Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Breast Cancer Res Treat ; 206(1): 57-65, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38561578

RESUMEN

PURPOSE: We aimed to provide long-term bone mineral density (BMD) data on early breast cancer patients of the BREX (Breast Cancer and Exercise) study. The effects of exercise and adjuvant endocrine treatment 10 years after randomization were analyzed, with special emphasis on aromatase inhibitor (AI) therapy discontinuation at 5 years. METHODS: The BREX study randomized 573 pre- and postmenopausal breast cancer patients into a 1-year supervised exercise program or a control group. 372 patients were included into the current follow-up analysis. BMD (g/cm2) was measured by dual-energy X-ray absorptiometry at lumbar spine (LS), left femoral neck (FN), and the total hip. Separate groups were displayed according to baseline menopausal status, and whether the patient had discontinued AI therapy at 5 years or not. RESULTS: The BMD change from 5 to 10 years did not significantly differ between the two randomized arms. AI discontinuation at 5 years had statistically significant BMD effects. The FN BMD continued to decrease in patients who discontinued AI therapy during the first 5-year off-treatment, but the decrease was three-fold less than in patients without AI withdrawal (- 1.4% v. - 3.8%). The LS BMD increased (+ 2.6%) in patients with AI withdrawal during the first 5 years following treatment discontinuation, while a BMD decrease (-1.3%) was seen in patients without AI withdrawal. CONCLUSION: This study is to our knowledge the first to quantify the long-term impact of AI withdrawal on BMD. Bone loss associated with AI therapy seems partially reversible after stopping treatment. TRIAL REGISTRATION: http://www. CLINICALTRIALS: gov/ (Identifier Number NCT00639210).


Asunto(s)
Inhibidores de la Aromatasa , Densidad Ósea , Neoplasias de la Mama , Humanos , Femenino , Densidad Ósea/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de la Aromatasa/efectos adversos , Inhibidores de la Aromatasa/uso terapéutico , Persona de Mediana Edad , Estudios de Seguimiento , Adulto , Anciano , Absorciometría de Fotón , Posmenopausia
2.
Ann Phys Rehabil Med ; 67(4): 101823, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479252

RESUMEN

BACKGROUND: Hemi-osteoporosis is a common secondary complication of stroke. No systematic reviews of pharmacological and non-pharmacological agents for post-stroke bone health have estimated the magnitude and precision of effect sizes to guide better clinical practice. OBJECTIVES: To examine the benefits and harms of pharmacological and non-pharmacological agents on bone health in post-stroke individuals. METHODS: Eight databases were searched (PubMed, Cochrane library, Scopus, CINAHL Complete, Embase, PEDro, Clinicaltrils.gov and ICTRP) up to June 2023. Any controlled studies that applied physical exercise, supplements, or medications and measured bone-related outcomes in people with stroke were included. PEDro and the GRADE approach were used to examine the methodological quality of included articles and quality of evidence for outcomes. Effect sizes were calculated as standardized mean differences (SMD) and risk ratio (RR). Review Manager 5.4 was used for data synthetization. RESULTS: Twenty-four articles from 21 trials involving 22,500 participants (3,827 in 11 non-pharmacological and 18,673 in 10 pharmacological trials) were included. Eight trials were included in the meta-analysis. The methodological quality of half of the included non-pharmacological studies was either poor or fair, whereas it was good to excellent in 8 of 10 pharmacological studies. Meta-analysis revealed a beneficial effect of exercise on the bone mineral density (BMD) of the paretic hip (SMD: 0.50, 95 % CI: 0.16; 0.85; low-quality evidence). The effects of anti-resorptive medications on the BMD of the paretic hip were mixed and thus inconclusive (low-quality evidence). High-quality evidence showed that the administration of antidepressants increased the risk of fracture (RR: 2.36, 95 % CI 1.64-3.39). CONCLUSION: Exercise under supervision may be beneficial for hip bone health in post-stroke individuals. The effect of anti-resorptive medications on hip BMD is uncertain. The adverse effects of antidepressants on fracture risk among post-stroke individuals warrant further attention. Further high-quality studies are required to better understand this issue. REGISTRATION: PROSPERO CRD42022359186.


Asunto(s)
Densidad Ósea , Osteoporosis , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Osteoporosis/etiología , Osteoporosis/tratamiento farmacológico , Osteoporosis/complicaciones , Densidad Ósea/efectos de los fármacos , Conservadores de la Densidad Ósea/uso terapéutico , Rehabilitación de Accidente Cerebrovascular/métodos , Femenino , Masculino , Terapia por Ejercicio/métodos , Anciano , Persona de Mediana Edad
3.
Phytother Res ; 38(4): 1863-1881, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358766

RESUMEN

Forsythia suspensa tea is a popular traditional Chinese medicine decoction for its healthy and therapeutic benefits. However, its effects in bone metabolism were not clear. In recent study, we uncovered anti-osteoclastogenesis property of Phillygenin (Phi), a compound abundant in Forsythia suspensa leaves, and aimed to investigate the effect and mechanism of Phi on bone metabolism in vivo and in vitro. Lipopolysaccharides-induced murine calvaria osteolysis and ovariectomy-induced bone loss animal models were used to identify the bone-protective effect of Phi in vivo and micro-CT, pQCT, and TRAP staining were applied. We used CCK8, TUNEL, BrdU, and TRAP staining to evaluate the efficacy of Phi on the proliferation and formation of OCs in primary mBMMs. RNA sequence, activity-based protein profiling, molecular docking, G-LISA, and WB were used to inspect the target and underlying mechanism of Phi's actions in mBMMs. We found Phi significantly inhibited bone resorption in vivo and inhibited mBMMs osteoclastogenesis in vitro. Ras homolog gene family member A (RhoA) was identified as the direct target of Phi. It counteracted the effects of RhoA activator and acted as a RhoA inhibitor. By targeting RhoA, Phi modulated Rho-associated coiled-coil containing protein kinase 1 (ROCK1) activity and regulated its downstream NF-κB/NFATc1/c-fos pathway. Furthermore, Phi depressed the disassembling of F-actin ring through cofilin and myosin1a. Our findings provided Phi as a potential option for treating bone loss diseases by targeting RhoA and highlighted the importance of F. suspensa as a preventive approach in bone disorders.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Lignanos , Osteólisis , Animales , Femenino , Ratones , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/prevención & control , Diferenciación Celular , Lignanos/farmacología , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/farmacología , Osteoclastos , Osteogénesis , Osteólisis/inducido químicamente
4.
Int J Oral Maxillofac Implants ; 39(1): 173-183, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38416011

RESUMEN

PURPOSE: To determine the characteristics of dental implant transmucosal surfaces that influence soft tissue attachment and marginal bone loss (MBL). MATERIALS AND METHODS: The PubMed, Embase, and Cochrane Library electronic databases were searched based on predefined PICO eligibility criteria. Data from animal studies that compared junctional epithelium and connective tissue attachment and MBL from 4 days to 72 weeks were analyzed. The risk of bias was performed with the Systematic Review Centre for Laboratory Animal Experimentation tool. A rank analysis evaluation of data was performed, and the most frequently appearing materials/surfaces for each tissue compartment were identified. RESULTS: The search identified 3,549 studies, 28 of which were eligible for analysis, with an average risk of bias of 28% ± 10%. Machined, polished, etched, sandblasted, or coated titanium and zirconia materials/surfaces were most frequently examined. Several studies investigated lithium disilicate, polyether ether ketone (PEEK) or polyether ketone ketone (PEKK), aluminum oxide, and gold. Based on ranking and frequency of use at different time points, titanium grade IV (Ti-4) microthreads with a polished neck area most frequently supported natural tooth-like junctional epithelial attachment (≤ 1.5 mm), while machined Ti-4 and machined titanium grade V (Ti-5) most frequently supported connective tissue attachment (≤ 1.25 mm) and led to the least MBL (≤ 0.75 mm). CONCLUSIONS: Analyzed data suggest that Ti-4 microthreads with a polished neck area and machined Ti-4 and Ti-5 were the materials/surfaces of choice for the transmucosal part of implants. However, the extensive heterogeneity in reported studies precludes solid identification of the best materials/surfaces.


Asunto(s)
Enfermedades Óseas Metabólicas , Implantes Dentales , Animales , Implantes Dentales/efectos adversos , Titanio , Óxido de Aluminio , Inserción Epitelial
5.
Mol Med ; 30(1): 10, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216878

RESUMEN

BACKGROUND: Increased oxidative stress contributes to enhanced osteoclastogenesis and age-related bone loss. Melatonin (MT) is an endogenous antioxidant and declines with aging. However, it was unclear whether the decline of MT was involved in the enhanced osteoclastogenesis during the aging process. METHODS: The plasma level of MT, oxidative stress status, bone mass, the number of bone marrow-derived monocytes (BMMs) and its osteoclastogenesis were analyzed in young (3-month old) and old (18-month old) mice (n = 6 per group). In vitro, BMMs isolated from aged mice were treated with or without MT, followed by detecting the change of osteoclastogenesis and intracellular reactive oxygen species (ROS) level. Furthermore, old mice were treated with MT for 2 months to investigate the therapeutic effect. RESULTS: The plasma level of MT was markedly lower in aged mice compared with young mice. Age-related decline in MT was accompanied by enhanced oxidative stress, osteoclastogenic potential and bone loss. MT intervention significantly suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, decreased intracellular ROS and enhanced antioxidant capacity of BMMs from aged mice. MT supplementation significantly attenuated oxidative stress, osteoclastogenesis, bone loss and deterioration of bone microstructure in aged mice. CONCLUSIONS: These results suggest that age-related decline of MT enhanced osteoclastogenesis via disruption of redox homeostasis. MT may serve as a key regulator in osteoclastogenesis and bone homeostasis, thereby highlighting its potential as a preventive agent for age-related bone loss.


Asunto(s)
Melatonina , Osteoporosis , Animales , Ratones , Osteogénesis , Osteoclastos/metabolismo , Melatonina/farmacología , Especies Reactivas de Oxígeno , Antioxidantes/farmacología , Oxidación-Reducción , Homeostasis , Diferenciación Celular , FN-kappa B/metabolismo
6.
J. appl. oral sci ; 32: e20230344, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1534759

RESUMEN

Abstract Objective: This study aimed to investigate the effects of systemic administration of P. eurycarpa Yalt. plant extract on alveolar bone loss and oxidative stress biomarkers in gingival tissue in a rat model of experimental periodontitis. Methodology: 32 male Wistar albino rats, weighing 200-250 g, were divided into four groups (n=8): Healthy control (HC), Experimental periodontitis control (EPC), Experimental periodontitis 400 mg/kg (EP400), Experimental periodontitis 800 mg/kg (EP800). Experimental periodontitis was induced using the ligating method. Distilled water was administered to the HC and EPC groups and the plant extract was administered to the EP400 and EP800 groups by oral gavage at doses of 400 mg/kg and 800 mg/kg, respectively. The rats were sacrificed on the 15th day. The values of glutathione peroxidase GSH-Px, malondialdehyde (MDA), superoxide dismustase (SOD), interleukin-1β (IL-1β), interleukin-10 (IL-10), total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI) in the gingival tissues were analyzed by ELISA tests. Alveolar bone loss was assessed using micro-CT images of the maxilla. Results: Although the IL-1β, TOS, OSI results of the healthy control group were lower than those of the other groups, the TAS values were higher (p<0.05). No significant difference was found in the biochemical parameters among the EPC, EP400, and EP800 groups (p>0.05). Alveolar bone loss was significantly reduced in the extract groups compared to the EPC group (p<0.001). Conclusion: Within the limitations of this study, it was observed that the systemic P. eurycarpa extract application reduced alveolar bone loss in a rat model of experimental periodontitis. Further studies are needed to elucidate the beneficial effects of P. eurycarpa.

7.
Biomedicines ; 11(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38137375

RESUMEN

The observation that the extent of artery calcification correlates with the degree of atherosclerosis was the background for the alternative treatment of cardiovascular disease with chelator ethylenediamine tetraacetate (EDTA). Recent studies have indicated that such chelation treatment has only marginal impact on the course of vascular disease. In contrast, endogenous calcium chelation with removal of calcium from the cardiovascular system paralleled by improved bone mineralization exerted, i.e., by matrix Gla protein (MGP) and osteocalcin, appears to significantly delay the development of cardiovascular diseases. After post-translational vitamin-K-dependent carboxylation of glutamic acid residues, MGP and other vitamin-K-dependent proteins (VKDPs) can chelate calcium through vicinal carboxyl groups. Dietary vitamin K is mainly provided in the form of phylloquinone from green leafy vegetables and as menaquinones from fermented foods. Here, we provide a review of clinical studies, addressing the role of vitamin K in cardiovascular diseases, and an overview of vitamin K kinetics and biological actions, including vitamin-K-dependent carboxylation and calcium chelation, as compared with the action of the exogenous (therapeutic) chelator EDTA. Consumption of vitamin-K-rich foods and/or use of vitamin K supplements appear to be a better preventive strategy than EDTA chelation for maintaining vascular health.

8.
Mol Biol Rep ; 50(12): 10579-10588, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932498

RESUMEN

The skeleton is a living organ that undergoes constant changes, including bone formation and resorption. It is affected by various diseases, such as osteoporosis, osteopenia, and osteomalacia. Nowadays, several methods are applied to protect bone health, including the use of hormonal and non-hormonal medications and supplements. However, certain drugs like glucocorticoids, thiazolidinediones, heparin, anticonvulsants, chemotherapy, and proton pump inhibitors can endanger bone health and cause bone loss. New studies are exploring the use of supplements, such as conjugated linoleic acid (CLA) and glucosamine, with fewer side effects during treatment. Various mechanisms have been proposed for the effects of CLA and glucosamine on bone structure, both direct and indirect. One mechanism that deserves special attention is the regulatory effect of RANKL/RANK/OPG on bone turnover. The RANKL/RANK/OPG pathway is considered a motive for osteoclast maturation and bone resorption. The cytokine system, consisting of the receptor activator of the nuclear factor (NF)-kB ligand (RANKL), its receptor RANK, and its decoy receptor, osteoprotegerin (OPG), plays a vital role in bone turnover. Over the past few years, researchers have observed the impact of CLA and glucosamine on the RANKL/RANK/OPG mechanism of bone turnover. However, no comprehensive study has been published on these supplements and their mechanism. To address this gap in knowledge, we have critically reviewed their potential effects. This review aims to assist in developing efficient treatment strategies and focusing future studies on these supplements.


Asunto(s)
Enfermedades Óseas Metabólicas , Ácidos Linoleicos Conjugados , Humanos , Osteoprotegerina/metabolismo , Glucosamina , Enfermedades Óseas Metabólicas/metabolismo , Ligando RANK/metabolismo , Osteoclastos/metabolismo
9.
Animal Model Exp Med ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38013618

RESUMEN

BACKGROUND: Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength. However, current anti-resorptive drugs carry a risk of various complications. The deep learning-based efficacy prediction system (DLEPS) is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes. This study aimed to explore the protective effect and potential mechanisms of cinobufotalin (CB), a traditional Chinese medicine (TCM), on bone loss. METHODS: DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis. Micro-CT, histological and morphological analysis were applied for the bone protective detection of CB, and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells (hBMMSCs) were also investigated. The underlying mechanism was verified using qRT-PCR, Western blot (WB), immunofluorescence (IF), etc. RESULTS: A safe concentration (0.25 mg/kg in vivo, 0.05 µM in vitro) of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs. Both BMPs/SMAD and Wnt/ß-catenin signaling pathways participated in CB-induced osteogenic differentiation, further regulating the expression of osteogenesis-associated factors, and ultimately promoting osteogenesis. CONCLUSION: Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss, further promoting osteogenic differentiation/function of hBMMSCs, with BMPs/SMAD and Wnt/ß-catenin signaling pathways involved.

10.
Nutrients ; 15(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37764779

RESUMEN

Euonymus alatus (Thunb.) Siebold, a traditional medicinal plant, has been used in China and several other Asian countries to address a variety of health concerns. The extensive research conducted on E. alatus is driven by its diverse pharmacological applications. However, its biological effects on osteoclastogenesis and osteoporosis have not been previously studied. In this research, we investigated the impact of an ethanolic extract of E. alatus (EEEA) on osteoclast differentiation and function as well as estrogen deficiency-induced bone loss. We found that EEEA inhibits osteoclast differentiation by downregulating the expression of the receptor activator of nuclear factor-κB ligand (RANKL) in osteoclast-supporting cells and by directly impeding RANKL-mediated signaling pathways for osteoclastogenesis in precursor cells. In addition, EEEA inhibited the bone-resorptive function of mature osteoclasts in vitro. Furthermore, oral administration of EEEA significantly alleviated bone loss in an ovariectomy-induced osteoporosis mouse model. Additionally, we identified phytochemicals in EEEA that have suppressive effects on osteoclast differentiation and bone loss. Collectively, these results suggest that EEEA holds potential as a biotherapeutic candidate for anti-postmenopausal osteoporosis.

11.
Cancers (Basel) ; 15(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686643

RESUMEN

Vitamin D deficiency or insufficiency is prevalent in childhood cancer patients and survivors after chemotherapy; further studies are needed to investigate the underlying aetiology and effectiveness of vitamin D supplementation in preventing chemotherapy-induced bone loss. This study used a rat model of treatment with antimetabolite methotrexate to investigate whether methotrexate chemotherapy causes vitamin D deficiency and if vitamin D supplementation attenuates the resultant bone loss. Methotrexate treatment (five daily injections) decreased serum vitamin D levels (from 52 to <30 ng/mL), reduced body and bone lengthening and tibial trabecular bone volume, and altered intestinal vitamin D metabolism, which was associated with intestinal mucosal damage known to cause malabsorption of nutrients, including dietary vitamin D and calcium. During the early stage after chemotherapy, mRNA expression increased for vitamin D activation enzyme CYP27B1 and for calcium-binding protein TRPV6 in the intestine. During the intestinal healing stage, expression of vitamin D catabolism enzyme CYP24 increased, and that of TRPV6 was normalised. Furthermore, subcutaneous calcitriol supplementation diminished methotrexate-induced bone loss due to its effect suppressing methotrexate-induced increased bone resorption. Thus, in young rats, methotrexate chemotherapy causes vitamin D deficiency, growth impairments, bone loss, and altered intestinal vitamin D metabolism, which are associated with intestinal damage, and vitamin D supplementation inhibits methotrexate-induced bone loss.

12.
J Prosthodont ; 32(8): 669-678, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37365991

RESUMEN

PURPOSE: The aim of this systematic review was to compare treatment outcomes in terms of implant survival rate, marginal bone loss, and patient-reported outcome measures (PROMs) between narrow-diameter implants and regular-diameter implants (RDIs) for mandibular implant overdentures (MIOs). METHODS: This study was based on the methodology adapted as per Cochrane. Medline, Embase, the Cochrane Central Register of Controlled Trials, Web of Science, and Scopus were searched for pertinent studies published by July 22, 2022. Outcome parameters included in this meta-analysis were implant survival rate, marginal bone loss, visual analogue scale score for patient satisfaction, and value of oral health impact profile. RESULTS: A total of 782 non-duplicate articles and 83 clinical study registrations were identified from database and hand searches, of which 26 were eligible for full-text searches. Finally, 12 publications reporting on 8 independent studies were included in this review. In the meta-analysis, implant survival rate and marginal bone loss did not significantly differ between narrow-diameter implants and RDIs. Regarding RDIs, narrow-diameter implants were associated with significantly better outcomes in general patient satisfaction and oral health-related quality of life than RDIs for mandibular overdentures. CONCLUSIONS: Narrow-diameter implants have competitive treatment outcomes compared to RDIs in terms of implant survival rate, marginal bone loss, and PROMs. [Correction added on July 21, 2023, after first online publication: The abbreviation RDIs was changed to PROMs in the preceding sentence.] Thus, narrow-diameter implants might be an alternative treatment option for MIOs in situations with limited alveolar bone volume.


Asunto(s)
Pérdida de Hueso Alveolar , Implantes Dentales , Humanos , Calidad de Vida , Prótesis de Recubrimiento , Prótesis Dental de Soporte Implantado , Resultado del Tratamiento , Mandíbula/cirugía
13.
Int Immunopharmacol ; 121: 110446, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290321

RESUMEN

PURPOSE: Several substances that have anti-inflammatory, antiproteinase, and anti-infective properties have been evaluated as modulators of the inflammatory response in periodontal disease. However, evidence for the anti-inflammatory and antioxidative activities of bromelain is limited. This study evaluated the impact of systemically administered bromelain on the progression of experimental periodontitis. METHODS: Four equal groups of 32 Wistar albino rats were created as follows (n = 8): control, periodontitis + saline, periodontitis + 5 mg/kg/day bromelain, and periodontitis + 10 mg/kg/day bromelain. To quantify the resorption of bone and bone volume/tissue volume, bone surface / bone volume, and connectivity, lower jawbones were fixed and then scanned using microcomputed tomography (micro CT). Blood samples were taken to measure the macrophage colony-stimulating factor(M-CSF) concentrations, receptor activator of nuclear factor kappa-Β ligand (RANKL), osteoprotegerin (OPG), tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase-8 (MMP-8), interleukin-6(IL-6), glutathione peroxidase (GPx), superoxide dismutase (SOD), and malondialdehyde (MDA). Histopathological assessments were made to examine the tissue. RESULTS: Treatment with bromelain improved the healing of the periodontium by decreasing the number of leukocytes and ligament deterioration in the gingival connective tissue and by supporting reintegration with alveolar bone. Bromelain used in ligature-induced periodontitis reduced alveolar bone (AB) resorption as measured by microCT; reduced inflammatory parameters such as IL-6 and TNF-α; regulated oxidative-antioxidative processes by increasing GPx and SOD and reducing MDA levels; and regulated AB modeling by decreasing M-CSF, RANKL, and MMP-8 and increasing OPG levels. CONCLUSION: Bromelain may be an option in periodontal therapy by regulating cytokine levels, improving the healing process, and reducing bone resorption and oxidative stress.


Asunto(s)
Metaloproteinasa 8 de la Matriz , Periodontitis , Ratas , Animales , Ratas Wistar , Factor Estimulante de Colonias de Macrófagos , Factor de Necrosis Tumoral alfa , Interleucina-6/uso terapéutico , Bromelaínas/uso terapéutico , Microtomografía por Rayos X , Periodontitis/tratamiento farmacológico , Antioxidantes/uso terapéutico , Antiinflamatorios/uso terapéutico , Glutatión Peroxidasa , Huesos/patología
14.
Heliyon ; 9(5): e15583, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37153438

RESUMEN

Abnormal bone metabolism and subsequence osteoporotic fractures are common complications of chronic inflammatory diseases. No effective treatment for these bone-related complications is available at present. The chronic inflammatory state in these diseases has been considered as a key factor of bone loss. Therefore, the combination of inflammation inhibition and bone loss suppression may be an important strategy for reducing bone damage associated with inflammatory diseases. Bushen Huoxue Decoction (BSHXD) is a traditional Chinese herbal compound that has demonstrated the ability to improve bone quality and increase bone density. However, the efficacy of BSHXD on inflammatory bone loss and its underlying mechanisms remain unclear. This study aimed to investigate whether BSHXD inhibits inflammatory bone loss in mice and its potential molecular mechanisms. In the present study, the effect of BSHXD on lipopolysaccharide (LPS)-induced M1 polarization of RAW264.7 macrophage and on local inflammatory bone loss model of mouse skull was determined. The results showed that after treating RAW264.7 cells with LPS for 24 h, the expression levels of IL-1ß (39.42 ± 3.076 ng/L, p < 0.05), IL-6 (49.24 ± 1.766 mg/L, p < 0.05) and TNF-α (286.3 ± 27.12 ng/L, p < 0.05) were significantly increased. The addition of BSHXD decreased the expression levels of IL-1ß, IL-6, and TNF-α to 31.55 ± 1.296 ng/L, 37.94 ± 0.8869 mg/L, and 196.4 ± 25.25 ng/L, respectively (p < 0.05). The results of immunofluorescence staining, Western blotting (WB) and flow cytometry indicated that the proportion of M1 macrophages in RAW264.7 cells treated with BSHXD for 24 h was significantly lower than that in the LPS group (13.36% ± 0.9829% VS 24.80% ± 4.619%, p < 0.05). The evidence from in-vitro experiments showed that the immunomodulatory ability of BSHXD may be associated with the activation of AMP-dependent protein kinase (AMPK) pathway in LPS-treated macrophages. In addition, the results of micro-CT, H&E staining, immunohistochemical staining and immunofluorescence staining of mouse skull further demonstrated that BSHXD treatment significantly alleviated LPS-induced local bone loss and inflammatory damage in mouse skull model. All results indicated that BSHXD significantly inhibited inflammatory factors release and M1 polarization of macrophage through AMPK signaling pathway. Therefore, BSHXD may be a promising drug for the treatment of inflammatory bone loss.

15.
Front Physiol ; 14: 1107933, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008023

RESUMEN

Spaceflight exposure, like prolonged skeletal unloading, is known to result in significant bone loss, but the molecular mechanisms responsible are still partly unknown. This impairment, characterizing both conditions, suggests the possibility of identifying common signalling pathways and developing innovative treatment strategies to counteract the bone loss typical of astronauts and osteoporotic patients. In this context, primary cell cultures of human osteoblasts derived from healthy subjects and osteoporotic patients were exposed to random positioning machine (RPM) to reproduce the absence of gravity and to exacerbate the pathological condition, respectively. The duration of exposure to RPM was 3 or 6 days, with the aim of determining whether a single administration of recombinant irisin (r-irisin) could prevent cell death and mineralizing capacity loss. In detail, cellular responses were assessed both in terms of death/survival, by MTS assay, analysis of oxidative stress and caspase activity, as well as the expression of survival and cell death proteins, and in terms of mineralizing capacity, by investigating the pentraxin 3 (PTX3) expression. Our results suggest that the effects of a single dose of r-irisin are maintained for a limited time, as demonstrated by complete protection after 3 days of RPM exposure and only partial protection when RPM exposure was for a longer time. Therefore, the use of r-irisin could be a valid strategy to counteract the bone mass loss induced by weightlessness and osteoporosis. Further studies are needed to determine an optimal treatment strategy based on the use of r-irisin that is fully protective even over very long periods of exposure and/or to identify further approaches to be used in a complementary manner.

16.
Pharm Biol ; 61(1): 722-736, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37096936

RESUMEN

CONTEXT: Chinese medicinal herbs (CMH) have been considered a potentially efficacious approach for patients with breast cancer that experience adverse effects from endocrine treatment. OBJECTIVE: To investigate the impact of CMH on endocrine therapy-induced side effects in patients with hormone receptor-positive (HR+) breast cancer. METHODS: Ten databases (e.g., PubMed, Web of Science, Cochrane Library, China National Knowledge Information Database and other databases) were searched up to 20 May 2022. The search terms included Chinese herb, breast cancer, endocrine therapy, clinical trial and their mesh terms. The study selection and data extraction were performed by two independent reviewers. The risk of bias was evaluated using the Cochrane risk of bias method. RESULTS: A total of 31 studies with 2288 patients were included. There were significant improvements in bone mineral density (BMD) [lumbar BMD (MD 0.08, 95% CI 0.07 to 0.09, p < 0.00001) and femoral neck BMD (MD 0.08, 95% CI 0.07 to 0.10, p < 0.00001)] and bone gal protein (BGP) (MD 0.24, 95% CI 0.17 to 0.31, p < 0.00001), with a significant reduction in triglycerides (MD -0.53, 95% CI -1.00 to -0.07, p < 0.05) and no effect on estradiol levels (MD 0.90, 95% CI -0.31 to 2.12, p = 0.15). CONCLUSIONS: CMH combined with complementary therapy can moderately reduce endocrine therapy-induced side effects, including bone loss and dyslipidemia in patients with HR + breast cancer, revealing the potential role of CMH in treating (HR+) breast cancer. More high-quality RCTs are warranted to further validate the effectiveness and safety of CMH.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Plantas Medicinales , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Densidad Ósea , China
17.
J Orthop Surg Res ; 18(1): 234, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36949499

RESUMEN

OBJECTIVE: To explore the difference in the protective effects of intraperitoneal injection of exogenous melatonin of daytime or nighttime on bone loss in ovariectomized (OVX) rats. METHODS: After bilateral ovariectomy and sham surgery, 40 rats were randomly divided into four groups: sham operation group (Sham), ovariectomy (OVX), and daytime melatonin injection group (OVX + DMLT, 9:00, 30 mg/kg/d) and nighttime injection of melatonin (OVX + NMLT, 22:00, 30 mg/kg/d). After 12 weeks of treatment, the rats were sacrificed. The distal femur, blood and femoral marrow cavity contents were saved. The rest of the samples were tested by Micro-CT, histology, biomechanics and molecular biology. Blood was used for bone metabolism marker measurements. CCK-8, ROS, and Cell apoptosis are performed using MC3E3-T1 cells. RESULTS: Compared with treatment at night, the bone mass of the OVX rats was significantly increased after the daytime administration. All microscopic parameters of trabecular bone increased, only Tb.Sp decreased. Histologically, the bone microarchitecture of the OVX + DMLT was also more dense than the bone microarchitecture of the OVX + LMLT. In the biomechanical experiment, the femur samples of the day treatment group were able to withstand greater loads and deformation. In molecular biology experiments, bone formation-related molecules increased, while bone resorption-related molecules decreased. After treatment with melatonin administration at night, the expression of MT-1ß was significantly decreased. In cell experiments, the MC3E3-T1 cells treated with low-dose MLT had higher cell viability and greater efficiency in inhibiting ROS production than the MC3E3-T1 cells treated with high-dose MLT, which in turn more effectively inhibited apoptosis. CONCLUSION: Daytime administration of melatonin acquires better protective effects on bone loss than night in OVX rats.


Asunto(s)
Enfermedades Óseas Metabólicas , Melatonina , Osteoporosis , Femenino , Ratas , Animales , Humanos , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Melatonina/farmacología , Melatonina/uso terapéutico , Especies Reactivas de Oxígeno , Densidad Ósea , Fémur , Ovariectomía/efectos adversos
18.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902303

RESUMEN

Osteoporosis is a metabolic skeletal disease characterized by lowered bone mineral density and quality, which lead to an increased risk of fracture. The aim of this study was to evaluate the anti-osteoporosis effects of a mixture (called BPX) of Cervus elaphus sibiricus and Glycine max (L.) Merrill and its underlying mechanisms using an ovariectomized (OVX) mouse model. BALB/c female mice (7 weeks old) were ovariectomized. From 12 weeks of ovariectomy, mice were administered BPX (600 mg/kg) mixed in a chow diet for 20 weeks. Changes in bone mineral density (BMD) and bone volume (BV), histological findings, osteogenic markers in serum, and bone formation-related molecules were analyzed. Ovariectomy notably decreased the BMD and BV scores, while these were significantly attenuated by BPX treatment in the whole body, femur, and tibia. These anti-osteoporosis effects of BPX were supported by the histological findings for bone microstructure from H&E staining, increased activity of alkaline phosphatase (ALP), but a lowered activity of tartrate-resistant acid phosphatase (TRAP) in the femur, along with other parameters in the serum, including TRAP, calcium (Ca), osteocalcin (OC), and ALP. These pharmacological actions of BPX were explained by the regulation of key molecules in the bone morphogenetic protein (BMP) and mitogen-activated protein kinase (MAPK) pathways. The present results provide experimental evidence for the clinical relevance and pharmaceutical potential of BPX as a candidate for anti-osteoporosis treatment, especially under postmenopausal conditions.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Femenino , Ratones , Animales , Humanos , Osteogénesis , Glycine max/metabolismo , Enfermedades Óseas Metabólicas/metabolismo , Osteoporosis/metabolismo , Densidad Ósea , Modelos Animales de Enfermedad , Fosfatasa Alcalina/metabolismo , Ovariectomía
19.
Carbohydr Polym ; 310: 120725, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36925250

RESUMEN

Age-related bone loss is unavoidable and effective safe drugs are in great need. The fruit of Lycium barbarum was recorded to strengthen bones in the "Ben Cao Gang Mu (Compendium of Materia Medica)". However, there lacks scientific explanation. Herein, we investigated L. barbarum water extract (LBE), L. barbarum polysaccharides (LBP) and the homogeneous polysaccharide LBP1C-2 on the bone loss in adult mouse, aging mouse and ovariectomized mouse models. LBE, LBP and LBP1C-2 all markedly increased bone mass and bone strength in these models and promoted osteoblast proliferation, differentiation and ossification. Mechanistic studies showed that LBP1C-2 binds directly to the BMP receptors (BMPRIA and BMPRII) and noggin, activates the phosphorylation of Smad and disrupts the interaction between noggin and BMPs. Our results clearly elucidate the mechanism, the critical component and the direct targets of L. barbarum and provide potentially safe natural products and new drug candidate against age-related bone loss.


Asunto(s)
Medicamentos Herbarios Chinos , Lycium , Osteoporosis , Ratones , Animales , Polisacáridos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Modelos Animales de Enfermedad , Osteoporosis/tratamiento farmacológico
20.
J Ginseng Res ; 47(2): 265-273, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36926616

RESUMEN

Background: The intestinal microbiota is an important regulator of bone health. In previous studies we have shown that intestinal microbiota dysbiosis, induced by treatment with broad spectrum antibiotics (ABX) followed by natural repopulation, results in gut barrier dysfunction and bone loss. We have also shown that treatment with probiotics or a gut barrier enhancer can inhibit dysbiosis-induced bone loss. The overall goal of this project was to test the effect of Korean Red Ginseng (KRG) extract on bone and gut health using antibiotics (ABX) dysbiosis-induced bone loss model in mice. Methods: Adult male mice (Balb/C, 12-week old) were administered broad spectrum antibiotics (ampicillin and neomycin) for 2 weeks followed by 4 weeks of natural repopulation. During this 4-week period, mice were treated with vehicle (water) or KRG extract. Other controls included mice that did not receive either antibiotics or KRG extract and mice that received only KRG extract. At the end of the experiments, we assessed various parameters to assess bone, microbiota and in vivo intestinal permeability. Results: Consistent with our previous results, post-ABX- dysbiosis led to significant bone loss. Importantly, this was associated with a decrease in gut microbiota alpha diversity and an increase in intestinal permeability. All these effects including bone loss were prevented by KRG extract treatment. Furthermore, our studies identified multiple genera including Lactobacillus and rc4-4 as well as Alistipes finegoldii to be potentially linked to the effect of KRG extract on gut-bone axis. Conclusion: Together, our results demonstrate that KRG extract regulates the gut-bone axis and is effective at preventing dysbiosis-induced bone loss in mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA