Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520835

RESUMEN

BACKGROUND: Liver cancer, one of the most common types of cancer worldwide, accounts for millions of cases annually. With its multi-target and wide-ranging therapeutic effects, traditional Chinese medicine has emerged as a potential approach for treating various tumors. Codonopsis pilosula, a traditional herb, is known for its anti-inflammatory and antioxidant properties. In this study, we investigated the potential molecular mechanisms of Codonopsis pilosula in regulating the inhibition of CDK1 and the modulation of PDK1/ß-catenin, which are involved in hepatocellular carcinoma growth and metastasis. STUDY DESIGN/METHODS: Firstly, we screened the active chemical constituents of Codonopsis pilosula and identified their respective target proteins using the Herb database. Then, we applied the GeneCards database and transcriptome sequencing analysis to screen for critical genes associated with the occurrence and development of liver cancer. The intersection of the target proteins and disease-related genes was used to determine the potential targets of Codonopsis pilosula in hepatocellular carcinoma. Protein-protein interaction analysis and GO/KEGG analysis were subsequently performed to uncover the pathways through which Codonopsis pilosula acts on liver cancer. The Huh-7 cell line, exhibiting the highest sensitivity to Codonopsis pilosula polysaccharide solution (CPP) intervention, was chosen for subsequent studies. Cell viability was evaluated using the CCK-8 assay, colony formation assay was conducted to determine cell proliferation capacity, flow cytometry was used to analyze cell cycle, TUNEL staining was performed to assess cell apoptosis, scratch assay was carried out to evaluate cell migration ability, the expression of EMT-related proteins was detected and analyzed, and cell sphere formation assay was conducted to investigate cell stemness. Finally, a liver cancer animal model was established, and different doses of CPP were administered via gavage the next day. The expression levels of CDK1, PDK1, and ß-catenin in mouse liver tissues were detected and analyzed, immunohistochemistry staining was performed to assess the expression of tumor cell proliferation-related proteins Ki67 and PCNA in mouse xenografts, and TUNEL staining was carried out to evaluate cell apoptosis in mouse liver tissues. After intervention with CDK1 expression, the expression levels of CDK1, PDK1, and ß-catenin proteins and mRNA in each group of cells were detected using Western blot and RT-qPCR. RESULTS: Through network pharmacology analysis, transcriptome sequencing, and bioinformatics analysis, 35 target genes through which Codonopsis pilosula acts on liver cancer were identified. Among them, CDK1, with the highest degree in the PPI network, was considered an essential target protein for Codonopsis pilosula in treating liver cancer. In vitro cell experiments revealed that CPP could inhibit the expression of CDK1/PDK1/ß-catenin signaling axis factors, suppress cell proliferation, decrease cell migration ability, influence the EMT process, and reduce cell stemness by inhibiting CDK1 and affecting the PDK1/ß-catenin signaling axis. Similarly, in vivo experiments demonstrated that CPP could regulate the CDK1/PDK1/ß-catenin signaling axis, inhibit tumor growth, and induce cell apoptosis. CONCLUSION: Codonopsis pilosula may inhibit hepatocellular carcinoma growth by suppressing CDK1 and affecting the PDK1/ß-catenin signaling axis, limiting cell EMT and reducing cell stemness. These findings provide insights into the potential therapeutic role of Codonopsis pilosula in liver cancer.


Asunto(s)
Proteína Quinasa CDC2 , Carcinoma Hepatocelular , Codonopsis , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Humanos , Codonopsis/química , Línea Celular Tumoral , Proteína Quinasa CDC2/metabolismo , Ratones , Proliferación Celular/efectos de los fármacos , beta Catenina/metabolismo , Antineoplásicos Fitogénicos/farmacología , Ratones Desnudos , Ratones Endogámicos BALB C , Masculino , Movimiento Celular/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ensayos Antitumor por Modelo de Xenoinjerto , Medicamentos Herbarios Chinos/farmacología
2.
Breast Cancer Res Treat ; 204(3): 643-647, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38224427

RESUMEN

PURPOSE: Cutaneous adverse effects from cyclin-dependent 4 and 6 kinase inhibitors (CDK4/6i) used in metastatic breast cancer are prevalent and well described. Vitiligo-like lesions have been reported and are rare. They can negatively impact patients' quality of life and may be associated with survival benefits. We describe the clinical characteristics of vitiligo-like lesions in an international cohort of patients treated with CDK4/6i to help improve recognition and management. METHODS: Retrospective review of patients diagnosed with vitiligo-like lesions from CDK4/6i from five academic institutions in the USA and Europe was performed. Ten patients were included in the study. RESULTS: Median age of our patients was 55 (range 37-86). Median progression-free survival was 24 months in 5 patients. The median time to rash was 10 months. Sun-exposed areas such as the arms and face were the most affected areas. Multiple skin-directed therapies such as topicals, laser, and phototherapy were trialed with minor success. Mild repigmentation was seen in one patient treated with ruxolitinib cream. CDK4/6 treatment was discontinued due to the vitiligo-like lesions in one patient. CONCLUSION: Clinical characteristics are similar to previously reported findings in case reports and series. We add topical ruxolitinib as a potential treatment option for these patients and include data regarding progression-free survival that should continue to be collected. No definitive conclusions can be made regarding survival benefits from our cohort. Clinicians should refer these patients to dermatologists to aid with management.


Asunto(s)
Neoplasias de la Mama , Nitrilos , Pirazoles , Pirimidinas , Vitíligo , Humanos , Femenino , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/tratamiento farmacológico , Aminopiridinas , Piridinas/efectos adversos , Vitíligo/tratamiento farmacológico , Vitíligo/inducido químicamente , Estudios Retrospectivos , Quinasa 4 Dependiente de la Ciclina , Calidad de Vida , Inhibidores de Proteínas Quinasas/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
3.
BMC Complement Med Ther ; 23(1): 396, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925393

RESUMEN

Most of the breast cancers are estrogen receptor-positive recurring with a steady rate of up to 20 years dysregulating the normal cell cycle. Dinaciclib is still in clinical trials and considered as a research drug against such cancers targeting CDK2.The major goal of this study was to identify the potential inhibitors of CDK-2 present in Moringa oleifera for treating hormonal receptor positive breast cancers. For this purpose, in silico techniques; molecular docking, MM-GBSA and molecular dynamics simulations were employed to screen Moringa oleifera compounds and their anticancer potential was determined against CDK-2 protein targets. Among 36 compounds of Moringa oleifera reported in literature, chlorogenic acid (1), quercetin (2), ellagic acid (3), niazirin (4), and kaempferol (5) showed good affinity with the target. The interaction of the compounds was visualized using PYMOL software. The profiles of absorption, distribution, metabolism, excretion (ADME) and toxicity were determined using SWISS and ProTox II webservers. The MTT assay was performed in-vitro using MCF-7 cancer cell lines to validate the anticancer potential of Moringa oleifera leaf extract.MTT assay results revealed no significant change in proliferation of Mcf-7 cells following 24 h treatment with fraction A (petroleum ether). However, significant antiproliferative effect was observed at 200 µg/mL dose of fraction B (ethyl acetate) and cell viability was reduced to 40%.In conclusion, the data suggested that all the compounds with highest negative docking score than the reference could be the potential candidates for cyclin dependent kinase-2 (CDK-2) inhibition while ellagic acid, chlorogenic acid and quercetin being the most stable and potent inhibitors to treat estrogen receptor positive breast cancer targeting CDK-2. Moreover, the data suggested that further investigation is required to determine the optimum dose for significant antiproliferative effects using in-vivo models to validate our findings of in-silico analysis.


Asunto(s)
Neoplasias de la Mama , Moringa oleifera , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Moringa oleifera/química , Receptores de Estrógenos , Simulación del Acoplamiento Molecular , Quercetina , Extractos Vegetales/química
4.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401132

RESUMEN

AIM: This study aimed to use one strain many compounds approach (OSMAC) to investigate the cytotoxic potential of Aspergillus terreus associated with soybean versus several cancer cell lines, by means of in-silico and in vitro approaches. METHODS AND RESULTS: Fermentation of the isolated strain was done on five media. The derived extracts were investigated for their inhibitory activities against three human cancer cell lines; mammary gland breast cancer (MCF-7), colorectal adenocarcinoma (Caco-2), and hepatocellular carcinoma (HepG2) using MTT Assay. The fungal mycelia fermented in Modified Potato Dextrose Broth (MPDB) was the most cytotoxic extract against HepG2, MCF-7, and Caco-2 cell lines with IC50 4.2 ± 0.13, 5.9 ± 0.013 and 7.3 ± 0.004 µg mL-1, respectively. MPDB extract was scaled up resulting in the isolation of six metabolites; three fatty acids (1, 2, and 4), one sterol (3) and two butenolides (5 and 6) by column chromatography. The isolated compounds (1-6) were screened through a molecular docking approach for their binding aptitude to various active sites. butyrolactone-I (5) revealed a significant interaction within the CDK2 active site, while aspulvinone E (6) showed promising binding affinity to FLT3 and EGFR active sites that was confirmed by in vitro CDK2, FLT3 and EGFR inhibitory activity. Finally, the in vitro cytotoxic activities of butyrolactone-I (5) and aspulvinone E (6) revealed the antiproliferative activity of butyrolactone-I (5), against HepG2 cell line (IC50 = 17.85 ± 0.32 µM). CONCLUSION: Molecular docking analysis and in vitro assays suggested the CDK2/A2 inhibitory potential of butyrolactone-I (5) in addition to the promising interaction abilities of aspulvinone E (6) with EGFR and FLT3 active sites as a possible mechanism of their biological activities.


Asunto(s)
Antineoplásicos , Glycine max , Humanos , Simulación del Acoplamiento Molecular , Glycine max/metabolismo , Células CACO-2 , Aspergillus/metabolismo , Antineoplásicos/metabolismo , Extractos Vegetales/farmacología , Receptores ErbB/metabolismo , Receptores ErbB/farmacología , Estructura Molecular , Proliferación Celular
5.
Infect Agent Cancer ; 18(1): 41, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393234

RESUMEN

BACKGROUND: Chronic hepatitis B virus (HBV) infection is the major etiology of hepatocellular carcinoma (HCC). However, the mechanism of hepatitis B-related hepatocellular carcinoma (HBV-related HCC) is still unclear. Therefore, understanding the pathogenesis and searching for drugs to treat HBV-related HCC was an effective strategy to treat this disease. PURPOSE: Bioinformatics was used to predict the potential targets of HBV-related HCC. The reverse network pharmacology of key targets was used to analyze the clinical drugs, traditional Chinese medicine (TCM) and small molecules of TCM in the treatment of HBV-related HCC. METHODS: In this study, three microarray datasets totally containing 330 tumoral samples and 297 normal samples were selected from the GEO database. These microarray datasets were used to screen DEGs. And the expression profile and survival of 6 key genes were analyzed. In addition, Comparative Toxicogenomics Database and Coremine Medical database were used to enrich clinical drugs and TCM of HBV-related HCC by the 6 key targets. Then the obtained TCM were classified based on the Chinese Pharmacopoeia. Among these top 6 key genes, CDK1 and CCNB1 had the most connection nodes and the highest degree and were the most significantly expressed. In general, CDK1 and CCNB1 tend to form a complex, which is conducive to cell mitosis. Hence, this study mainly studied CDK1 and CCNB1. HERB database was used to predict small molecules TCM. The inhibition effect of quercetin, celastrol and cantharidin on HepG2.2.15 cells and Hep3B cells was verified by CCK8 experiment. The effects of quercetin, celastrol and cantharidin on CDK1 and CCNB1 of HepG2.2.15 cells and Hep3B cells were determined by Western Blot. RESULTS: In short, 272 DEGs (53 upregulated and 219 downregulated) were identified. Among these DEGs, 6 key genes with high degree were identified, which were AURKA, BIRC5, CCNB1, CDK1, CDKN3 and TYMS. Kaplan-Meier plotter analysis showed that higher expression levels of AURKA, BIRC5, CCNB1, CDK1, CDKN3 and TYMS were associated with poor OS. According to the first 6 key targets, a variety of drugs and TCM were identified. These results showed that clinical drugs included targeted drugs, such as sorafenib, palbociclib and Dasatinib. and chemotherapy drugs, such as cisplatin and doxorubicin. TCM, such as the TCM flavor was mainly warm and bitter, and the main meridians were liver and lung. Small molecules of TCM included flavonoids, terpenoids, alkaloids and glycosides, such as quercetin, celastrol, cantharidin, hesperidin, silymarin, casticin, berberine and ursolic acid, which have great potential in anti-HBV-related HCC. For molecular docking of chemical components, the molecules with higher scores were flavonoids, alkaloids, etc. Three representative types of TCM small molecules were verified respectively, and it was found that quercetin, celastrol and cantharidin inhibited the proliferation of HepG2.2.15 cells and Hep3B cells along concentration gradient. Quercetin, celastrol and cantharidin decreased CDK1 expression in HepG2.2.15 and Hep3B cells, but for CCNB1, only cantharidin decreased CCNB1 expression in the two strains of cells. CONCLUSION: In conclusion, AURKA, BIRC5, CCNB1, CDK1, CDKN3 and TYMS could be potential targets for the diagnosis and prognosis of HBV-related HCC. Clinical drugs include chemotherapeutic and targeted drug, traditional Chinese medicine is mainly bitter and warm TCM. Small molecular of TCM including flavonoids, terpenoids and glycosides and alkaloids, which have great potential in anti-HBV-related HCC. This study provides potential therapeutic targets and novel strategies for the treatment of HBV-related HCC.

6.
Chem Biol Interact ; 382: 110624, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423554

RESUMEN

Bladder cancer (BCa) is a urinary tumor with limited treatment options and high mortality. Liensinine (LIEN), a natural bisbenzylisoquinoline alkaloid, has shown excellent anti-tumor effects in numerous preclinical studies. However, the anti-BCa effect of LIEN remains unclear. To the best of our knowledge, this is the first study to investigate the molecular mechanism of LIEN in the management of BCa. First, we identified the treatment-related targets of BCa; those that repeatedly occur in more than two databases, including GeneCards, Online Mendelian Inheritance in Man, DisGeNET, Therapeutic Target Database, and Drugbank. The SwissTarget database was used to screen LIEN-related targets, and those with a probability >0 were possible LIEN targets. The prospective targets of LIEN in the treatment of BCa were then determined using a Venn diagram. Second, we discovered that the PI3K/AKT pathway and senescence mediated the anti-BCa action of LIEN by using GO and KEGG enrichment analysis to explore the function of LIEN therapeutic targets. A protein-protein interaction network was created using the String website, and six algorithms of the CytoHubba plug-in were then used in Cytoscape to assess the core targets of LIEN for the therapy of BCa. The outcomes of molecular docking and dynamics simulation demonstrated that CDK2 and CDK4 proteins were the direct targets of LIEN in the management of BCa, among which CDK2 was more stable in binding to LIEN than CDK4. Finally, in vitro experiments showed that LIEN inhibited the activity and proliferation of T24 cells. The expression of p-/AKT, CDK2, and CDK4 proteins progressively decreased, while the expression and fluorescence intensity of the senescence-related protein, γH2AX, gradually increased with increasing LIEN concentration in T24 cells. Therefore, our data suggest that LIEN may promote senescence and inhibit proliferation by inhibiting the CDK2/4 and PI3K/AKT pathways in BCa.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias de la Vejiga Urinaria , Humanos , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Bases de Datos Genéticas , Quinasa 2 Dependiente de la Ciclina , Quinasa 4 Dependiente de la Ciclina
7.
Anticancer Res ; 43(7): 2933-2939, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37351982

RESUMEN

BACKGROUND/AIM: Lung cancer is the leading cause of mortality due to cancer death. Treatment of lung adenocarcinoma (LUAD) is still challenging. Cranberries contain many rich bioactive components that may help fight cancer. The action of cranberry against some cancer types has been reported, however, its role in lung cancer has only been investigated in large-cell lung cancer. In this study, we expanded current research on the role of cranberry in LUAD. MATERIALS AND METHODS: A549 LUAD cancer cells were treated with commercial cranberry extract (CE). Proliferation of A549 cells was measured with a clonogenic survival assay and quick proliferation assay. Caspase-3 activity was used to evaluate apoptosis of A549 cells. Reverse transcriptase-polymerase chain reaction was conducted to investigate the possible molecular mechanisms involved in the action of CE. RESULTS: Treatment of LUAD with CE reduced the percentage of A549 colonies. This was consistent with the decrease in the optic density of cancer cells after treatment with CE. Caspase-3 activity increased after treatment with CE. The anti-proliferative effect of CE on A549 cells correlated with reduced expression of pro-proliferation molecules cyclin E, cyclin-dependent kinase 2 (CDK2) and CDK4. The pro-apoptotic effect of CE on A549 cells correlated with the reduced expression of the anti-apoptotic molecule caspase 8 and FADD-like apoptosis regulator (FLIP). CONCLUSION: CE had an inhibitory effect on the growth of LUAD cells by modulation of both pro-proliferative and anti-apoptotic molecules. Our research hopes to guide future treatment options for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Extractos Vegetales , Vaccinium macrocarpon , Vaccinium macrocarpon/química , Frutas/química , Extractos Vegetales/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Células A549 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Caspasa 3/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Apoptosis
8.
Front Pharmacol ; 14: 1165584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081962

RESUMEN

Background: Zanthoxylum bungeanum seed oil (ZBSO) is extracted from the seeds of the traditional Chinese medicine Z. bungeanum Maxim, which has been shown to have anti-melanoma effects. However, the specific mechanisms are not illustrated adequately. Aims: To further investigate the mechanism by which ZBSO inhibits melanoma and to provide scientific evidence to support ZBSO as a potential melanoma therapeutic candidate. Methods: CCK-8 assays were used to detect the function of ZBSO on A375 cells. Based on transcriptomics analyses, Western blot analysis was applied to determine whether an association existed in ZBSO with the CDC25A/CyclinB1/CDK1 signaling pathway. In addition, RT-qPCR and immunohistochemistry analysis validated that ZBSO has the anti-melanoma effect in a nude mouse xenograft model of human melanoma. Then, 16S rRNA sequencing was used to detect the regulation of gut microbes. Results: Cellular assays revealed that ZBSO could inhibit A375 cell viability by regulating the cell cycle pathway. Further studies presented that ZBSO could constrain CDC25A/CyclinB1/CDK1 signaling pathway in vitro and in vivo models of melanoma. ZBSO did not produce toxicity in mice, and significantly reduced tumor volume in xenotransplants of A375 cells. Genome analysis indicated that ZBSO successfully altered specific gut microbes. Conclusion: ZBSO inhibited the growth of A375 cells by regulating CDC25A/cyclinB1/CDK1 signaling pathway both in vitro and in vivo, suggesting that ZBSO may be a novel potential therapeutic agent.

9.
Drug Des Devel Ther ; 17: 901-917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998242

RESUMEN

Purpose: Kanglaite injection (KLTi), made of Coix seed oil, has been shown to be effective in the treatment of numerous cancers. However, the anticancer mechanism requires further exploration. This study aimed to investigate the underlying anticancer mechanisms of KLTi in triple-negative breast cancer (TNBC) cells. Methods: Public databases were searched for active compounds in KLTi, their potential targets and TNBC-related targets. KLTi's core targets and signaling pathways were determined through compound-target network, protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecular docking was carried out to predict the binding activity between active ingredients and key targets. In vitro experiments were conducted to further validate the predictions of network pharmacology. Results: Fourteen active components of KLTi were screened from the database. Fifty-three candidate therapeutic targets were selected, and bioinformatics analysis was performed to identify the top two active compounds and three core targets. GO and KEGG enrichment analyses indicated that KLTi exerts therapeutic effects on TNBC through the cell cycle pathway. Molecular docking results showed that the main compounds of KLTi exhibited good binding activity to key target proteins. Results from in vitro experiments showed that KLTi inhibited proliferation and migration of TNBC cell lines 231 and 468, induced apoptosis, blocked cells in the G2/M phase, downregulated the mRNA expression of seven G2/M phase-related genes cyclin-dependent kinase 1 (CDK1), cyclin-dependent kinase 2 (CDK2), and checkpoint kinase 1 (CHEK1), cell division cycle 25A (CDC25A), cell division cycle 25B (CDC25B), maternal embryonic leucine zipper kinase (MELK), and aurora kinase A (AURKA), as well as downregulated CDK1 protein expression and up-regulated protein expression of Phospho-CDK1. Conclusion: By utilizing network pharmacology, molecular docking, and in vitro experiments, KLTi was confirmed to have anti-TNBC effects by arresting cell cycle and inhibiting CDK1 dephosphorylation.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Ciclo Celular , Medicamentos Herbarios Chinos/farmacología , Proteínas Serina-Treonina Quinasas
10.
Molecules ; 28(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903287

RESUMEN

Medicinal plants provide a wide range of active compounds that can be exploited to create novel medicines with minimal side effects. The current study aimed to identify the anticancer properties of Juniperus procera (J. procera) leaves. Here, we demonstrate that J. procera leaves' methanolic extract suppresses cancer cells in colon (HCT116), liver (HepG2), breast (MCF-7), and erythroid (JK-1) cell lines. By applying GC/MS, we were able to determine the components of the J. procera extract that might contribute to cytotoxicity. Molecular docking modules were created that used active components against cyclin-dependent kinase 5 (Cdk5) in colon cancer, aromatase cytochrome P450 in the breast cancer receptor protein, the -N terminal domain in the erythroid cancer receptor of the erythroid spectrin, and topoisomerase in liver cancer. The results demonstrate that, out of the 12 bioactive compounds generated by GC/MS analysis, the active ingredient 2-imino-6-nitro-2H-1-benzopyran-3-carbothiamide proved to be the best-docked chemical with the chosen proteins impacted by DNA conformational changes, cell membrane integrity, and proliferation in molecular docking studies. Notably, we uncovered the capacity of J. procera to induce apoptosis and inhibit cell growth in the HCT116 cell line. Collectively, our data propose that J. procera leaves' methanolic extract has an anticancer role with the potential to guide future mechanistic studies.


Asunto(s)
Antineoplásicos Fitogénicos , Juniperus , Neoplasias , Plantas Medicinales , Humanos , Juniperus/química , Metanol , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Línea Celular Tumoral , Antineoplásicos Fitogénicos/química
11.
Phytomedicine ; 113: 154728, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36898255

RESUMEN

BACKGROUND: Glutamate, an excitatory neurotransmitter, was elevated in the brain of neurodegenerative disease (ND) patients. The excessive glutamate induces Ca2+ influx and reactive oxygen species (ROS) production which exacerbates mitochondrial function, leading to mitophagy aberration, and hyperactivates Cdk5/p35/p25 signaling leading to neurotoxicity in ND. Stigmasterol, a phytosterol, has been reported for its neuroprotective effects; however, the underlying mechanism of stigmasterol on restoring glutamate-induced neurotoxicity is not fully investigated. PURPOSE: We investigated the effect of stigmasterol, a compound isolated from Azadirachta indica (AI) flowers, on ameliorating glutamate-induced neuronal apoptosis in the HT-22 cells. STUDY DESIGN: To further understand the underlying molecular mechanisms of stigmasterol, we investigated the effect of stigmasterol on Cdk5 expression, which was aberrantly expressed in glutamate-treated cells. Cell viability, Western blot analysis, and immunofluorescence are employed. RESULTS: Stigmasterol significantly inhibited glutamate-induced neuronal cell death via attenuating ROS production, recovering mitochondrial membrane depolarization, and ameliorating mitophagy aberration by decreasing mitochondria/lysosome fusion and the ratio of LC3-II/LC3-I. In addition, stigmasterol treatment downregulated glutamate-induced Cdk5, p35, and p25 expression via enhancement of Cdk5 degradation and Akt phosphorylation. Although stigmasterol demonstrated neuroprotective effects on inhibiting glutamate-induced neurotoxicity, the efficiency of stigmasterol is limited due to its poor water solubility. We conjugated stigmasterol to soluble soybean polysaccharides with chitosan nanoparticles to overcome the limitations. We found that the encapsulated stigmasterol increased water solubility and enhanced the protective effect on attenuating the Cdk5/p35/p25 signaling pathway compared with free stigmasterol. CONCLUSION: Our findings illustrate the neuroprotective effect and the improved utility of stigmasterol in inhibiting glutamate-induced neurotoxicity.


Asunto(s)
Azadirachta , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Regulación hacia Abajo , Estigmasterol/farmacología , Estigmasterol/metabolismo , Ácido Glutámico/toxicidad , Ácido Glutámico/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/farmacología , Especies Reactivas de Oxígeno/metabolismo , Neuronas , Transducción de Señal , Fosforilación , Proteínas tau/metabolismo , Flores/metabolismo , Agua
12.
Phytomedicine ; 114: 154745, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36931096

RESUMEN

BACKGROUND: Osteoporosis is a highly prevalent bone disease occurred commonly in astronauts and postmenopausal women due to mechanical unloading and estrogen deficiency, respectively. At present, there are some traditional Chinese medicine compounds for preventing and treating osteoporosis induced by simulated microgravity, but the detailed components of the traditional Chinese medicines still need to be confirmed and osteoporosis is still untreatable due to a lack of effective small-molecule natural medicine. PURPOSE: To explore the role of cyclin-dependent kinase 12 (CDK12) in osteoporosis induced by simulated microgravity and the therapeutic effect of CDK12-targeted Ellagic Acid (EA) on osteoporosis. METHODS: Our previous study has suggested that CDK12 as a potential target for treating and preventing osteoporosis. In this study, the role of CDK12 in osteoblasts and mice bone tissues was further studied under simulated microgravity. And by targeting CDK12, natural small-molecule product EA was screened out based on a large scale through the weighted set similarity (WES) method and the therapeutic effects of EA on osteoporosis was investigated in hindlimb-unloaded (HU) mouse model and ovariectomized (OVX) model. RESULTS: The results demonstrated that simulated microgravity inhibited bone formation and up-regulated the expression of CDK12. Furthermore, CDK12-siRNA or THZ531 (an inhibitor of CDK 12) promoted osteoblast differentiation, while the overexpression of CDK12 inhibited osteoblasts differentiation. And we further proved that CDK12-targeted EA showed a rescue effect on osteoblast differentiation inhibition caused by simulated microgravity. EA (50 mg·kg-1·day-1) daily intragastric administration alleviated the symptoms of osteoporosis and accompanied with the improvement of trabecular bone and cortical bone parameters with significantly overexpression of CDK12. CONCLUSION: EA efficiently improves osteoporosis by targeting CDK12, which is a suppresser of osteoblast differentiation and a novel therapeutic target for treating osteoporosis.


Asunto(s)
Osteogénesis , Osteoporosis , Ratones , Femenino , Animales , Ácido Elágico/farmacología , Osteoporosis/metabolismo , Osteoblastos/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/farmacología , Miembro Posterior , Diferenciación Celular
13.
Int J Oncol ; 62(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36929198

RESUMEN

Lung cancer is the leading cause of cancer­related mortality worldwide. Non­small cell lung cancer (NSCLC) is the most common pathological subtype of lung cancer and is associated with low 5­year overall survival rates. Therefore, novel and effective chemotherapeutic drugs are urgently required for improving the survival outcomes of patients with lung cancer. Cyclovirobuxine D (CVB­D) is a natural steroidal alkaloid, used for the treatment of cardiovascular diseases in Traditional Chinese Medicine. Several studies have also demonstrated the antitumor effects of CVB­D. Therefore, in the present study, the therapeutic effects of CVB­D in lung cancer and the underlying mechanisms were investigated using the in vivo xenograft model of NSCLC in nude mice and in vitro experiments with the NSCLC cell lines. Bioinformatics analyses of RNA­sequencing data, and cell­based functional assays demonstrated that CVB­D treatment significantly inhibited in vitro and in vivo NSCLC cell proliferation, survival, invasion, migration, angiogenesis, epithelial­to­mesenchymal transition and G2/M phase cell cycle. CVB­D exerted its antitumor effects by inhibiting the KIF11­CDK1­CDC25C­cyclinB1 G2/M phase transition regulatory oncogenic network and the NF­κB/JNK signaling pathway. CVB­D treatment significantly reduced the sizes and weights and malignancy of xenograft NSCLC tumors in the nude mice. In conclusion, the present study demonstrated that CVB­D inhibited the growth and progression of NSCLC cells by inhibiting the KIF11­CDK1­CDC25C­CyclinB1 G2/M phase transition regulatory network and the NF­κB/JNK signaling pathway. Therefore, CVB­D is a promising drug for the treatment of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Puntos de Control del Ciclo Celular , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Fosfatasas cdc25/metabolismo , División Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Cinesinas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Desnudos , FN-kappa B/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
14.
J Ethnopharmacol ; 307: 116259, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36781055

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hypericum perforatum L. (genus Hypericum, family Hypericaceae) is a flowering plant native to Europe, North Africa and Asia, which can be used in the treatment of psychiatric disorder, cardiothoracic depression and diabetes. Crataegus pinnatifida Bunge (genus Crataegus pinnatifida Bunge, family Rosaceae) was another traditional Chinese medicine for treating hyperlipidemia. Hyperoside (Hype), a major flavonoid glycoside component of Hypericum perforatum L. and Crataegus pinnatifida Bunge, possesses multiple physiological activities, such as anti-inflammatory and antioxidant effects. However, the role of Hype on obesity and related metabolic diseases still needs to be further investigated. AIM OF THE STUDY: We explored the effect of Hype on high-fat diet (HFD)-induced obesity and its metabolic regulation on white fat tissues. MATERIALS AND METHODS: In vivo four-week-old male C57BL/6J mice were randomly assigned to vehicle (0.5% methycellulose) and Hype (80 mg/kg/day by gavage) group under a normal chow diet (NCD) or HFD for 8 weeks. In vitro, 3T3-L1 preadipocyte cell line and primary stromal vascular fraction (SVF) cells from inguinal white adipose tissue (iWAT) of mice were used to investigate the molecular mechanisms of Hype regulation on adipocyte energy metabolism. RESULTS: Hype treatment in vivo promotes UCP1-dependent white to beige fat transition, increases glucose and lipid metabolism, and resists HFD-induced obesity. Meanwhile, Hype induces lipophagy, a specific autophagy that facilitates the breakdown of lipid droplets, and blocking autophagy partially reduces UCP1 expression. Mechanistically, Hype inhibited CDK6, leading to the increased nuclear translocation of TFEB, while overexpression of CDK6 partially reversed the enhancement of UCP1 by Hype. CONCLUSIONS: Hype protects mice from HFD-induced obesity by increasing energy expenditure of white fat tissue via CDK6-TFEB pathway.


Asunto(s)
Dieta Alta en Grasa , Obesidad , Animales , Ratones , Tejido Adiposo Blanco , Autofagia , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Termogénesis
15.
Artículo en Inglés | MEDLINE | ID: mdl-36767928

RESUMEN

BACKGROUND: Newer personalized medicines including targeted therapies such as PARP inhibitors and CDK 4/6 inhibitors have been shown to improve the survival of breast and gynaecological cancer patients. However, efficacy outcomes may be ham5pered by treatment discontinuation due to targeted therapy-related adverse drug reactions or resistance. Studies have suggested that add-on mistletoe (Viscum album L., VA) improves the quality of life and ameliorates the cytotoxic side effects of standard oncological therapy in cancer patients. The primary objective of this real-world data study was to determine the safety profile of targeted therapy in combination with add-on Helixor® VA therapy compared to targeted therapy alone in breast and gynecological cancer patients. METHODS: The present study is a real-world data observational cohort study utilizing demographic and treatment data from the accredited national Network Oncology (NO) registry. The study has received ethics approval. The safety profile of targeted therapies with or without Helixor® VA therapy and safety-associated variables were evaluated by univariate and adjusted multivariable regression analyses. RESULTS: All stages of breast and gynecological cancer patients (n = 242) were on average 54.5 ± 14.2 years old. One hundred and sixty patients (66.1%) were in the control (CTRL, targeted therapy) and 82 patients (33.9%) were in the combinational (COMB, targeted plus Helixor® VA therapy) group. The addition of Helixor® VA did not hamper the safety profile (χ2 = 0.107, p-value = 0.99) of targeted therapy. Furthermore, no adverse events and a trend towards an improved targeted therapy adherence were observed in the COMB group. CONCLUSIONS: The present study is the first of its kind showing the applicability of Helixor® VA in combination with targeted therapies. The results indicate that add-on Helixor® VA does not negatively alter the safety profile of targeted therapies in breast and gynaecological cancer patients.


Asunto(s)
Neoplasias , Viscum album , Adulto , Anciano , Humanos , Persona de Mediana Edad , Neoplasias/inducido químicamente , Extractos Vegetales/farmacología , Calidad de Vida , Femenino
16.
BMC Cancer ; 23(1): 1, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36597025

RESUMEN

BACKGROUND: Despite the advancement in chemotherapeutic drugs for colon cancer treatment, it is still a life-threatening disease worldwide due to drug resistance. Therefore, an urgently needed to develop novel drugs for colon cancer therapies. AGA is a combination of traditional Chinese medicine Antler's extract (A), Ganoderma lucidum (G), and Antrodia camphorata (A); it contains a lot of biomolecules like polysaccharides, fatty acids, and triterpenoids that are known to exerting anti-oxidative, anti-inflammatory, anti-microbial and anti-tumor activities in oral cancer. In this study, we investigate AGA anti-proliferative, anti-metastatic and apoptotic activity to explore its anti-cancer activity against colon cancer cells and its underlying mechanism. METHOD: Here, in-vitro studies were performed to determine the antiproliferative activity of AGA through MTT and colony formation assays. Wound healing and transwell migration assay were used to evaluate the metastasis. Flow cytometry and protein expression were used to investigate the involved molecular mechanism by evaluating the cell cycle and apoptosis. The in-vivo anti-cancerous activity of AGA was assessed by xenograft mice model of colon cancer cells. RESULTS: We found that AGA significantly inhibited the proliferative capacity and metastasis of colon cancer cells in-vitro. In addition, AGA induced cell cycle arrest in the sub-G1 phase through upregulating p21 and downregulating CDK2, CDK6 in SW620, and CDK4 in SW480 and HT29, respectively. Annexin-v assay indicated that colon cancer cells had entered early and late apoptosis after treatment with AGA. Furthermore, a mechanistic protein expressions study revealed that AGA in p53-dependent and independent regulated the apoptosis of colon cancer by downregulating the p53 protein expression in SW620 and SW480 cells but upregulating in a dose-dependent manner in HT29 cells and increasing the expression of Bax and caspase-9 to inhibit the colon cancer cells. In vivo study, we found that AGA significantly reduced the xenograft tumor growth in NOD/SCID mice with no adverse effect on the kidney and liver. CONCLUSION: Collectively, AGA has the potential to inhibit colon cancer through inhibiting proliferation, migration, and cell cycle kinase by upregulating p21 protein expression and promoting the apoptotic protein in a p53-dependent and independent manner.


Asunto(s)
Neoplasias del Colon , Proteína p53 Supresora de Tumor , Humanos , Animales , Ratones , Puntos de Control de la Fase G1 del Ciclo Celular , Proteína p53 Supresora de Tumor/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Apoptosis , Ciclo Celular , Proliferación Celular , Línea Celular Tumoral
17.
Am J Chin Med ; 51(1): 189-203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36599649

RESUMEN

Baicalin was reported to facilitate the apoptosis of colon cells and inhibit tumor growth in vivo. This study aimed to explore the specific mechanism and function of baicalin on colon cells. Relative mRNA levels were tested via qPCR. Cell proliferation, viability, and cell cycle phases were evaluated using MTT, colony formation, and flow cytometry assays, respectively. The interaction between miR-139-3p and cyclin-dependent kinase 16 (CDK16) was measured via a dual-luciferase reporter assay. Immunohistochemistry was used to count the positivity cells in tumor tissues collected from treated xenografted tumor mice. The results showed that baicalin increased miR-139-3p expression while also decreasing CDK16 levels, blocking the cell cycle, and inhibiting cell proliferation in colon cancer cells. miR-139-3p silencing or CDK16 overexpression abolished the inhibitory effects of baicalin on colon cancer proliferation. miR-139-3p directly targeted and interacted with CDK16 at the cellular level. The protective functions of miR-139-3p knockdown on tumor cells were abrogated by silencing CDK16. The combination of baicalin treatment and CDK16 knockdown further inhibited tumor growth of xenografted tumor mice compared with the groups injected with only sh-CDK16 or baicalin in vivo. In conclusion, baicalin inhibited colon cancer growth by modulating the miR-139-3p/CDK16 axis.


Asunto(s)
Neoplasias del Colon , MicroARNs , Animales , Ratones , Regulación hacia Arriba , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Ciclo Celular , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica
18.
Acupunct Med ; 41(1): 27-37, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35475376

RESUMEN

BACKGROUND: Premature ovarian failure (POF) is a type of pathological aging, which seriously interferes with the fertility of affected women. Electroacupuncture (EA) may have a beneficial effect; however, its mechanism of action is unknown. The purpose of this study was to determine the effect of EA on ovarian function in ovarian granulosa cells (OGCs) in a cyclophosphamide (CTX)-induced mouse model of POF. METHODS: Mice were divided into three groups: wild type (WT) group, CTX group and CTX + EA group. EA was administered under isoflurane anesthesia at CV4, ST36 and SP6 for 30 min every 2 days, 2-3 times per week for a total of 4 weeks. Effects of EA on ovarian weight and level of estrogen were examined. The mRNA and protein expression levels of cell cycle-associated proteins were detected and mRNA modifications were analyzed. RESULTS: EA significantly increased ovarian weight and reduced the proportion of atretic follicles in mice with CTX-induced POF (p < 0.05). EA increased the level of estrogen in the peripheral blood of mice and inhibited the modification of total mRNA N4-acetylcytidine (ac4C). A significant increase in the expression of P16 and N-acetyltransferase 10 (NAT10) and a significant decrease in the expression of Cyclin D (CCND1) and cyclin-dependent kinase 6 (CDK6) were observed in the OGCs of POF mice (p<0.05). After EA, P16 and NAT10 expression was decreased, and CCND1 and CDK6 expression was increased. Finally, EA reduced the ac4C modification of P16 mRNA-specific sites in the OGCs of POF mice. CONCLUSION: This study demonstrated that EA promoted the repair of the ovarian microenvironment by inhibiting the ac4C modification of P16 mRNA to decrease its stability and expression intensity, and by altering the activity of the P16/CDK6/CCND1 axis in OGCs.


Asunto(s)
Electroacupuntura , Insuficiencia Ovárica Primaria , Humanos , Femenino , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/terapia , ARN Mensajero/genética , ARN Mensajero/efectos adversos , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Estrógenos/efectos adversos
19.
J Therm Biol ; 110: 103375, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36462887

RESUMEN

Lysine, as the first limiting amino acid in dairy cows, has been shown to play an important role in milk synthesis and cell proliferation. However, the underlying mechanism remains unclear. In this study, we isolated bovine primary mammary epithelial cells (BMECs) and studied the mechanism in which lysine promotes cell proliferation and ß-casein synthesis through overexpression and knockdown of CDK1 and supplements BCH, U0126, and rapamycin in BMECs. Results show that 0.7 mM lysine can significantly promote cell proliferation and the synthesis of ß-casein in BMECs. In addition, lysine activates the ERK signaling pathway to promote the expression of CDK1. Further studies have shown that CDK1 can promote cell proliferation and the synthesis of ß-casein through the mTOR signaling pathway in BMECs. Lastly, lysine can promote cell proliferation and the synthesis of ß-casein through SLC6A14 in BMECs. The above results indicate that lysine promotes cell proliferation and the synthesis of ß-casein through the SLC6A14-ERK-CDK1-mTOR signaling pathway in BMECs.


Asunto(s)
Caseínas , Sistema de Señalización de MAP Quinasas , Femenino , Bovinos , Animales , Lisina , Transducción de Señal , Células Epiteliales , Proliferación Celular , Serina-Treonina Quinasas TOR
20.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362115

RESUMEN

Prostate cancer (PCa) is one of the most commonly diagnosed types of malignancy and is the second leading cause of cancer-related death in men in developed countries. Cyclin dependent kinase 2 associate protein 1(CDK2AP1) is an epigenetic and cell cycle regulator gene which has been downregulated in several malignancies, but its involvement in PCa has not yet been investigated in a clinical setting. We assessed the prognostic value of CDK2AP1 expression in a cohort of men diagnosed with PCa (n = 275) treated non-surgically by transurethral resection of the prostate (TURP) and studied the relationship between CDK2AP1 expression to various PCa molecular subtypes (ERG, PTEN, p53 and AR) and evaluated the association with clinical outcome. Further, we used bioinformatic tools to analyze the available TCGA PRAD transcriptomic data to explore the underlying mechanism. Our data confirmed increased expression of CDK2AP1 with higher Gleason Grade Group (GG) and metastatic PCa (p <0.0001). High CDK2AP1 expression was associated with worse overall survival (OS) (HR: 1.62, CI: 1.19−2.21, p = 0.002) and cause-specific survival (CSS) (HR: 2.012, CI 1.29−3.13, p = 0.002) using univariate analysis. When compared to each sub-molecular type. High CDK2AP1/PTEN-loss, abnormal AR or p53 expression showed even worse association to poorer OS and CCS and remained significant when adjusted for GG. Our data indicates that CDK2AP1 directly binds to p53 using the Co-Immunoprecipitation (Co-IP) technique, which was validated using molecular docking tools. This suggests that these two proteins have a significant association through several binding features and correlates with our observed clinical data. In conclusion, our results indicated that the CDK2AP1 overexpression is associate with worse OS and CSS when combined with certain PCa molecular subtypes; interaction between p53 stands out as the most prominent candidate which directly interacts with CDK2AP1.


Asunto(s)
Neoplasias de la Próstata , Resección Transuretral de la Próstata , Humanos , Masculino , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Simulación del Acoplamiento Molecular , Neoplasias de la Próstata/metabolismo , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA