Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plant Cell Rep ; 43(4): 113, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573519

RESUMEN

KEY MESSAGE: Selenium nanoparticles reduce cadmium absorption in tomato roots, mitigating heavy metal effects. SeNPs can efficiently help to enhance growth, yield, and biomolecule markers in cadmium-stressed tomato plants. In the present study, the effects of selenium nanoparticles (SeNPs) were investigated on the tomato plants grown in cadmium-contaminated soil. Nanoparticles were synthesized using water extract of Nigella sativa and were characterized for their size and shape. Two application methods (foliar spray and soil drench) with nanoparticle concentrations of 0, 100, and 300 mg/L were used to observe their effects on cadmium-stressed plants. Growth, yield, biochemical, and stress parameters were studied. Results showed that SeNPs positively affected plant growth, mitigating the negative effects of cadmium stress. Shoot length (SL), root length (RL), number of branches (NB), number of leaves per plant (NL), and leaf area (LA) were significantly reduced by cadmium stress but enhanced by 45, 51, 506, 208, and 82%, respectively, by soil drench treatment of SeNPs. Similarly, SeNPs increased the fruit yield (> 100%) and fruit weight (> 100%), and decreased the days to fruit initiation in tomato plants. Pigments were also positively affected by the SeNPs, particularly in foliar treatment. Lycopene content was also enhanced by the addition of NPs (75%). Furthermore, the addition of SeNPs improved the ascorbic acid, protein, phenolic, flavonoid, and proline contents of the tomato plants under cadmium stress, whereas stress enzymes also showed enhanced activities under cadmium stress. It is concluded from the present study that the addition of selenium nanoparticles enhanced the growth and yield of Cd-stressed plants by reducing the absorption of cadmium and increasing the stress management of plants.


Asunto(s)
Nanopartículas , Selenio , Solanum lycopersicum , Selenio/farmacología , Cadmio/toxicidad , Suelo
2.
Plant Physiol Biochem ; 210: 108634, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642440

RESUMEN

Zhe-Maidong, a cultivar of Ophiopogon japonicus is a prominent traditional herbal medicine rich in saponins. This study explored the mechanism of saponin biosynthesis and its role in alleviating Cd-induced oxidative damage in the Zhe-Maidong cultivar using three experimental groups undergoing Cd stress. In the Cd-contaminated soil treatment, total saponins were 1.68 times higher than those in the control. The saponin content in the Cd-2 and Cd-3 treatments was approximately twice as high as that in the Cd-CK treatment. These findings revealed that Cd stress leads to total saponin accumulation. Metabolomic analysis identified the accumulated saponins, primarily several monoterpenoids, diterpenoids, and triterpenoids. The increased saponins exhibited an antioxidant ability to prevent the accumulation of Cd-induced reactive oxygen species (ROS). Subsequent saponin application experiments provided strong evidence that saponin played a crucial role in promoting superoxide dismutase (SOD) activity and reducing ROS accumulation. Transcriptome analysis revealed vital genes for saponin synthesis under Cd stress, including SE, two SSs, and six CYP450s, positively correlated with differentially expressed metabolite (DEM) levels in the saponin metabolic pathway. Additionally, the TF-gene regulatory network demonstrated that bHLH1, bHLH3, mTERF, and AUX/IAA transcript factors are crucial regulators of hub genes involved in saponin synthesis. These findings significantly contribute to our understanding of the regulatory network of saponin synthesis and its role in reducing oxidative damage in O. japonicum when exposed to Cd stress.


Asunto(s)
Cadmio , Metaboloma , Ophiopogon , Estrés Oxidativo , Saponinas , Transcriptoma , Saponinas/metabolismo , Saponinas/farmacología , Cadmio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Metaboloma/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Ophiopogon/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Antioxidantes/metabolismo
3.
J Hazard Mater ; 470: 134245, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603910

RESUMEN

This study delved into the physiological and molecular mechanisms underlying the mitigation of cadmium (Cd) stress in the model medicinal plant Salvia miltiorrhiza through the application of ZnO quantum dots (ZnO QDs, 3.84 nm). A pot experiment was conducted, wherein S. miltiorrhiza was subjected to Cd stress for six weeks with foliar application of 100 mg/L ZnO QDs. Physiological analyses demonstrated that compared to Cd stress alone, ZnO QDs improved biomass, reduced Cd accumulation, increased the content of photosynthetic pigments (chlorophyll and carotenoids), and enhanced the levels of essential nutrient elements (Ca, Mn, and Cu) under Cd stress. Furthermore, ZnO QDs significantly lowered Cd-induced reactive oxygen species (ROS) content, including H2O2, O2-, and MDA, while enhancing the activity of antioxidant enzymes (SOD, POD, APX, and GSH-PX). Additionally, ZnO QDs promoted the biosynthesis of primary and secondary metabolites, such as total protein, soluble sugars, terpenoids, and phenols, thereby mitigating Cd stress in S. miltiorrhiza. At the molecular level, ZnO QDs were found to activate the expression of stress signal transduction-related genes, subsequently regulating the expression of downstream target genes associated with metal transport, cell wall synthesis, and secondary metabolite synthesis via transcription factors. This activation mechanism contributed to enhancing Cd tolerance in S. miltiorrhiza. In summary, these findings shed light on the mechanisms underlying the mitigation of Cd stress by ZnO QDs, offering a potential nanomaterial-based strategy for enhancing Cd tolerance in medicinal plants.


Asunto(s)
Cadmio , Puntos Cuánticos , Especies Reactivas de Oxígeno , Salvia miltiorrhiza , Óxido de Zinc , Puntos Cuánticos/química , Óxido de Zinc/química , Óxido de Zinc/toxicidad , Salvia miltiorrhiza/efectos de los fármacos , Salvia miltiorrhiza/metabolismo , Cadmio/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
4.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475037

RESUMEN

To reveal the impact of cadmium stress on the physiological mechanism of lettuce, simultaneous determination and correlation analyses of chlorophyll content and photosynthetic function were conducted using lettuce seedlings as the research subject. The changes in relative chlorophyll content, rapid chlorophyll fluorescence induction kinetics curve, and related chlorophyll fluorescence parameters of lettuce seedling leaves under cadmium stress were detected and analyzed. Furthermore, a model for estimating relative chlorophyll content was established. The results showed that cadmium stress at 1 mg/kg and 5 mg/kg had a promoting effect on the relative chlorophyll content, while cadmium stress at 10 mg/kg and 20 mg/kg had an inhibitory effect on the relative chlorophyll content. Moreover, with the extension of time, the inhibitory effect became more pronounced. Cadmium stress affects both the donor and acceptor sides of photosystem II in lettuce seedling leaves, damaging the electron transfer chain and reducing energy transfer in the photosynthetic system. It also inhibits water photolysis and decreases electron transfer efficiency, leading to a decline in photosynthesis. However, lettuce seedling leaves can mitigate photosystem II damage caused by cadmium stress through increased thermal dissipation. The model established based on the energy captured by a reaction center for electron transfer can effectively estimate the relative chlorophyll content of leaves. This study demonstrates that chlorophyll fluorescence techniques have great potential in elucidating the physiological mechanism of cadmium stress in lettuce, as well as in achieving synchronized determination and correlation analyses of chlorophyll content and photosynthetic function.


Asunto(s)
Cadmio , Lactuca , Complejo de Proteína del Fotosistema II/metabolismo , Fluorescencia , Fotosíntesis , Clorofila , Plantones , Hojas de la Planta/metabolismo
5.
J Agric Food Chem ; 72(3): 1473-1486, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38214288

RESUMEN

Accumulation of cadmium (Cd) ions in soil is an increasingly acute ecological problem in agriculture production. Selenium nanoparticles (SeNPs) can mediate Cd tolerance in plants; however, the underlying mechanisms remain unclear. Herein, we show that the foliar application of SeNPs improved the adaptive capacity of tomato plants to decrease Cd-induced damage. SeNPs induced more Cd in roots but not in shoots despite greater accumulation of selenium and sulfur in both tissues and high selenate influx. Additionally, SeNPs significantly increased thiol compounds, including glutathione, cysteine, and phytochelatins, contributing to enhanced Cd detoxification. Importantly, SeNPs induced the expression of sulfate transporters 1:3, S-adenosylmethionine 1 and polyamine transporter 3. Then, experiments with mutants of these genes showed that SeNP-reduced Cd stress largely relies on the levels and shoot-to-root transport of selenium/sulfur and polyamines. These findings highlight the potential of SeNPs to improve crop production and phytoremediation in heavy metal-contaminated soils.


Asunto(s)
Nanopartículas , Selenio , Solanum lycopersicum , Cadmio/metabolismo , Selenio/metabolismo , Ácido Selenioso/metabolismo , Sulfatos , Plantas/metabolismo , Azufre/metabolismo
6.
Environ Sci Pollut Res Int ; 31(8): 11898-11911, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225492

RESUMEN

Rice is the main food crops with the higher capacity for cadmium (Cd) uptake, necessitating the urgent need for remediation measures to address Cd in paddy soil. Reasonable agronomic methods are convenient and favorable for fixing the issue. In this study, a pot experiment was employed to evaluate the effects of two foliar (NaH2PO4, SDP; KH2PO4, PDP) and two solid phosphate fertilizers (double-superphosphate, DSP; calcium-magnesium phosphate, CMP) on uptake and remobilization of Cd in rice plants under the low-P and rich-Cd soil. The results revealed that these four phosphorus fertilizer significantly down-regulated the relative expression of OsNRAMP5 involved in Cd absorption, while up-regulated OsPCS1 expression and increased distribution of Cd into the cell wall in roots. Furthermore, phosphorus fertilizer resulted in a significant decrease in the relative expression of OsLCT1 in stems and OsLCD in leaves, decreased the transfer factor of Cd from shoots to grains, and ulterior reduced the Cd accumulation in three protein components of globulin, albumin, and glutelin, making the average Cd concentration of brown rice decreased by 82.96%. These results comprehensively indicate that in situations with similar soil backgrounds, the recommended application of solid CMP and foliar PDP can alleviate the toxicity of Cd by reducing its absorption and remobilization.


Asunto(s)
Oryza , Contaminantes del Suelo , Suelo , Fósforo/metabolismo , Cadmio/análisis , Fertilizantes/análisis , Oryza/metabolismo , Contaminantes del Suelo/análisis
7.
Front Plant Sci ; 14: 1263981, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810396

RESUMEN

Introduction: Ligusticum chuanxiong Hort. is a widely used medicinal plant, but its growth and quality can be negatively affected by contamination with the heavy metal cadmium (Cd). Despite the importance of understanding how L. chuanxiong responds to Cd stress, but little is currently known about the underlying mechanisms. Methods: To address this gap, we conducted physiological and transcriptomic analyses on L. chuanxiong plants treated with different concentrations of Cd2+ (0 mg·L-1, 5 mg·L-1, 10 mg·L-1, 20 mg·L-1, and 40 mg·L-1). Results: Our findings revealed that Cd stress inhibited biomass accumulation and root development while activating the antioxidant system in L. chuanxiong. Root tissues were the primary accumulation site for Cd in this plant species, with Cd being predominantly distributed in the soluble fraction and cell wall. Transcriptomic analysis demonstrated the downregulation of differential genes involved in photosynthetic pathways under Cd stress. Conversely, the plant hormone signaling pathway and the antioxidant system exhibited positive responses to Cd regulation. Additionally, the expression of differential genes related to cell wall modification was upregulated, indicating potential enhancements in the root cell wall's ability to sequester Cd. Several differential genes associated with metal transport proteins were also affected by Cd stress, with ATPases, MSR2, and HAM3 playing significant roles in Cd passage from the apoplast to the cell membrane. Furthermore, ABC transport proteins were found to be key players in the intravesicular compartmentalization and efflux of Cd. Discussion: In conclusion, our study provides preliminary insights into the mechanisms underlying Cd accumulation and tolerance in L. chuanxiong, leveraging both physiological and transcriptomic approaches. The decrease in photosynthetic capacity and the regulation of plant hormone levels appear to be major factors contributing to growth inhibition in response to Cd stress. Moreover, the upregulation of differential genes involved in cell wall modification suggests a potential mechanism for enhancing root cell wall capabilities in isolating and sequestering Cd. The involvement of specific metal transport proteins further highlights their importance in Cd movement within the plant.

8.
J Integr Plant Biol ; 65(10): 2262-2278, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37565550

RESUMEN

Cadmium (Cd) toxicity severely limits plant growth and development. Moreover, Cd accumulation in vegetables, fruits, and food crops poses health risks to animals and humans. Although the root cell wall has been implicated in Cd stress in plants, whether Cd binding by cell wall polysaccharides contributes to tolerance remains controversial, and the mechanism underlying transcriptional regulation of cell wall polysaccharide biosynthesis in response to Cd stress is unknown. Here, we functionally characterized an Arabidopsis thaliana NAC-type transcription factor, NAC102, revealing its role in Cd stress responses. Cd stress rapidly induced accumulation of NAC102.1, the major transcript encoding functional NAC102, especially in the root apex. Compared to wild type (WT) plants, a nac102 mutant exhibited enhanced Cd sensitivity, whereas NAC102.1-overexpressing plants displayed the opposite phenotype. Furthermore, NAC102 localizes to the nucleus, binds directly to the promoter of WALL-ASSOCIATED KINASE-LIKE PROTEIN11 (WAKL11), and induces transcription, thereby facilitating pectin degradation and decreasing Cd binding by pectin. Moreover, WAKL11 overexpression restored Cd tolerance in nac102 mutants to the WT levels, which was correlated with a lower pectin content and lower levels of pectin-bound Cd. Taken together, our work shows that the NAC102-WAKL11 module regulates cell wall pectin metabolism and Cd binding, thus conferring Cd tolerance in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pectinas/metabolismo , Pared Celular/metabolismo , Raíces de Plantas/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1483-1490, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005835

RESUMEN

In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.


Asunto(s)
Cadmio , Panax notoginseng , Cadmio/toxicidad , Cadmio/metabolismo , Antioxidantes/farmacología , Brasinoesteroides/farmacología , Clorofila/metabolismo , Raíces de Plantas/metabolismo , Estrés Fisiológico
10.
Front Plant Sci ; 13: 1078330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578338

RESUMEN

Introduction: Cadmium (Cd) is a toxic heavy metal that severely threatens safe food production. Zhe-Maidong, a well-known Chinese traditional herbal medicine, is susceptible to Cd stress. However, the characteristics of Cd transformation and migration, as well as the regulatory system for genes conferring Cd accumulation of Zhe-Maidong, remains an essential issue to be addressed. Methods: Zhe-Maidong seedling growth in Cd-contaminated and uncontaminated soil was conducted for 90 days. The Cd concentration was determined by inductively coupled plasma-mass spectrometry, and the Cd2+ fluorescence probe detected Cd distributions. The root transcriptome of Zhe-Maidong was then evaluated using various Cd stress hydroponic treatments designated Cd-0, Cd-M, and Cd-H. Results and discussion: The enrichment factor (EF) value in the root was four times that of the leaves, indicating that the root has a high ability to absorb and accumulate Cd. The Cd2+ were mainly distributed in the root hair and the epidermis in both roots and leaves, revealing that the epidermal cells of roots may collect Cd2+ and also have an outstanding role in Cd2+ uptake. A total of 50 DEGs involved in Cd translocation and accumulation were identified. Among these DEGs, ANN, ABCC2/4, HMA1- 5, and CCX gene expression were positively correlated with EF-root, EF-leaf, EF-total, Cd-leaf, Cd-root, and Cd-plant, indicating their role in Cd transport and accumulation under Cd-stress. These data could be helpful in uncovering the Cd accumulation characteristics in Zhe-Maidong, as well as provide a bioinformatic foundation for investigations on finding gene functions and the screening of candidate genes related to Cd accumulation.

11.
Physiol Mol Biol Plants ; 28(11-12): 2069-2083, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36573151

RESUMEN

Cadmium (Cd) toxicity in leaves decreases their photosynthetic efficiency by degrading photosynthetic pigments, reducing the activity of gas exchange parameters and photosystem II (PSII), and producing reactive oxygen species. Although acetone O-(4-chlorophenylsulfonyl) oxime (AO) alleviates stress due to heavy metals in plants, its effects on the photosynthetic apparatus and redox balance under Cd stress are not clear. Herein, the role of AO in modulating the relationship between the antioxidant defense system and photosynthetic performance including chlorophyll fluorescence and gas exchange in mitigating the stress damage caused by Cd in maize seedlings was investigated. Three-week-old maize seedlings were pre-treated with AO (0.66 mM) and exposed to 100 µM Cd stress. Our findings indicated that AO application increased Cd accumulation, thiobarbituric acid-reactive substances (TBARS), photosynthetic rate, hydrogen peroxide (H2O2), total chlorophyll and carotenoid, transpiration, stomatal conductance, maximum photochemical efficiency of PSII (Fv/Fm), effective quantum yield of PSII (ΦPSII), intercellular CO2 concentration, photochemical quenching (qP), superoxide dismutase, electron transport rate, proline, ascorbate peroxidase, catalase, guaiacol peroxidase, 4-hydroxybenzoic acid, catechol, and cinnamic acid in maize seedling under Cd stress. Conversely, AO significantly reduced oxidative damage levels (H2O2, TBARS). It was concluded that exogenous AO can overcome Cd-mediated oxidative damage and hence protect the photosynthetic machinery by providing stress tolerance and regulating the antioxidant defense mechanism, which includes proline, phenolic compounds, and antioxidant enzyme activities. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01258-5.

12.
Front Plant Sci ; 13: 1022935, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275509

RESUMEN

Cadmium (Cd) toxicity not only affects plant growth and development, but also affects human health through the food chain. Several studies have demonstrated that Selenium (Se) alleviates Cd stress in plants; however, whether and how Se-alleviated Cd stress by regulating the structure of soil microbial community remain largely unclear. Here, we investigated the alleviating effects of exogenous applied Se (foliar spraying or root application) on plant growth under Cd stress in perilla (Perilla frutescens L.) by measuring the biomass, photosynthetic fluorescence parameters, root cell wall components and soil microbial community structure and diversity. Under Cd stress, perilla seedlings supplemented with Se increased chlorophyll content. Foliar spraying Se increased the levels of relative chlorophyll content (ΦII), photosynthetic system II (ΦPSII) and electron transport rate (ETR) in perilla leaves under Cd stress; while, root application of Se increased the levels of photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), water use efficiency (WUE) and stomatal limitation value (Ls) under Cd stress. Compared with Cd toxicity alone, root application of Se increased the contents of hemicellulosic 1 and hemicellulosic 2 in the cell wall of perilla roots. Cd toxicity or root application of Se did not affect soil bacterial community diversity. Root application of Se increased the relative abundance of Proteobacteria, Bacteroidetes, Fibrobacteres, Sphingomonas and Nitrosospira in Cd-contaminated soil, and thereby improving soil microbial community structure, finally promoting the growth of perilla seedlings.

13.
Environ Sci Pollut Res Int ; 29(46): 70508-70519, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35585458

RESUMEN

Erigeron breviscapus (Vant.) Hand.-Mazz. is an important medicinal plant; however, its quality is severely diminished by cadmium (Cd) pollution. Sulfur fertilisation can improve the production and application of E. breviscapus. This study examined Cd stress alleviation in the soil-plant system and determined the plant growth response after the application of sulfur fertiliser. The soil Cd concentration used in the treatments was 100 g·kg-1, and the sulfur fertiliser application rates were 0.1, 0.2, and 0.3 g·kg-1. Using pot experiments, we explored the impacts of high, medium, and low amounts of sulfur fertiliser on Cd accumulation and the quality and activity of E. breviscapus. The results showed that the application of sulfur fertiliser promoted Cd transformation to residual Cd under oxidation conditions, reducing Cd accumulation in E. breviscapus. Throughout the growth period, the application of sulfur fertiliser increased the soluble protein content and antioxidant enzyme activity, which alleviated Cd toxicity. The net photosynthetic rate, transpiration rate, intercellular CO2 concentration, chlorophyll level, and leaf width increased significantly. The biomass content of E. breviscapus also increased. Sulfur fertiliser improves the quality of herbaceous medicinal plants by reducing Cd accumulation and increasing scutellarin, chlorogenic, isochlorogenic acid B, and isochlorogenic acid C contents. A reasonable application of sulfur fertiliser is essential for improving E. breviscapus quality. This study provides a new method to reduce the ecological risk of planting herbaceous medicinal plants in Cd-contaminated soil.


Asunto(s)
Asteraceae , Erigeron , Plantas Medicinales , Contaminantes del Suelo , Antioxidantes/metabolismo , Asteraceae/metabolismo , Disponibilidad Biológica , Cadmio/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Erigeron/metabolismo , Fertilizantes , Plantas Medicinales/metabolismo , Suelo , Contaminantes del Suelo/metabolismo , Azufre/metabolismo
14.
Environ Sci Pollut Res Int ; 29(43): 64999-65011, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35482243

RESUMEN

Different maize varieties respond differentially to cadmium (Cd) stress. However, the physiological mechanisms that determine the response are not well defined. Antioxidant systems and sucrose metabolism help plants to cope with abiotic stresses, including Cd stress. The relationship of these two systems in the response to Cd stress is unclear. Seed is sensitive to Cd stress during germination. In this study, we investigated changes in the antioxidant system, sucrose metabolism, and abscisic acid and gibberellin concentrations in two maize varieties with low (FY9) or high (SY33) sensitivities to Cd under exposure to CdCl2 (20 mg L-1) at different stages of germination (3, 6, and 9 days).The seed germination and seedling growth were inhibited under Cd stress. The superoxide, malondialdehyde, and proline concentrations, and the superoxide dismutase, peroxidase, catalase, and lipoxygenase activities increased compared with those of the control (CK; without Cd). The expression levels of three genes (ZmOPR2, ZmOPR5, and ZmPP2C6) responsive to oxidative stress increased differentially in the two varieties under Cd stress. The activity of the antioxidant system and the transcript levels of oxidative stress-responsive genes were higher in the Cd-tolerant variety, FY9, than in the sensitive variety, SY33. Sucrose metabolism was increased under Cd stress compared with that of the CK and was more active in the Cd-sensitive variety, SY33. These results suggest that the antioxidant system is the first response to Cd stress in maize, and that sucrose metabolism is cooperative and complementary under exposure to Cd.


Asunto(s)
Antioxidantes , Cadmio , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Cadmio/metabolismo , Catalasa/metabolismo , Giberelinas/metabolismo , Lipooxigenasas/metabolismo , Malondialdehído/metabolismo , Peroxidasas/metabolismo , Prolina/metabolismo , Sacarosa , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Zea mays
15.
Plant Physiol Biochem ; 167: 723-737, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34500197

RESUMEN

It was aimed to assess that up to what extent endogenous nitric oxide (NO) and its sources are involved in glutathione (GSH)-mediated tolerance of maize plants to cadmium (Cd) stress. The Cd-stressed maize plants were sprayed with or without GSH (1.0 mM) once every week for two weeks. Before initiating the stress treatment, the Cd-stressed plants sprayed with GSH were supplied with or without 0.1 mM, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a NO scavenger) for two weeks or with 0.1 mM sodium tungstate (ST; a nitrate reductase inhibitor), or 0.1 mM NG-nitro-L-arginine methyl ester hydrochloride (L-NAME). Cadmium stress suppressed the activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glyoxalase II, while increased leaf NO, Cadmium content, proline, oxidative stress, the activities of glutathione reductase, ascorbate peroxidase, the key enzymes of oxidative defense system, glyoxalase I, NR and NOS. GSH reduced oxidative stress and tissue Cd2+ content, but it improved growth, altered water relations, and additionally increased proline levels, activities of the AsA-GSH cycle, key enzymatic antioxidants, glyoxalase I and II, NR and NOS as well as NO content. The cPTIO and ST supplementation abolished the beneficial effects of GSH by reducing the activities of NO and NR. However, L-NAME did not retreat the favorable effects of GSH, although it reduced the NOS activity without eliminating NO content, suggesting that NR might be a prospective source of NO generated by GSH in Cd-stressed plants, which in turn accelerated the activities of antioxidant enzymes.


Asunto(s)
Cadmio , Glutatión , Antioxidantes , Ácido Ascórbico , Cadmio/toxicidad , Glutatión/metabolismo , Óxido Nítrico , Estrés Oxidativo , Estudios Prospectivos , Zea mays/metabolismo
16.
Ecotoxicol Environ Saf ; 223: 112593, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34358929

RESUMEN

The study was done to elucidate the molecular mechanisms underlying the steady maintenance of the green microalga Dunaliella salina GY-H13 in successive subcultures in F/2 medium supplemented with the high cadmium (Cd) concentration (5 mg L-1) for 3 months or 84 days using physiological, metabolomic, and transcriptomic methodologies. Physiological analysis indicated that Cd suppressed growth rate, photosynthetic efficiency, and pigment contents and promoted Cd accumulation, reactive oxygen species (ROS) generation and lipid peroxidation. UPLC-MS/MS-based metabolic analysis identified the top most upregulated and downregulated metabolites, the 5'-dehydroxyadenosine and thiamine acetic acid that were associated with the formation and removal of H2O2. RNA-seq-based transcriptomic analysis showed the overrepresentation of low-CO2-inducible genes in the most downregulated gene set. Metabolomic and transcriptomic analyses further showed that the decreased GSSG/GSH-based redox potential, increased oxidative-phosphorylation gene expression, and reduced activity of TCA cycle in cells after extended exposure to Cd. Taken together, our results imply that cellular defense to Cd in D. salina is achieved by upregulation of ROS-scavenging activities including depletion of thiamine acetic acid. Dynamic redox homeostasis is maintained in cells with extended exposure to Cd by production of both oxidants and antioxidants through multiple pathways.


Asunto(s)
Cadmio , Transcriptoma , Antioxidantes , Cadmio/toxicidad , Cromatografía Liquida , Homeostasis , Peróxido de Hidrógeno , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Espectrometría de Masas en Tándem
17.
Biomolecules ; 11(3)2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33801090

RESUMEN

For maize, the potential preventive role of foliar spraying with an extract derived from maize grain (MEg, 2%), silymarin (Sm, 0.5 mM), or silymarin-enriched MEg (MEg-Sm) in attenuating the stress effects of cadmium (Cd, 0.5 mM) was examined using a completely randomized design layout. Under normal conditions, foliar spraying with MEg, Sm, or MEg-Sm was beneficial (with MEg-Sm preferred) for maize plants, whereas the benefit was more pronounced under Cd stress. The use of Cd through irrigation water decreased plant growth traits, photosynthetic efficiency, including instantaneous carboxylation efficiency, Fv/Fm, and pigment contents, and hormonal contents (e.g., auxin, gibberellins, cytokinins including trans-zeatin, and salicylic acid). These undesired findings were due to an increase in Cd content, leading to increased levels of oxidative stress (O2•- and H2O2), ionic leakage, and lipid peroxidation. Therefore, this damage resulted in an increase in the activities of nonenzymatic antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. However, under Cd stress, although foliar spray with MEg or Sm had better findings than control, MEg-Sm had better findings than MEg or Sm. Application of MEg-Sm greatly increased photosynthesis efficiency, restored hormonal homeostasis, and further increased the activities of various antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. These desired findings were due to the suppression of the Cd content, and thus the levels of O2•-, H2O2, ionic leakage, and lipid peroxidation, which were positively reflected in the growth and accumulation of dry matter in maize plants. The data obtained in this study recommend applying silymarin-enriched maize grain extract (MEg-Sm at 0.24 g Sm L-1 of MEg) as a spray solution to maize plants when exposed to excess Cd in soil or irrigation water.


Asunto(s)
Cadmio/toxicidad , Extractos Vegetales/farmacología , Silimarina/farmacología , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
18.
Ecotoxicol Environ Saf ; 213: 112021, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33582412

RESUMEN

Cadmium is a common heavy metal pollutant. In some plants, its absorption is inhibited by exogenous phosphorus. Here, the effect of P supplementation on the growth of tall fescue exposed to Cd was evaluated in a hydroponic culture experiment. Plants were exposed to five concentrations of P (0, 0.25, 0.5, 0.75, and 1.0 mmol L-1) and three concentrations of Cd (50, 100, and 150 mg L-1), and plant growth, Cd content, absorption, physiological characteristics, and nutrient accumulation were investigated. P supplementation significantly reduced the Cd content, Cd translocation factor (TF), Cd removal efficiency, plant P absorption, chlorophyll content, glutathione levels, glutathione reductase levels, and superoxide dismutase (SOD) activity in tall fescue under Cd stress (P < 0.05). Moreover, it increased the vertical growth rate and biomass of tall fescue. At a constant P concentration, the biomass and vertical growth rate significantly decreased with an increasing Cd concentration, and the shoot Cd content, SOD activity, and TF significantly increased (P < 0.05). High P supplementation (0.75 and 1.0 mmol L-1) ameliorated the damage caused by 150 mg L-1 Cd stress, and the biomass, vertical shoot and vertical root growth rates were increased by 72.06-82.06%, 250.00-316.67%, 300.00-312.00%, respectively. In the plants subjected to 50 mg L-1 Cd stress, 0.5 mmol L-1 P supplementation enhanced biomass, vertical shoot and vertical root growth rates by 29.99%, 20.41%, and 21.43%, respectively, and reduced the Cd content in shoots (45.85%) and roots (9.71%). Except for the total potassium content and catalase activity, different concentrations of Cd negatively affected all parameters tested. Such negative effects were limited by P supplementation. Optimizing the nutrient composition and concentrations could minimize the potential negative impacts of Cd on plant growth.


Asunto(s)
Cadmio/toxicidad , Festuca/fisiología , Contaminantes del Suelo/toxicidad , Antioxidantes/metabolismo , Transporte Biológico , Clorofila , Suplementos Dietéticos , Festuca/efectos de los fármacos , Glutatión Reductasa , Lolium , Metales Pesados/toxicidad , Nutrientes , Fósforo/farmacología , Raíces de Plantas/efectos de los fármacos
19.
Front Plant Sci ; 12: 809183, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154205

RESUMEN

Cadmium (Cd+2) is a potential and widespread toxic environmental pollutant, mainly derived from a rapid industrial process that has inhibitory effects on growth, physiological, and biochemical attributes of various plant species, including medicinal plants such as Silybum marianum L. Gaertn commonly known as milk thistle. Plant signaling molecules, when applied exogenously, help to enhance/activate endogenous biosynthesis of potentially important signaling molecules and antioxidants that boost tolerance against various abiotic stresses, e.g., heavy metal stress. The present study documented the protective role of salicylic acid (SA;0.25 µM) and hydrogen peroxide (H2O2; 10 µM) priming, foliar spray, and combinational treatments in reducing Cd+2 toxicity (500 µM) in milk thistle grown at two diverse ecological zones of Balochistan Province of Pakistan i.e., Quetta (Qta) and Turbat (Tbt). The morpho-physiological and biochemical attributes of milk thistle were significantly affected by Cd+2 toxicity; however, priming and foliar spray of SA and H2O2 significantly improved the growth attributes (root/shoot length, leaf area, and root/shoot fresh and dry weight), photosynthetic pigments (Chl a, b, and carotenoids) and secondary metabolites (Anthocyanin, Soluble phenolics, and Tannins) at both altitudes by suppressing the negative impact of Cd+2. However, the oxidative damage parameters, i.e., MDA and H2O2, decreased astonishingly under the treatment of signaling molecules, thereby protecting membrane integrity under Cd+2 stress. The morphological variations were profound at the low altitude (Tbt) as compared to the high altitude (Qta). Interestingly, the physiological and biochemical attributes at both altitudes improved under SA and H2O2 treatments, thus hampered the toxic effect of Cd+2. These signaling compounds enhanced tolerance of plants under heavy metal stress conditions with the consideration of altitudinal, and ambient temperature variations remain to be the key concerns.

20.
J Hazard Mater ; 395: 122679, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32330780

RESUMEN

Cadmium (Cd) contamination is a serious threat to plants and humans. Application of silicon (Si) or nitric oxide (NO) could alleviate Cd accumulation and toxicity in plants, but whether they have joint effects on alleviating of Cd accumulation and toxicity are not known. Therefore, the combined effect of Si and NO application on maize growth, Cd uptake, Cd transports and Cd accumulation were investigated in a pot experiment. Here, we reported that Cd stress decreased growth, caused Cd accumulation in plants. The combined application of Si and NO triggered a significant response in maize, increasing plant growth and reducing Cd uptake, accumulation, translocation and bioaccumulation factors under Cd stress. The grain Cd concentration was decreased by 66 % in the Si and NO combined treatment than Cd treatment. Moreover, the combined application of Si and NO reduced Cd health risk index in maize more effectively than either treatment alone. This study provided new evidence that Si and NO have a strong joint effect on alleviating the adverse effects of Cd toxicity by decreasing Cd uptake and accumulation. We advocate for supplement of Cd-contaminated soil with Si fertilizers and treatment of crops with NO as a practical approach to alleviating Cd toxicity.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Cadmio/toxicidad , Humanos , Óxido Nítrico , Silicio , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA