Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Nat Prod Res ; : 1-28, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38586947

RESUMEN

Natural products (NPs) are endless sources of compounds for fighting against several pathologies. Many dysfunctions, including cardiovascular disorders, such as cardiac arrhythmias have their modes of action regulation of the concentration of electrolytes inside and outside the cell targeting ion channels. Here, we highlight plant extracts and secondary metabolites' effects on the treatment of related cardiac pathologies on hERG, Nav, and Cav of cardiomyocytes. The natural product's pharmacology of expressed receptors like alpha-adrenergic receptors causes an influx of Ca2+ ions through receptor-operated Ca2+ ion channels. We also examine the NPs associated with cardiac contractions such as myocardial contractility by reducing the L-type calcium current and decreasing the intracellular calcium transient, inhibiting the K+ induced contractions, decreasing amplitude of myocyte shortening and showed negative ionotropic and chronotropic effects due to decreasing cytosolic Ca2+. We examine whether the NPs block potassium channels, particular the hERG channel and regulatory effects on Nav1.7.

2.
J Cardiovasc Electrophysiol ; 35(5): 895-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433304

RESUMEN

INTRODUCTION: Cardiac contractility modulation (CCM) is a medical device-based therapy delivering non-excitatory electrical stimulations to the heart to enhance cardiac function in heart failure (HF) patients. The lack of human in vitro tools to assess CCM hinders our understanding of CCM mechanisms of action. Here, we introduce a novel chronic (i.e., 2-day) in vitro CCM assay to evaluate the effects of CCM in a human 3D microphysiological system consisting of engineered cardiac tissues (ECTs). METHODS: Cryopreserved human induced pluripotent stem cell-derived cardiomyocytes were used to generate 3D ECTs. The ECTs were cultured, incorporating human primary ventricular cardiac fibroblasts and a fibrin-based gel. Electrical stimulation was applied using two separate pulse generators for the CCM group and control group. Contractile properties and intracellular calcium were measured, and a cardiac gene quantitative PCR screen was conducted. RESULTS: Chronic CCM increased contraction amplitude and duration, enhanced intracellular calcium transient amplitude, and altered gene expression related to HF (i.e., natriuretic peptide B, NPPB) and excitation-contraction coupling (i.e., sodium-calcium exchanger, SLC8). CONCLUSION: These data represent the first study of chronic CCM in a 3D ECT model, providing a nonclinical tool to assess the effects of cardiac electrophysiology medical device signals complementing in vivo animal studies. The methodology established a standardized 3D ECT-based in vitro testbed for chronic CCM, allowing evaluation of physiological and molecular effects on human cardiac tissues.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Contracción Miocárdica , Miocitos Cardíacos , Contracción Miocárdica/genética , Contracción Miocárdica/fisiología , Ingeniería de Tejidos , Humanos , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/fisiología , Perfilación de la Expresión Génica
3.
Cells ; 13(2)2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38247824

RESUMEN

The differentiation of ESCs into cardiomyocytes in vitro is an excellent and reliable model system for studying normal cardiomyocyte development in mammals, modeling cardiac diseases, and for use in drug screening. Mouse ESC differentiation still provides relevant biological information about cardiac development. However, the current methods for efficiently differentiating ESCs into cardiomyocytes are limiting. Here, we describe the "WNT Switch" method to efficiently commit mouse ESCs into cardiomyocytes using the small molecule WNT signaling modulators CHIR99021 and XAV939 in vitro. This method significantly improves the yield of beating cardiomyocytes, reduces number of treatments, and is less laborious.


Asunto(s)
Enfermedades Hereditarias del Ojo , Células Madre Embrionarias de Ratones , Miocitos Cardíacos , Degeneración Retiniana , Trastornos de la Visión , Animales , Ratones , Diferenciación Celular , Evaluación Preclínica de Medicamentos , Mamíferos
4.
Nutrients ; 15(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37571305

RESUMEN

The most common and increasing causes of death worldwide are cardiovascular diseases (CVD). Taking into account the fact that diet is a key factor, it is worth exploring this aspect of CVD prevention and therapy. The aim of this article is to assess the potential of the ketogenic diet in the prevention and treatment of CVD. The article is a comprehensive, meticulous analysis of the literature in this area, taking into account the most recent studies currently available. The ketogenic diet has been shown to have a multifaceted effect on the prevention and treatment of CVD. Among other aspects, it has a beneficial effect on the blood lipid profile, even compared to other diets. It shows strong anti-inflammatory and cardioprotective potential, which is due, among other factors, to the anti-inflammatory properties of the state of ketosis, the elimination of simple sugars, the restriction of total carbohydrates and the supply of omega-3 fatty acids. In addition, ketone bodies provide "rescue fuel" for the diseased heart by affecting its metabolism. They also have a beneficial effect on the function of the vascular endothelium, including improving its function and inhibiting premature ageing. The ketogenic diet has a beneficial effect on blood pressure and other CVD risk factors through, among other aspects, weight loss. The evidence cited is often superior to that for standard diets, making it likely that the ketogenic diet shows advantages over other dietary models in the prevention and treatment of cardiovascular diseases. There is a legitimate need for further research in this area.


Asunto(s)
Enfermedades Cardiovasculares , Dieta Cetogénica , Humanos , Dieta Cetogénica/métodos , Enfermedades Cardiovasculares/prevención & control , Lípidos , Dieta , Cuerpos Cetónicos/metabolismo
6.
Int J Biol Macromol ; 242(Pt 4): 125025, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245774

RESUMEN

Nanoparticles (NPs) have gained recognition for diagnosis, drug delivery, and therapy in fatal diseases. This review focuses on the benefits of green synthesis of bioinspired NPs using various plant extract (containing various biomolecules such as sugars, proteins, and other phytochemical compounds) and their therapeutic application in cardiovascular diseases (CVDs). Multiple factors including inflammation, mitochondrial and cardiomyocyte mutations, endothelial cell apoptosis, and administration of non-cardiac drugs, can trigger the cause of cardiac disorders. Furthermore, the interruption of reactive oxygen species (ROS) synchronization from mitochondria causes oxidative stress in the cardiac system, leading to chronic diseases such as atherosclerosis and myocardial infarction. NPs can decrease the interaction with biomolecules and prevent the incitement of ROS. Understanding this mechanism can pave the way for using green synthesized elemental NPs to reduce the risk of CVD. This review delivers information on the different methods, classifications, mechanisms and benefits of using NPs, as well as the formation and progression of CVDs and their effects on the body.


Asunto(s)
Enfermedades Cardiovasculares , Nanopartículas , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Extractos Vegetales/química , Nanopartículas/química , Estrés Oxidativo , Miocitos Cardíacos/metabolismo
7.
Front Pharmacol ; 14: 1158222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101545

RESUMEN

Introduction: Tyrosine kinase inhibitor drugs (TKIs) are highly effective cancer drugs, yet many TKIs are associated with various forms of cardiotoxicity. The mechanisms underlying these drug-induced adverse events remain poorly understood. We studied mechanisms of TKI-induced cardiotoxicity by integrating several complementary approaches, including comprehensive transcriptomics, mechanistic mathematical modeling, and physiological assays in cultured human cardiac myocytes. Methods: Induced pluripotent stem cells (iPSCs) from two healthy donors were differentiated into cardiac myocytes (iPSC-CMs), and cells were treated with a panel of 26 FDA-approved TKIs. Drug-induced changes in gene expression were quantified using mRNA-seq, changes in gene expression were integrated into a mechanistic mathematical model of electrophysiology and contraction, and simulation results were used to predict physiological outcomes. Results: Experimental recordings of action potentials, intracellular calcium, and contraction in iPSC-CMs demonstrated that modeling predictions were accurate, with 81% of modeling predictions across the two cell lines confirmed experimentally. Surprisingly, simulations of how TKI-treated iPSC-CMs would respond to an additional arrhythmogenic insult, namely, hypokalemia, predicted dramatic differences between cell lines in how drugs affected arrhythmia susceptibility, and these predictions were confirmed experimentally. Computational analysis revealed that differences between cell lines in the upregulation or downregulation of particular ion channels could explain how TKI-treated cells responded differently to hypokalemia. Discussion: Overall, the study identifies transcriptional mechanisms underlying cardiotoxicity caused by TKIs, and illustrates a novel approach for integrating transcriptomics with mechanistic mathematical models to generate experimentally testable, individual-specific predictions of adverse event risk.

8.
Plants (Basel) ; 12(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903967

RESUMEN

Vernonia amygdalina (V. amygdalina) leaves are commonly used in traditional medicine around the world for the treatment of a plethora disorders, including heart disease. The aim of this study was to examine and evaluate the cardiac effect of V. amygdalina leaf extracts using mouse induced pluripotent stem cells (miPSCs) and their cardiomyocytes' (CMs) derivatives. We used a well-established stem cell culture to assess the effect of V. amygdalina extract on miPSC proliferation, EB formation and the beating activity of miPS cell-derived CMs. To study the cytotoxic effect of our extract, undifferentiating miPSCs were exposed to different concentrations of V. amygdalina. Cell colony formation and EB morphology were assessed using microscopy, whereas the cell viability was accessed with an impedance-based method and immunocytochemistry following treatment with different concentrations of V. amygdalina. Ethanolic extract of V. amygdalina induced toxicity in miPSCs, as revealed by a decrease in cell proliferation and colony formation, and an increase in cell death at a concentration of ≥20 mg/mL. At a concentration of 10 mg/mL, the rate of beating EBs was observed with no significant difference regarding the yield of cardiac cells. In addition, V. amygdalina did not affect the sarcomeric organization, but induced positive or negative effects on miPS cell-derived CMs' differentiation in a concentration-dependent manner. Taken together, our findings demonstrate that the ethanolic extract of V. amygdalina affected cell proliferation, colony forming and cardiac beating capacities in a concentration-dependent manner.

9.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901976

RESUMEN

Aging can be seen as a physiological progression of biomolecular damage and the accumulation of defective cellular components, which trigger and amplify the process, toward whole-body function weakening. Senescence initiates at the cellular level and consists in an inability to maintain homeostasis, characterized by the overexpression/aberrant expression of inflammatory/immune/stress responses. Aging is associated with significant modifications in immune system cells, toward a decline in immunosurveillance, which, in turn, leads to chronic elevation of inflammation/oxidative stress, increasing the risk of (co)morbidities. Albeit aging is a natural and unavoidable process, it can be regulated by some factors, like lifestyle and diet. Nutrition, indeed, tackles the mechanisms underlying molecular/cellular aging. Many micronutrients, i.e., vitamins and elements, can impact cell function. This review focuses on the role exerted by vitamin D in geroprotection, based on its ability to shape cellular/intracellular processes and drive the immune response toward immune protection against infections and age-related diseases. To this aim, the main biomolecular paths underlying immunosenescence and inflammaging are identified as biotargets of vitamin D. Topics such as heart and skeletal muscle cell function/dysfunction, depending on vitamin D status, are addressed, with comments on hypovitaminosis D correction by food and supplementation. Albeit research has progressed, still limitations exist in translating knowledge into clinical practice, making it necessary to focus attention on the role of vitamin D in aging, especially considering the growing number of older individuals.


Asunto(s)
Inmunosenescencia , Vitamina D , Humanos , Vitamina D/metabolismo , Envejecimiento/metabolismo , Vitaminas , Senescencia Celular , Inflamación
10.
J Ethnopharmacol ; 309: 116320, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36828197

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular complications are highly prevalent in patients with diabetes. Zhi-Gan-Cao-Tang (ZGCT), a famous traditional Chinese medicine (TCM) prescription, can be used for the treatment of diabetes with cardiovascular disease complications. ZGCT is composed of nine Chinese herbs: the radix and rhizoma of Glycyrrhiza uralensis Fisch. (Gancao in Chinese, 12 g), the radix of Rehmannia glutinosa Libosch. (Dihuang in Chinese, 50 g), the radix and rhizoma of Panax ginseng C. A. Mey. (Renshen in Chinese, 6 g), the radix of Ophiopogon japonicus (L. f.) Ker-Gawl. (Maidong in Chinese, 10 g), the fructus of Ziziphus jujuba Mill. (Dazao in Chinese, 18 g), the fructus of Cannabis sativa L. (Maren in Chinese, 10 g), Donkey-hide gelatine (Ejiao in Chinese, 6 g), the ramulus of Cinnamomum cassia Presl (Guizhi in Chinese, 9 g), and the fresh rhizoma of Zingiber officinale Rosc. (Shengjiang in Chinese, 9 g). Many of these Chinese herbs are also used in other systems of medicine (Japan, India, European, etc.). However, the effects and effective constituents of ZGCT against diabetic cardiovascular disease remain unclear. AIM OF THE STUDY: This study aimed to investigate the protective effect of ZGCT against diabetic myocardial infarction (DMI) injury in vivo and in vitro and to identify the effective constituents of ZGCT. MATERIALS AND METHODS: The in vivo effect on DMI injury was evaluated in a DMI mouse model. The in vitro effect and effective constituent screening experiments were conducted in an H9c2 cardiomyocyte injury model induced by high glucose and hypoxia. RESULTS: It was found that ZGCT significantly reduced myocardial infarction size and serum lactate dehydrogenase (LDH) levels in DMI mice. Myocardial histopathological experiments showed that ZGCT alleviated the disordered arrangement and fracture of muscle fibers and cell disappearance and reduced inflammatory cell infiltration. Cellular experiments showed that ZGCT inhibited cardiomyocyte apoptosis by decreasing the expression of the proapoptotic factor Bax. In addition, it inhibited inflammatory reactions by suppressing the activation of the IκBα/NF-κB pathway and the expression of iNOS. Eight constituents from six Chinese herbs in the recipe of ZGCT were found to enhance the viability of injured cardiomyocytes, and six effective constituents played protective roles through anti-apoptotic and/or anti-inflammatory activities. In addition, one of the effective constituents, glycyrrhizic acid, was verified in vivo to have cardioprotective effect on DMI mice. CONCLUSIONS: The TCM prescription ZGCT protects against DMI by inhibiting cardiomyocyte apoptosis and reducing inflammatory reactions. Eight effective constituents of ZGCT were identified. This study provides a scientific basis for the clinical application of ZGCT and is valuable for quality marker research on this prescription.


Asunto(s)
Antineoplásicos , Diabetes Mellitus , Medicamentos Herbarios Chinos , Glycyrrhiza uralensis , Infarto del Miocardio , Ratones , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Diabetes Mellitus/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/prevención & control
11.
Artículo en Inglés | MEDLINE | ID: mdl-36652817

RESUMEN

Myocardial ischemia/reperfusion (MI/R) injury is a life-threatening syndrome with high morbidity and mortality. Zhishi-Xiebai-Guizhi Decoction (ZSXBGZD) is a classic traditional Chinese medicine formula, used to treat cardiovascular diseases for centuries. However, its underlying medicinal mechanism has not been clearly elucidated, which hinders its widespread application. Here, the curative effects and therapeutic mechanism of ZSXBGZD against MI/R were addressed based on an integration of pharmaceutical evaluation and cellular metabolomics. First, a hypoxia/reoxygenation (H/R) model in H9c2 cells was employed to resemble MI/R and multiple pharmacological indicators were performed to assess the efficacy of ZSXBGZD. The results showed that ZSXBGZD possessed exceptional ability in attenuating cardiomyocyte injury, concerning oxidative stress, mitochondrial dysfunction, energy acquisition and cell apoptosis. Furthermore, a cell metabolomics approach based on HILIC and UPLC-Q-TOF-MS coupled with multivariate analysis was conducted to explore the metabolic regulation of ZSXBGZD. 38 differential polar metabolites related to H/R were uncovered, and 34 of them were reversed to normal state after the treatment of ZSXBGZD, revealing the perturbations of energy metabolism and amino acid metabolism. Moreover, formula decomposition justified the combination of single herbs to form ZSXBZGD and confirmed the pivotal status of Allii Macrostemonis Bulbus and Trichosanthis Fructus.


Asunto(s)
Hipoxia , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Hipoxia/metabolismo , Estrés Oxidativo , Apoptosis
12.
BMC Cardiovasc Disord ; 23(1): 10, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627567

RESUMEN

Cardiomyocytes injury has been considered as a key contributor for myocardial infarction (MI). Uric acid (UA) can induce cardiomyocytes injury, which is closely related to NLRP3 activation and inflammatory factor generation. However, the mechanism how UA modulates cardiomyocytes remains elusive. Western blotting and qRT-PCR were applied for measuring protein and mRNA expression, respectively. ROS production and Ca2+ influx were measured by flow cytometry. Patch clamp technique was used for measuring transient receptor potential melastatin 2 (TRPM2) channel. Ligation of left anterior descending for 2 h was performed to induce MI animal model. The rats were treated by different concentration of uric acid. The artery tissues were stained by HE and collected for measurement of NLRP3 and inflammatory factors. Supplementation of UA significantly promoted apoptosis, and augmented the expression of intercellular adhesion molecule-1, chemoattractant protein-1, vascular cell adhesion molecule-1, and NLRP3 inflammasome. Knockdown of NLRP3 reversed the influence of UA on MI by decreasing collagen deposition, fibrotic area, apoptosis. The expression of NLRP3 inflammasome increased markedly after treatment of UA. UA activated ROS/TRPM2/Ca2+ pathway through targeting NLRP3. UA activated NLRP3 inflammasome and augments inflammatory factor production, which in turn exacerbates cardiomyocytes injury. Knockdown of NLRP3 reversed the influence of UA on apoptosis and cell cycle. UA may promote cardiomyocytes injury through activating NLRP3 inflammasome and ROS/TRPM2 channel/Ca2+ pathway.


Asunto(s)
Infarto del Miocardio , Canales Catiónicos TRPM , Ratas , Animales , Inflamasomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Úrico/farmacología , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Dominio Pirina , Proteínas Portadoras , Infarto del Miocardio/genética
13.
Biochem Biophys Rep ; 33: 101407, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36593870

RESUMEN

Traditional Chinese medicine injection (TCMI) refers to the use of modern technology to make Chinese patent medicines in injectable forms, which shorten the onset time of the traditional Chinese medicine (TCM). Although there have been clinical cases in which Shenmai injection (SMI) was used to treat cardiovascular diseases (CVDs), there are no pharmacological experiments that investigate the efficacy of the drug in vitro or the underlying mechanisms. Aim of the study: We aimed to systemically evaluate the efficacy and investigate the mechanisms of SMI in modulating electrophysiology and calcium (Ca2+) signaling using a microelectrode array (MEA) and a genetically encoded Ca2+ indicator, GCaMP6s, respectively, in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Materials and methods: A MEA system was employed to record field potentials (FPs) in hiPSC-CMs. The QT interval is corrected by the RR interval, the reciprocal of the beating rate. GCaMP6s was used to measure Ca2+ signaling in hiPSC-CMs. Meanwhile, the transcriptome changes in hiPSC-CMs treated with 2% SMI were examined using RNAseq. In addition, the ingredients of SMI were investigated using liquid chromatography-mass spectrometry (LC-MS). Results: It was found that 0.5%, 1%, and 2% (v/v) SMIs could increase corrected QT (QTc) but did not change other FP parameters. GCaMP6s was successfully applied to measure the chronic function of SMI. The full width at half maximum (FWHM), rise time, and decay time significantly decreased after treatment with SMI for 1 h and 24 h, whereas an increased Ca2+ transient frequency was observed. Conclusions: We first used the Ca2+ indicator to measure the chronic effects of TCM. We found that SMI treatment can modulate electrophysiology and calcium signaling and regulate oxidative phosphorylation, cardiac muscle contraction, and the cell cycle pathway in hiPSC-CMs.

14.
J Biomed Opt ; 28(1): 016001, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36636698

RESUMEN

Significance: All-optical cardiac electrophysiology enables the visualization and control of key parameters relevant to the detection of cardiac arrhythmias. Mapping such responses in human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) is of great interest for cardiotoxicity and personalized medicine applications. Aim: We introduce and validate a very low-cost compact mapping system for macroscopic all-optical electrophysiology in layers of hiPSC-CMs. Approach: The system uses oblique transillumination, low-cost cameras, light-emitting diodes, and off-the-shelf components (total < $ 15 , 000 ) to capture voltage, calcium, and mechanical waves under electrical or optical stimulation. Results: Our results corroborate the equivalency of electrical and optogenetic stimulation of hiPSC-CMs, and V m - [ Ca 2 + ] i similarity in conduction under pacing. Green-excitable optical sensors are combinable with blue optogenetic actuators (chanelrhodopsin2) only under very low green light ( < 0.05 mW / mm 2 ). Measurements in warmer culture medium yield larger spread of action potential duration and higher conduction velocities compared to Tyrode's solution at room temperature. Conclusions: As multiple optical sensors and actuators are combined, our results can help handle the "spectral congestion" and avoid parameter distortion. We illustrate the utility of the system for uncovering the action of cellular uncoupling agents and show extensibility to an epi-illumination mode for future imaging of thicker native or engineered tissues.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos/fisiología , Arritmias Cardíacas , Potenciales de Acción
15.
Biosens Bioelectron ; 223: 115034, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36574741

RESUMEN

The ectopic co-expression of taste and olfactory receptors in cardiomyocytes provides not only possibilities for the construction of biomimetic gustatory and olfactory sensors but also promising novel therapeutic targets for tachycardia treatment. Here, bitter taste and olfactory receptors endogenously expressed in HL-1 cells were verified by RT-PCR and immunofluorescence staining. Then HL-1 cardiomyocyte-based integrated gustatory and olfactory sensing array coupling with the microelectrode array (MEA) was first constructed for drugs screening and evaluation for tachycardia treatment. The MEA sensor detected the extracellular field potentials and reflected the systolic-diastolic properties of cardiomyocytes in real time in a label-free and non-invasive way. The in vitro tachycardia model was constructed using isoproterenol as the stimulator. The proposed sensing array facilitated potential drug screening for tachycardia treatment, such as salicin, artemisinin, xanthotoxin, and azelaic acid which all activated specific receptors on HL-1 cells. IC50 values for four potential drugs were calculated to be 0.0036 µM, 309.8 µM, 14.68 µM, and 0.102 µM, respectively. Visualization analysis with heatmaps and PCA cluster showed that different taste and odorous drugs could be easily distinguished. The mean inter-class Euclidean distance between different bitter drugs was 1.681, which was smaller than the distance between bitter and odorous drugs of 2.764. And the inter-class distance was significantly higher than the mean intra-class Euclidean distance of 1.172. In summary, this study not only indicates a new path for constructing novel integrated gustatory and olfactory sensors but also provides a powerful tool for the quantitative evaluation of potential drugs for tachycardia treatment.


Asunto(s)
Técnicas Biosensibles , Receptores Odorantes , Humanos , Miocitos Cardíacos , Evaluación Preclínica de Medicamentos , Biomimética , Olfato , Gusto , Taquicardia
16.
Chin Med ; 17(1): 134, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471367

RESUMEN

BACKGROUND: Hypoxia-induced pulmonary hypertension (HPH) is one of the fatal pathologies developed under hypobaric hypoxia and eventually leads to right ventricular (RV) remodeling and RV failure. Clinically, the mortality rate of RV failure caused by HPH is high and lacks effective drugs. Xinyang Tablet (XYT), a traditional Chinese medicine exhibits significant efficacy in the treatment of congestive heart failure and cardiac dysfunction. However, the effects of XYT on chronic hypoxia-induced RV failure are not clear. METHODS: The content of XYT was analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). Sprague-Dawley (SD) rats were housed in a hypobaric chamber (equal to the parameter in altitude 5500 m) for 21 days to obtain the RV remodeling model. Electrocardiogram (ECG) and hemodynamic parameters were measured by iWorx Acquisition & Analysis System. Pathological morphological changes in the RV and pulmonary vessels were observed by H&E staining and Masson's trichrome staining. Myocardial apoptosis was tested by TUNEL assay. Protein expression levels of TNF-α, IL-6, Bax, Bcl-2, and caspase-3 in the RV and H9c2 cells were detected by western blot. Meanwhile, H9c2 cells were induced by CoCl2 to establish a hypoxia injury model to verify the protective effect and mechanisms of XYT. A CCK-8 assay was performed to determine the viability of H9c2 cells. CoCl2-induced apoptosis was detected by Annexin-FITC/PI flow cytometry and Hoechst 33,258 staining. RESULTS: XYT remarkably improved RV hemodynamic disorder and ECG parameters. XYT attenuated hypoxia-induced pathological injury in RV and pulmonary vessels. We also observed that XYT treatment decreased the expression levels of TNF-α, IL-6, Bax/Bcl-2 ratio, and the numbers of myocardial apoptosis in RV. In H9c2 myocardial hypoxia model, XYT protected H9c2 cells against Cobalt chloride (CoCl2)-induced apoptosis. We also found that XYT could antagonize CoCl2-induced apoptosis through upregulating Bcl-2, inhibiting Bax and caspase-3 expression. CONCLUSIONS: We concluded that XYT improved hypoxia-induced RV remodeling and protected against cardiac injury by inhibiting apoptosis pathway in vivo and vitro models, which may be a promising therapeutic strategy for clinical management of hypoxia-induced cardiac injury.

17.
Front Pharmacol ; 13: 1028046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353487

RESUMEN

Background: Euodiae Fructus, a well-known herbal medicine, is widely used in Asia and has also gained in popularity in Western countries over the last decades. It has known side effects, which have been observed in clinical settings, but few studies have reported on its cardiotoxicity. Methods: In the present study, experiments using techniques of untargeted metabolomics clarify the hazardous effects of Euodiae Fructus on cardiac function and metabolism in rats in situations of overdosage and unsuitable syndrome differentiation. In vitro assays are conducted to observe the toxic effects of evodiamine and rutaecarpine, two main chemical constituents of Euodiae Fructus, in H9c2 and neonatal rat cardiomyocytes (NRCMs), with their signaling mechanisms analyzed accordingly. Results: The cardiac cytotoxicity of evodiamine and rutaecarpine in in vivo experiments is associated with remarkable alterations in lactate dehydrogenase, creatine kinase, and mitochondrial membrane potential; also with increased intensity of calcium fluorescence, decreased protein expression of the cGMP-PKG pathway in H9c2 cells, and frequency of spontaneous beat in NRCMs. Additionally, the results in rats with Yin deficiency receiving a high-dosage of Euodiae Fructus suggest obvious cardiac physiological dysfunction, abnormal electrocardiogram, pathological injuries, and decreased expression of PKG protein. At the level of endogenous metabolites, the cardiac side effects of overdose and irrational usage of Euodiae Fructus relate to 34 differential metabolites and 10 metabolic pathways involving among others, the purine metabolism, the glycerophospholipid metabolism, the glycerolipid metabolism, and the sphingolipid metabolism. Conclusion: These findings shed new light on the cardiotoxicity induced by Euodiae Fructus, which might be associated with overdose and unsuitable syndrome differentiation, that comes from modulating the cGMP-PKG pathway and disturbing the metabolic pathways of purine, lipid, and amino acid. Continuing research is needed to ensure pharmacovigilance for the safe administration of Chinese herbs in the future.

18.
Biomed Pharmacother ; 155: 113802, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36271577

RESUMEN

Allicin is the main active component of Traditional Chinese medicine, garlic. It is widely used to treat cardiovascular diseases. Our previous studies have confirmed that allicin significantly reduces blood pressure in Spontaneous Hypertension Rats (SHRs). However, the reports studying the effect of allicin on vascular and cardiac remodeling caused by hypertension are few, with their underlying mechanism not being studied in detail or fully elucidated. In this study, we treated 12-week-old SHRs with allicin for 4 weeks. After 4 weeks, allicin was shown to improve vascular and cardiac remodeling in SHRs, as evidenced by reduced cardiac left ventricular wall thickness, aortic vessel thickness, and reduced proliferating cell nuclear antigen (PCNA) and smooth muscle actin (α-SMA), and increased expression of and smooth muscle 22α (SM 22α). Additionally, allicin reduced serum IL-1ß, IL-6, and TNF-α levels, improved calcium homeostasis in cardiomyocytes, downregulated calcium transportation-related CaMK II and inflammation-related NF-κB and NLRP3, which were observed in smooth muscle cells and cardiomyocytes. Thus, we inferred that allicin protected hypertensive vascular and cardiac remodeling in Spontaneous Hypertensive Rats by inhibiting the activation of the CaMK II/ NF-κB pathway. This study also provided new mechanistic insights into the anti-hypertensive vascular and cardiac remodeling effects of allicin, highlighting its therapeutic potential.


Asunto(s)
Hipertensión , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Antígeno Nuclear de Célula en Proliferación , Actinas , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Remodelación Ventricular , Factor de Necrosis Tumoral alfa , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-6 , Calcio , Ratas Endogámicas SHR , Hipertensión/tratamiento farmacológico
19.
ACS Sens ; 7(10): 3181-3191, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36166837

RESUMEN

Pharmaceutical compounds may have cardiotoxic properties, triggering potentially life-threatening arrhythmias. To investigate proarrhythmic effects of drugs, the patch clamp technique has been used as the gold standard for characterizing the electrophysiology of cardiomyocytes in vitro. However, the applicability of this technology for drug screening is limited, as it is complex to use and features low throughput. Recent studies have demonstrated that 3D-nanostructured electrodes enable to obtain intracellular signals from many cardiomyocytes in parallel; however, the tedious electrode fabrication and limited measurement duration still remain major issues for cardiotoxicity testing. Here, we demonstrate how porous Pt-black electrodes, arranged in high-density microelectrode arrays, can be used to record intracellular-like signals of cardiomyocytes at large scale repeatedly over an extended period of time. The developed technique, which yields highly parallelized electroporations using stimulation voltages around 1 V peak-to-peak amplitude, enabled intracellular-like recordings at high success rates without causing significant alteration in key electrophysiological features. In a proof-of-concept study, we investigated electrophysiological modulations induced by two clinically applied drugs, nifedipine and quinidine. As the obtained results were in good agreement with previously published data, we are confident that the developed technique has the potential to be routinely used in in vitro platforms for cardiotoxicity screening.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos , Cardiotoxicidad , Microelectrodos , Evaluación Preclínica de Medicamentos/métodos
20.
Front Cell Dev Biol ; 10: 950927, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36036015

RESUMEN

Cardiovascular diseases are the most common cause of death in the world. One of the major causes of cardiac death is excessive apoptosis. However, multiple pathways through moderate exercise can reduce myocardial apoptosis. After moderate exercise, the expression of anti-apoptotic proteins such as IGF-1, IGF-1R, p-PI3K, p-Akt, ERK-1/2, SIRT3, PGC-1α, and Bcl-2 increases in the heart. While apoptotic proteins such as PTEN, PHLPP-1, GSK-3, JNK, P38MAPK, and FOXO are reduced in the heart. Exercise-induced mechanical stress activates the ß and α5 integrins and subsequently, focal adhesion kinase phosphorylation activates the Akt/mTORC1 and ERK-1/2 pathways, leading to an anti-apoptotic response. One of the reasons for the decrease in exercise-induced apoptosis is the decrease in Fas-ligand protein, Fas-death receptor, TNF-α receptor, Fas-associated death domain (FADD), caspase-8, and caspase-3. In addition, after exercise mitochondrial-dependent apoptotic factors such as Bid, t-Bid, Bad, p-Bad, Bak, cytochrome c, and caspase-9 are reduced. These changes lead to a reduction in oxidative damage, a reduction in infarct size, a reduction in cardiac apoptosis, and an increase in myocardial function. After exercising in the heart, the levels of RhoA, ROCK1, Rac1, and ROCK2 decrease, while the levels of PKCε, PKCδ, and PKCɑ are activated to regulate calcium and prevent mPTP perforation. Exercise has an anti-apoptotic effect on heart failure by increasing the PKA-Akt-eNOS and FSTL1-USP10-Notch1 pathways, reducing the negative effects of CaMKIIδ, and increasing the calcineurin/NFAT pathway. Exercise plays a protective role in the heart by increasing HSP20, HSP27, HSP40, HSP70, HSP72, and HSP90 along with increasing JAK2 and STAT3 phosphorylation. However, research on exercise and factors such as Pim-1, Notch, and FAK in cardiac apoptosis is scarce, so further research is needed. Future research is recommended to discover more anti-apoptotic pathways. It is also recommended to study the synergistic effect of exercise with gene therapy, dietary supplements, and cell therapy for future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA