapeutic agents have numerous side effects. There is a major interest in using natural and safe plants as food or drink to prevent from cancer. Origanum marjoram (OMAE) is a medicinal plant that can be used as a tea, food, and additive in traditional medicine. OBJECTIVE: This study aimed to evaluate the potential anticancer effects of OMAE as a soft drink for daily use against a model cancer, prevention and treatment. METHOD: MCF-7 cells were chosen as model cancer cells. The MTT assay was used to assess the in vitro inhibitory effects of OMAE on cell growth. Moreover, quantitative real-time PCR (qRT-PCR) was used to detect specific genes associated with cancer, such as ESR1, Bax, Bcl-2, and p53. Furthermore, the DNA damage was evaluated using the comet assay. RESULTS: OMAE has IC50 of 53.1 and IC90 of 97.5 µg/ml dependent inhibition of cell proliferation after 48 h of treatment toward MCF-7. Also, a significant decrease in the expression level of the ESR1 gene in the MCF-7 cell line. Furthermore, there was a significant increase in the comet length and comet-positive cells after treatment with OMAE (88.7%) compared with those in the untreated control cells (9.5%), suggesting a high induction of DNA damage by OMAE. Also, OMAE showed a modification in bcl-2, tumor suppressor gene (p53), and Bax levels and influenced the BAX/BCL-2 ratio via releasing the cytochrome C. CONCLUSION: The results of the study were promising, suggesting that the reduced apoptotic rate of MCF-7 breast cancer cells in this work was correlated to the potential anticancer effect of OMAE which would be a suitable preventable drink against cancer. However, further studies are needed to fully understand the potential of OMAE as a cancer treatment.


Asunto(s)
Origanum , Humanos , Origanum/metabolismo , Apoptosis , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/farmacología , Células MCF-7 , Proliferación Celular
14.
Pathol Res Pract ; 250: 154807, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37696244

RESUMEN

BACKGROUND/AIM: Triple-negative breast cancer (TNBC) is characterized by poor prognosis, rapid progression, serious clinical behavior, an elevated risk of metastasis, and resistance to standard treatments. Traditional medicine practitioners value Rumex vesicarius L. (RMV) for a variety of reasons, including the plant's antioxidant capabilities. Our study's goals were to ascertain the efficacy of RMV alone and in combination with sorafenib (SOR) against the aggressive TNBC cell line (MDA-MB-231) and use in vitro and in silico analysis to deduce the fundamental mechanism of action. METHODS: In the current study, molecular operating environment (MOE, 2019.0102) software was used for performing molecular docking. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to determine the cytotoxicity of RMV, SOR or RMV/SOR combination against the TNBC cell line MDA-MB-231 cells. The effects of RMV, SOR, and RMV and SOR combining on mRNAs expressions of the target genes including mTOR, p21, JNK, and BCl2 were evaluated. In TNBC cells, the relative expressions of mRNAs of the genes were examined by using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: In our experiments, we discovered that both RMV extracts alone and in combination with SOR considerably reduced cancer cell proliferation (IC50 = 0.83 and 0.19 µM, respectively). Additionally, the expression of the tumor suppressor gene p21 was elevated whereas the expression of the invasion and anti-apoptosis genes BCl2, mTOR, and JNK were significantly decreased after treatment with RMV and SOR. Based on in silico analysis, it was found that RMV extract contains bioactive chemicals with a high affinity for inhibiting JNK and VEGFR-2. CONCLUSION: In conclusion, in vitro and in silico investigations show that the RMV extract improves the anticancer efficiency of SOR through molecular processes involving the downregulation of mTOR, BCl2, and JNK1 and overexpression of p21 tumor suppressor gene. Finally, we suggest conducting additional in vivo investigations on RMV and its bioactive components to verify their potential in cancer therapy.

15.
Cancers (Basel) ; 15(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686541

RESUMEN

Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.

16.
J Biochem Mol Toxicol ; 37(10): e23403, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37701944

RESUMEN

Doxorubicin (DOX) has been used to treat various types of cancer, but its application is limited due to its heart toxicity as well as other drawbacks. Chronic inhibition of Na+ /H+ exchanger (NHE1) reduces heart failure and reduces the production of reactive oxygen species (ROS); vitamin B6 (VitB6 ) has been demonstrated to have a crucial role in antioxidant mechanism. So, this study was designed to explore the effect of VitB6 supplement on the DOX-induced cardiotoxicity and to imply whether NHE1 is involved. Ultrasonic cardiogram analysis revealed that VitB6 supplement could alleviate DOX-induced cardiotoxicity; hematoxylin and eosin (HE) and Masson's staining further confirmed this effect. Furthermore, VitB6 supplement exhibited significant antioxidative stress and antiapoptosis effect, which was evidenced by decreased serum malondialdehyde (MDA) content and increased serum superoxide dismutase (SOD) content, and decreased Bcl-2-associated X protein/B-cell lymphoma-2 ratio, respectively. Collectively, VitB6 supplement may exert antioxidative and antiapoptosis effects to improve cardiac function by decreasing NHE1 expression and improve DOX-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Vitamina B 6 , Humanos , Cardiotoxicidad/prevención & control , Cardiotoxicidad/metabolismo , Vitamina B 6/farmacología , Doxorrubicina/toxicidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Vitaminas/farmacología , Apoptosis
17.
Neurosci Lett ; 815: 137491, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37734531

RESUMEN

Alzheimer's disease (AD) is a complex disorder with multiple underlying mechanisms. Existing treatment options mostly address symptom management and are associated with numerous side effects. Therefore, exploring alternative therapeutic agents derived from medicinal plants, which contain various bioactive compounds with diverse pharmacological effects, holds promise for AD treatment. This study aims to assess the protective effects of the hydroalcoholic extract of Allium jesdianum on cognitive dysfunction, mitochondrial and cellular parameters, as well as genetic parameters in an intracerebroventricular Streptozotocin (icv-STZ) induced rat model of AD. Male Wistar rats were injected with a single dose of STZ (3 mg/kg, icv) to establish a sporadic AD model. A. jesdianum extract (100, 200, and 400 mg/kg/day) and donepezil (5 mg/kg/day) were orally administered for 14 days following model induction. Cognitive function was evaluated using the radial arm water maze test. Mitochondrial toxicity parameters in various brain regions (whole brain, frontal cortex, hippocampus, and cerebellum) were assessed. Gene expression analysis of miR-330, miR-132, Bax, and Bcl-2 in isolated rat brain neurons was performed using RT-qPCR. A. jesdianum extract significantly attenuated cognitive dysfunction and mitigated mitochondrial toxicity induced by icv-STZ administration. Following STZ injection, there was upregulation of Bax gene expression and downregulation of miR-330, miR-132, and Bcl-2 gene expression. Treatment with A. jesdianum extract resulted in the reversal of the expression of these microRNAs and genes, indicating its potential for improving AD and reducing neuronal apoptosis. This study demonstrates the neuroprotective capabilities of A. jesdianum against STZ-induced oxidative stress and cognitive impairment in rats, highlighting its therapeutic potential in the management of AD.

18.
Biotech Histochem ; 98(7): 534-542, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37695070

RESUMEN

We investigated the mechanism of the cardioprotective effect of selenium (Se) against cyclophosphamide (CPA) induced cardiotoxicity in rats. We divided 24 female Wistar albino rats into four groups. The control group was injected intraperitoneally (i.p.) with normal saline. The CPA group was injected i.p. with 200 mg/kg CPA. The Se group was injected i.p. with 1 mg/kg Se. The CPA + Se group was injected i.p. with 200 mg/kg CPA and 1 mg/kg Se. Rats were euthanized 24 h after injection and heart tissues were harvested. Histopathological examination revealed reduced severity of myocardial lesions in the CPA + Se group compared to CPA induced cardiotoxicity of the CPA group; this finding was confirmed by increased immunoreactivity of cardiac troponin-I (cTn-I) in the CPA + Se group compared to decreased cTn-I immunoreactivity in the CPA group. Administration of CPA increased the immunoreactivity of phosphorylated histone-2AX (γH2AX). Se reduced the CPA induced increase in γH2AX immunoreactivity. Se administration reversed the CPA induced increase of Bax and decrease of Bcl2 gene expressions. Our findings suggest that Se is cardioprotective by reducing DNA damage and regulating the genes responsible for apoptosis caused by CPA in rats.


Asunto(s)
Cardiotoxicidad , Selenio , Ratas , Femenino , Animales , Selenio/farmacología , Ratas Wistar , Ciclofosfamida/toxicidad , Apoptosis , Daño del ADN , Estrés Oxidativo
19.
Phytother Res ; 37(11): 5378-5393, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37589332

RESUMEN

Epinodosin has shown antibacterial and antitumor biological characteristics in the documents. We found that Epinodosin has an effective inhibitory effect on esophageal squamous cell carcinoma (ESCC). However, the potential roles and mechanisms of Epinodosin in ESCC remain unclear. We performed many experiments to clarify the effect and mechanism of Epinodosin on ESCC. In this study, cell viability, invasion, migration, and apoptosis were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,-diphenytetrazoliumromide (MTT), Transwell, and flow cytometry. The differentially expressed miRNAs were screened through RNA transcriptome sequencing. The expression levels of miRNA-143-3p and some proteins were measured by real-time polymerase chain reaction (PCR) and Western blot. The anticancer effects of Epinodosin in vivo were determined by a nude mouse model. Epinodosin suppressed cell proliferation/invasion/migration and induced ESCC cell apoptosis. Epinodosin remarkably affected the protein expression of mitogen-activated protein kinase (MAPK) signaling pathway. The animal experiments demonstrated that Epinodosin could attenuate the growth of ESCC tumors in nude mice. The expression of p53, Bim, and Bax was upregulated, while that of Bcl-2 was downregulated in tumor tissues. In conclusion, Epinodosin suppresses cell viability/invasion/migration, while induces ESCC cell apoptosis by mediating miRNA-143-3p and Bcl-2, and can markedly attenuate the growth of ESCC tumors in nude mice.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Animales , Ratones , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Ratones Desnudos , Neoplasias Esofágicas/tratamiento farmacológico , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
20.
Molecules ; 28(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37570713

RESUMEN

Annona muricate is a tropical plant that is well-known for its edible fruit of therapeutic interest. LCMS/MS analyses were applied to identify phytoconstituents of the ethanolic extract of the whole fruits and the aqueous extract of the edible fruit part, in addition to the investigation of their anticancer properties against Ehrlich ascites carcinoma (EAC) in male albino mice. LCMS/MS analyses resulted in the identification of 388 components, representing a wide array of classes of compounds, including acetogenins as the major constituents, alkaloids, flavonoids, and phenolics. Among them, four compounds were tentatively characterized as new compounds (1-4), including an acid derivative, protocatechuic-coumaroyl-quinic acid (1), and three flavonoid derivatives, dihydromyricetin galloyl hexoside (2), apigenin gallate (3), and dihydromyricetin hexouronic acid hexoside (4). Induction with EAC cells resulted in abnormalities in the gene expression of pro-apoptotic genes (Bax and caspase-3) and anti-apoptotic gene (Bcl-2) in the tumor mass. Moreover, microscopic, histopathological, and immune-histochemical examinations of the tumor mass and liver tissues exhibited extensive growth of malignant Ehrlich carcinoma cells and marked hydropic degeneration of hepatocytes and infiltration by tumor cells to liver tissue with marked inflammatory reaction. These abnormalities were markedly ameliorated aftertreatment of EAC mice with A. muricata extracts.


Asunto(s)
Annona , Ratones , Animales , Annona/química , Acetogeninas/química , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA