Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Transl Anim Sci ; 8: txad147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38221962

RESUMEN

Canine copper nutrition has received increased attention due to recent reports of apparent copper-associated hepatitis in the USA and European Union. In order to properly address the need to modify the U.S. National Research Council and Association of American Feed Control Officials canine copper recommendations that will have implications for all dogs, it is important to understand the complexities of copper metabolism, confounding variables affecting copper status, and the available research on this topic in dogs. Recent trends in consumer preference for dog diets, supplements, and functional treats introduce another layer of complexity, as most ingredients used in these formulations provide vastly different proportions of essential nutrients, thus resulting in great variation in nutrient profiles available to the animal. Although controlled research addressing copper metabolism in dogs is limited, there are lessons to be learned from other monogastric species as well as canine case studies that can provide a base for increasing knowledge to address this issue. Copper metabolism and status in animals is affected by a multitude of factors including absorption, storage, excretion, and nutrient interactions. Given its vital role in many physiological processes, it is important that both nutritional deficiencies and toxicities be avoided. Additionally, another challenge for proper copper nutrition in dogs is the known genetic predispositions of some breeds for copper storage and excretion abnormalities. Therefore, it is imperative that veterinarians, nutritionists, and pet food manufacturers collaborate with the shared goal of providing dog food options that supply the essential nutrients at adequate concentrations to support an active and healthy life. Many questions remain regarding copper metabolism and proper diet formulation for dogs. Future research efforts should focus on discovering reliable, non-invasive methods for evaluating canine copper status, a deeper understanding of genetic predispositions of certain breeds, increased knowledge of copper contributions from various ingredients, and the role of unpredictable physiological stressors on copper metabolism.

2.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36807528

RESUMEN

Given the dynamic market for protein-based ingredients in the pet food industry, demand continues to increase for both plant- and animal-based options. Protein sources contain different amino acid (AA) profiles and vary in digestibility, affecting protein quality. The objective of this study was to evaluate the apparent total tract digestibility (ATTD) of canine diets differing in protein source and test their effects on serum metabolites and fecal characteristics, metabolites, and microbiota of healthy adult dogs consuming them. Four extruded diets were formulated to be isonitrogenous and meet the nutrient needs for adult dogs at maintenance, with the primary difference being protein source: 1) fresh deboned, dried, and spray-dried chicken (DC), 2) chicken by-product meal (CBPM), 3) wheat gluten meal (WGM), and 4) corn gluten meal (CGM). Twelve adult spayed female beagles (body weight [BW] = 9.9 ± 1.0 kg; age = 6.3 ± 1.1 yr) were used in a replicated 4 × 4 Latin square design (n = 12/treatment). Each period consisted of a 22-d adaptation phase, 5 d for fecal collection, and 1 d for blood collection. Fecal microbiota data were analyzed using QIIME 2.2020.8. All other data were analyzed using the Mixed Models procedure of SAS version 9.4. Fecal scores were higher (P < 0.05; looser stools) in dogs fed DC or CBPM than those fed WGM or CGM, but all remained within an appropriate range. Dry matter ATTD was lower (P < 0.05) in dogs fed CBPM or CGM than those fed DC or WGM. Crude protein ATTD was lower (P < 0.05) in dogs fed DC or CGM than those fed WGM. Dogs fed CBPM had lower (P < 0.05) organic matter, crude protein, and energy ATTD than those fed the other diets. Fecal indole was higher (P < 0.05) in dogs fed CBPM than those fed WGM. Fecal short-chain fatty acids were higher (P < 0.05) in dogs fed DC than those fed CGM. Fecal branched-chain fatty acids were higher (P < 0.05) in dogs fed DC or CBPM than those fed WGM. Fecal ammonia was higher (P < 0.05) in dogs fed DC or CBPM than those fed WGM or CGM. The relative abundances of three bacterial phyla and nine bacterial genera were shifted among treatment groups (P < 0.05). Considering AA profiles and digestibility data, the DC diet protein sources provided the highest quality protein without additional AA supplementation, but the animal-based protein diets resulted in higher fecal proteolytic metabolites. Further studies evaluating moderate dietary protein concentrations are needed to better compare plant- and animal-based protein sources.


Pet food trends are constantly changing. Because consumers are often focused on dietary proteins, with ingredient sources, dietary inclusion levels, and processing methods being important, they are a popular research topic. Protein sources contain different amino acid (AA) profiles and vary in digestibility, affecting protein quality. Our objective was to evaluate the apparent total tract digestibility of canine diets differing in protein source and test their effects on serum metabolites and fecal characteristics, metabolites, and microbiota of healthy adult dogs. Test diets were formulated to be similar nutritionally, but differed in protein source: fresh deboned, dried, and spray-dried chicken (DC), chicken by-product meal (CBPM), wheat gluten meal (WGM), and corn gluten meal (CGM). Fecal scores were higher in dogs fed chicken-based diets, but remained within an appropriate range. Dogs fed CBPM had lower nutrient and energy digestibilities than those fed the other diets, with protein digestibility also being lower in dogs fed DC or CGM than those fed WGM. Fecal metabolites and microbiota were shifted among diets, with animal-based protein diets increasing fecal protein metabolites. All diets were complete and balanced and performed well. When considering AA profiles and digestibility, however, the DC diet provided the highest protein quality.


Asunto(s)
Dieta Rica en Proteínas , Digestión , Perros , Animales , Heces/química , Dieta/veterinaria , Dieta Rica en Proteínas/veterinaria , Aminoácidos/metabolismo , Glútenes/análisis , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
3.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617268

RESUMEN

In recent dog and cat experiments, a novel milk oligosaccharide biosimilar (GNU100) positively modulated fecal microbiota and metabolite profiles, suggesting benefits to gastrointestinal health. The objective of this study was to investigate the effects of GNU100 on the fecal characteristics, microbiota, and bile acid (BA) concentrations of healthy adult dogs treated with antibiotics. Twelve healthy adult female dogs (mean age: 3.74 ± 2.4 yr) were used in an 8-wk crossover design study (dogs underwent both treatments). All dogs were fed a control diet during a 2-wk baseline, then randomly allotted to 1 of 2 treatments (diet only or diet + 1% GNU100) for another 6 wk. From weeks 2 to 4, dogs were orally administered metronidazole (20 mg/kg BW) twice daily. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, and 8 for measurement of pH, dry matter, microbiota populations, and BA, immunoglobulin A, and calprotectin concentrations. On weeks 0, 4, and 8, blood samples were collected for serum chemistry and hematology analysis. All data were analyzed as repeated measures using the Mixed Models procedure of SAS version 9.4, with significance considered P < 0.05. Metronidazole increased (P < 0.0001) fecal scores (looser stools) and modified (P < 0.05) fecal microbiota and BA profiles. Using qPCR, metronidazole reduced fecal Blautia, Fusobacterium, Turicibacter, Clostridium hiranonis, and Faecalibacterium abundances, and increased fecal Streptococcus and Escherichia coli abundances. DNA sequencing analysis demonstrated that metronidazole reduced microbial alpha diversity and influenced the relative abundance of 20 bacterial genera and families. Metronidazole also increased primary BA and reduced secondary BA concentrations. Most antibiotic-induced changes returned to baseline by week 8. Fecal scores were more stable (P = 0.01) in GNU100-fed dogs than controls after antibiotic administration. GNU100 also influenced fecal microbiota and BA profiles, reducing (P < 0.05) the influence of metronidazole on microbial alpha diversity and returning some fecal microbiota and secondary BA to baseline levels at a quicker (P < 0.05) rate than controls. In conclusion, our results suggest that GNU100 supplementation provides benefits to dogs treated with antibiotics, providing more stable fecal scores, maintaining microbial diversity, and allowing for quicker recovery of microbiota and secondary BA profiles which play an essential role in gut health.


Our objective was to test the effects of a novel milk oligosaccharide biosimilar (GNU100) on the fecal characteristics, microbiota, and bile acid (BA) concentrations of healthy adult dogs treated with antibiotics. Dogs were fed a control diet during a 2-wk baseline, then randomly allotted to 1 of 2 treatments (diet only or diet + 1% GNU100) for another 6 wk. From weeks 2 to 4, dogs were given an oral antibiotic. Fecal scores were recorded and fresh fecal samples were collected over time to assess fecal characteristics, microbiota populations, and BA concentrations. The antibiotic was shown to increase fecal scores (looser stools) and modify fecal microbiota populations (altered diversity and ~20 bacterial genera and families) and BA profiles (increased primary and reduced secondary BA). Most antibiotic-induced changes returned to baseline by week 8. In dogs fed GNU100, fecal scores were more stable and changes to microbial diversity were lower than controls after antibiotic administration. Fecal microbiota and secondary BA of GNU100-fed dogs also returned to baseline levels at a quicker rate than controls. These results suggest that GNU100 provides benefits to dogs given antibiotics, providing more stable fecal scores, maintaining microbial diversity, and allowing for quicker recovery of microbiota and BA profiles.


Asunto(s)
Biosimilares Farmacéuticos , Enfermedades de los Gatos , Enfermedades de los Perros , Microbioma Gastrointestinal , Microbiota , Perros , Femenino , Animales , Gatos , Metronidazol/farmacología , Metronidazol/análisis , Biosimilares Farmacéuticos/farmacología , Ácidos y Sales Biliares , Leche/química , Complejo de Antígeno L1 de Leucocito/análisis , Complejo de Antígeno L1 de Leucocito/farmacología , Heces/química , Antibacterianos/farmacología , Inmunoglobulinas , Oligosacáridos/farmacología , Oligosacáridos/análisis , Alimentación Animal/análisis
4.
Vet Sci ; 9(5)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35622734

RESUMEN

The intestinal microbiome of dogs can be influenced by a number of factors such as non-starch polysaccharides as well as some non-digestible oligo- and disaccharides. These molecules are only decomposed by intestinal anaerobic microbial fermentation, resulting in the formation of volatile fatty acids (VFAs), which play a central role in maintaining the balance of the intestinal flora and affecting the health status of the host organism. In the present study, the effects of lactulose and psyllium husk (Plantago ovata) were investigated regarding their influence on concentrations of various VFAs produced by the canine intestinal microbiome. Thirty dogs were kept on a standard diet for 15 days, during which time half of the animals received oral lactulose once a day, while the other group was given a psyllium-supplemented diet (in 0.67 and in 0.2 g/kg body weight concentrations, respectively). On days 0, 5, 10 and 15 of the experiment, feces were sampled from the rectum, and the concentration of each VFA was determined by GC-MS (gas chromatography−mass spectrometry). Lactulose administration caused a significant increase in the total VFA concentration of the feces on days 10 and 15 of the experiment (p = 0.035 and p < 0.001, respectively); however, in the case of psyllium supplementation, the concentration of VFAs showed a significant elevation only on day 15 (p = 0.003). Concentrations of acetate and propionate increased significantly on days 5, 10 and 15 after lactulose treatment (p = 0.044, p = 0.048 and p < 0.001, respectively). Following psyllium administration, intestinal acetate, propionate and n-butyrate production were stimulated on day 15, as indicated by the fecal VFA levels (p = 0.002, p = 0.035 and p = 0.02, respectively). It can be concluded that both lactulose and psyllium are suitable for enhancing the synthesis of VFAs in the intestines of dogs. Increased acetate and propionate concentrations were observed following the administration of both supplements; however, elevated n-butyrate production was found only after psyllium treatment, suggesting that the applied prebiotics may exert slightly different effects in the hindgut of dogs. These findings can be also of great importance regarding the treatment and management of patients suffering from intestinal disorders as well as hepatic encephalopathy due to portosystemic shunt.

5.
J Nutr Sci ; 6: e56, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209495

RESUMEN

Nutritional factors can dramatically affect development of young animals during the early stage of life. The objective of the present study was to examine the effects of a neuroactive nutritional supplement (NNS) containing DHA, taurine, carotenoids and vitamins on the body weight and body composition of growing puppies. A total of twenty-four 2-month-old Beagles were fed a nutritionally complete and balanced base diet and a control supplement daily during an initial 1-month baseline assessment, after which they were divided into control and treatment groups. They were fed daily either control or treatment supplements in addition to the base diet from 3 to 12 months of age. Lean body mass and fat mass were assessed using quantitative magnetic resonance scans at 0 (baseline), 3, 6 and 9 months of treatment. Total body weight and lean body mass did not differ between groups over time. The puppies in the treatment group showed a trend of reduced fat gain compared with those in the control group, and with a marginally significant difference at 6 months (P = 0·05). At 3 months, insulin-like growth factor 1 was higher (P = 0·02) in the treatment group compared with the control group. At 9 months, fasting lipid levels were lower (P < 0·05) and fat-oxidation metabolite 3-hydroxybutyrate was higher (P < 0·05) in the treatment group compared with the control group. These results may indicate that NNS has an impact on puppy growth and development, possibly by promoting fat metabolism; further investigation would be necessary to determine the full impact of this supplement on growth and development.

6.
J Nutr Sci ; 4: e5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26097705

RESUMEN

We investigated the effect of feeding a skin barrier function-augmenting diet early in dogs' lives on the appearance of clinical signs associated with canine atopic dermatitis. Pregnant bitches (starting 5 weeks after mating) and their subsequent litters (up to 1 year of age) were fed either supplemented or unsupplemented diets. Nutrients supplemented were nicotinamide, pantothenate, histidine, inositol and choline. Circulating IgE levels to dust mute allergens Der f and Der p were measured when the puppies were 6 and 12 months old. Two owner questionnaires were used to assess the occurrence of typical signs associated with atopic dermatitis when dogs were between the ages of 22 and 36, and 34 and 48 months. Using linear mixed models we observed higher levels of circulating anti-Der f (P = 0·021) and -Der p IgE (P = 0·01) during the first year in the dogs fed the unsupplemented than in those fed the supplemented diet. The owner-assessed incidence of atopic dermatitis signs amongst the dogs was significantly greater in the unsupplemented group at the time of the second follow-up questionnaire (10/33 dogs v. 2/24 dogs). These outcomes suggest that a nutritionally derived improvement to barrier function early in life may reduce the frequency of signs associated with atopic dermatitis. The effect is possibly the result of making the epidermis, now thought to be a major route of environmental allergen exposure, more resistant to penetration.

7.
J Nutr Sci ; 3: e23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26101592

RESUMEN

Many dog owners see homemade diets as a way of increasing the bond with their pets, even though they may not have the convenience of commercial diets. Modifications of ingredients, quality and proportion might change the nutritional composition of the diet, generating nutritional imbalances. The present study evaluated how dog owners use and adhere to homemade diets prescribed by veterinary nutritionists over an extended period of time. Forty-six owners of dogs fed a homemade diet for at least 6 months were selected for the present study. Owners were invited to answer questions by first reading all possible answers and then selecting the one that best indicated their opinion. The results were evaluated through descriptive statistics. Thirty-five owners (76·1 %) found that the diets are easy to prepare. Fourteen owners (30·4 %) admitted to modifying the diets, 40 % did not adequately control the amount of provided ingredients, 73·9 % did not use the recommended amounts of soyabean oil and salt, and 34·8 % did not correctly use the vitamin, mineral or amino acid supplements. Twenty-six owners (56·5 %) reported that their dogs refused to eat at least one food item. All of these alterations make the nutritional composition of the diets unpredictable and likely nutritionally imbalanced. Although homemade diets could be a useful tool for the nutritional management of dogs with certain diseases, not all owners are able to appropriately use this type of diet and adhere to it for an extended period of time and this limitation needs to be considered when recommending the use of homemade diets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA