Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Tipo del documento
Intervalo de año de publicación
1.
Toxins (Basel) ; 14(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36287918

RESUMEN

Careya arborea, Punica granatum, Psidium guajava, Holarrhena antidysenterica, Aegle marmelos, and Piper longum are commonly used traditional medicines against diarrhoeal diseases in India. This study investigated the inhibitory activity of these plants against cytotoxicity and enterotoxicity induced by toxins secreted by Vibrio cholerae. Cholera toxin (CT) and non-membrane damaging cytotoxin (NMDCY) in cell free culture filtrate (CFCF) of V. cholerae were quantified using GM1 ELISA and cell-based assays, respectively. Hydro-alcoholic extracts of these plants and lyophilized juice of P. granatum were tested against CT-induced elevation of cAMP levels in CHO cell line, binding of CT to ganglioside GM1 receptor and NMDCY-induced cytotoxicity. Significant reduction of cAMP levels in CFCF treated CHO cell line was observed for all extracts except P. longum. C. arborea, P. granatum, H. antidysenterica and A. marmelos showed >50% binding inhibition of CT to GM1 receptor. C. arborea, P. granatum, and P. guajava effectively decreased cytotoxicity and morphological alterations caused by NMDCY in CHO cell line. Further, the efficacy of these three plants against CFCF-induced enterotoxicity was seen in adult mice ligated-ileal loop model as evidenced by decrease in volume of fluid accumulation, cAMP levels in ligated-ileal tissues, and histopathological changes in intestinal mucosa. Therefore, these plants can be further validated for their clinical use against cholera.


Asunto(s)
Cólera , Plantas Medicinales , Toxinas Biológicas , Vibrio cholerae , Cricetinae , Ratones , Animales , Cólera/tratamiento farmacológico , Toxina del Cólera/toxicidad , Gangliósido G(M1)/farmacología , Gangliósido G(M1)/metabolismo , Vibrio cholerae/metabolismo , Toxinas Biológicas/metabolismo , Citotoxinas/metabolismo , Células CHO
2.
Toxins (Basel) ; 14(4)2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35448842

RESUMEN

Cell-free protein synthesis (CFPS) represents a versatile key technology for the production of toxic proteins. As a cell lysate, rather than viable cells, is used, the toxic effects on the host organism can be circumvented. The open nature of cell-free systems allows for the addition of supplements affecting protein concentration and folding. Here, we present the cell-free synthesis and functional characterization of two AB5 toxins, namely the cholera toxin (Ctx) and the heat-labile enterotoxin (LT), using two eukaryotic cell-free systems based on Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cells. Through an iterative optimization procedure, the synthesis of the individual AB5 toxins was established, and the formation of multimeric structures could be shown by autoradiography. A functional analysis was performed using cell-based assays, thereby demonstrating that the LT complex induced the characteristic cell elongation of target cells after 24 h. The LT complex induced cell death at higher concentrations, starting at an initial concentration of 5 nM. The initial toxic effects of the Ctx multimer could already be detected at 4 nM. The detection and characterization of such AB5 toxins is of utmost importance, and the monitoring of intracellular trafficking facilitates the further identification of the mechanism of action of these toxins. We showed that the B-subunit of LT (LTB) could be fluorescently labeled using an LTB-Strep fusion protein, which is a proof-of-concept for future Trojan horse applications. Further, we performed a mutational analysis of the CtxA subunit as its template was modified, and an amber stop codon was inserted into CtxA's active site. Subsequently, a non-canonical amino acid was site-specifically incorporated using bio-orthogonal systems. Finally, a fluorescently labeled CtxA protein was produced using copper-catalyzed click reactions as well as a Staudinger ligation. As expected, the modified Ctx multimer no longer induced toxic effects. In our study, we showed that CFPS could be used to study the active centers of toxins by inserting mutations. Additionally, this methodology can be applied for the design of Trojan horses and targeted toxins, as well as enabling the intracellular trafficking of toxins as a prerequisite for the analysis of the toxin's mechanism of action.


Asunto(s)
Toxinas Bacterianas , Proteínas de Escherichia coli , Animales , Toxinas Bacterianas/metabolismo , Células CHO , Sistema Libre de Células/metabolismo , Toxina del Cólera/química , Toxina del Cólera/toxicidad , Cricetinae , Cricetulus , Enterotoxinas/genética , Proteínas de Escherichia coli/genética
3.
J Ethnopharmacol ; 279: 113930, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33596471

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (L.) Urb or Indian pennywort is a plant of ethnopharmacological relevance, commonly called as Brahmi in South India known for its antimicrobial property in gut and for the treatment of other gut ailments. Natural anti-virulence drugs that disarm pathogens by directly targeting virulence factors or the cell viability and are thus preferred over antibiotics as these drugs impose limited selection pressure for resistance development. In this regard, an in-vitro experimental study was conducted to know the effect of extract of Centella asiatica(L.) Urb. on cholera toxin, gene expression and its vibriocidal effect on five standard strains of Vibrio cholerae; IDH03097 (El Tor variant), N16961 (El Tor), O395 (Classical) as well as five clinical strains (Haitian variant). AIM OF THE STUDY: To study the effect of extract of Centella asiatica on Vibrio cholerae. MATERIALS AND METHODS: Crude extract was prepared from the leaves and stem part of the plant. The vibriocidal concentration was tested at different concentrations of the extract. The amount of cholera toxin released from the strains before and after exposure to the extract of Centella asiatica to Vibrio cholerae was measured using Bead ELISA. ctxA gene expression in the strains before and after exposure to extract of Centella asiatica was measured using quantitative real time PCR. All the above assays were performed with commercially obtained asiaticoside as well. RESULTS: The vibriocidal activity was tested at the different concentration of the extract, where 1g/mL of crude extract and 12.5mg/mL of asiaticoside was found to be vibriocidal. The amount of cholera toxin released before and after the exposure to extract of C. asiatica was measured using Bead ELISA, showing a reduction of 70%, 89% and 93% toxin produced by classical, El Tor and variant respectively. ctxA gene expression before and after exposure to extract of Centella asiatica as well as asiaticoside was measured using qRT-PCR. We found a decrease in expression of ctxA gene transcription by 6.19 fold in classical strain, 4.29 fold in El Tor, 1.133 fold in variant strains and about 10.13-10.20 fold for the clinical strains of V. cholerae using the extract of C.asiatica while, the reduction with the exposure to the asiaticoside were 2.762 fold in classical strain, 4.809 in El Tor, 24.1 in variant strain and 34.77 - 34.8 for the clinical strains. CONCLUSION: Centella asiatica extract inhibited the CT production in Vibrio cholerae as well as decreased the transcription of ctxA gene expression.


Asunto(s)
Toxina del Cólera/biosíntesis , Genes Bacterianos/efectos de los fármacos , Extractos Vegetales/farmacología , Triterpenos/farmacología , Vibrio cholerae/efectos de los fármacos , Antibacterianos/administración & dosificación , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Centella , Relación Dosis-Respuesta a Droga , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Triterpenos/administración & dosificación , Triterpenos/aislamiento & purificación , Vibrio cholerae/genética
4.
Brain Res ; 1750: 147171, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33132167

RESUMEN

The ability to cope with a novel acute stressor in the context of ongoing chronic stress is of critical adaptive value. The hypothalamic-pituitary-adrenal (HPA) axis contributes to the integrated physiological and behavioural responses to stressors. Under conditions of chronic stress, the posterior portion of the paraventricular thalamic nucleus (pPVT) mediates the 'habituation' of HPA-axis responses, and also facilitates HPA-axis reactivation to novel acute stressors amidst this habituation. Since pPVT neurons are sensitive to the inhibitory effects of circulating glucocorticoids, a glucocorticoid-insensitive neural pathway to the pPVT is likely essential for this reactivation process. The pPVT receives substantial inputs from neurons of the periaqueductal gray (PAG) region, which is organised into longitudinal columns critical for processing acute and/or chronic stressors. We investigated the columnar organisation of PAG â†’ pPVT projections and for the first time determined their glucocorticoid sensitivity. Retrograde tracer injections were made into different rostro-caudal regions of the pPVT, and their PAG columnar inputs compared. Glucocorticoid receptor immunoreactivity (GR-ir) was quantified in these projection neurons. We found that the dorsolateral PAG projected most strongly to rostral pPVT and the ventrolateral PAG most strongly to the caudal pPVT. Despite abundant GR-ir in the PAG, we report a striking absence of GR-ir in PAG â†’ pPVT neurons. Our data suggests that these pathways, which are insensitive to the direct actions of circulating glucocorticoids, likely play an important role in both the habituation of HPA-axis to chronic stressors and its facilitation to acute stressors in chronically stressed rats.


Asunto(s)
Núcleos Talámicos de la Línea Media/fisiología , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/patología , Vías Aferentes/metabolismo , Animales , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Núcleos Talámicos de la Línea Media/metabolismo , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Estrés Fisiológico/fisiología , Tálamo/metabolismo
5.
Cell Host Microbe ; 27(6): 899-908.e5, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32348782

RESUMEN

Undernourished children in low-income countries often exhibit poor responses to oral vaccination. Perturbed microbiota development is linked to undernutrition, but whether and how microbiota changes affect vaccine responsiveness remains unclear. Here, we show that gnotobiotic mice colonized with microbiota from undernourished Bangladeshi children and fed a Bangladeshi diet exhibited microbiota-dependent differences in mucosal IgA responses to oral vaccination with cholera toxin (CT). Supplementation with a nutraceutical consisting of spirulina, amaranth, flaxseed, and micronutrients augmented CT-IgA production. Mice initially colonized with a microbiota associated with poor CT responses exhibited improved immunogenicity upon invasion of bacterial taxa from cagemates colonized with a more "responsive" microbiota. Additionally, a consortium of five cultured bacterial invaders conferred augmented CT-IgA responses in mice fed the supplemented diet and colonized with the "hypo-responsive" community. These results provide preclinical proof-of-concept that diet and microbiota influence mucosal immune responses to CT vaccination and identify a candidate synbiotic formulation.


Asunto(s)
Cólera , Microbioma Gastrointestinal/fisiología , Desnutrición , Prebióticos , Vacunación , Animales , Bacterias/clasificación , Niño , Toxina del Cólera/farmacología , Dieta , Suplementos Dietéticos , Modelos Animales de Enfermedad , Vida Libre de Gérmenes , Humanos , Inmunidad Mucosa , Inmunoglobulina A , Masculino , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/inmunología , Probióticos
6.
Am J Chin Med ; 47(6): 1271-1287, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31488035

RESUMEN

Dendritic cells (DCs) play a critical role in initiating immune responses; however, DCs also induce Th2-related allergic sensitivities. Thus, DCs become a target for therapeutic design in allergic diseases. In this study, we aim to investigate the anti-allergic effect of pure compounds from a medicinal mushroom Antrodia cinnamomea (Ac) on DC-induced allergic responses. We identified a benzenoid compound 4,7-dimethoxy-5-methyl-l,3-benzodioxole (DMB) which may modulate Th2 polarization in bone marrow-derived DCs (BMDCs) and in a murine food allergy model. DMB effectively reduced the Th2 adjuvant cholera toxin (CT)-induced BMDC maturation and cytokine production. In studying the mechanism, DMB blocked the molecular processes involved in Th2 induction, including cAMP activation, IL-33 production, and IRF4/Tim4 upregulation, in CT-activated BMDCs. Furthermore, DMB treatment attenuated the symptoms, clinical scores, and Th2 responses of CT-induced ovalbumin (OVA)-specific food allergy in mice at sensitization stage. These results indicated that DMB could suppress DC function for Th2 polarization and mitigate allergic responses. Thus, DMB may have potential to be a novel agent for preventing or treating food allergy.


Asunto(s)
Antialérgicos , Antrodia/química , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Células Dendríticas/inmunología , Hipersensibilidad a los Alimentos/tratamiento farmacológico , Hipersensibilidad/tratamiento farmacológico , Fitoterapia , Células Th2/inmunología , Animales , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/prevención & control , Ratones Endogámicos BALB C , Ovalbúmina/inmunología
7.
Med Acupunct ; 31(3): 169-175, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31312288

RESUMEN

Objective: Increasing evidence from acupuncture research suggests that the nervous system corresponds closely with classical acupuncture points. The aim of this research was to provide neuroanatomical evidence for revealing the innervated properties of different acupuncture points through comparing the sensory and motor pathways associated with Hegu (LI 4) and Taichong (LR 3) in rat extremities. Materials and Methods: Cholera toxin subunit B (CTB) was injected into LI 4 and LR 3 in different rats, and CTB neural labeling was examined using fluorescent immunohistochemistry and observed under fluorescent microscopy in the corresponding areas from the peripheral nervous system to the central nervous system, including the dorsal root ganglia (DRG), spinal cord, and brainstem. Results: When LI 4 was injected with CTB, CTB-labeled sensory neurons ranged from C-5 to T-1 DRG, and their transganglionic axons terminated in the C-5 to C-8 spinal dorsal horn as far as the cuneate nucleus, while labeled motor neurons were located in the C-7 to T-1 spinal ventral horn. In contrast, similar neural labeling was observed for LR 3 CTB injection, with an orderly arrangement in the L-3 to L-5 DRG, L-3 to L-5 spinal dorsal horn, gracile nucleus, and L-4 to L-6 spinal ventral horn. Conclusions: The present results provide further evidence to aid understanding of the differential innervation of acupuncture points LI 4 and LR 3. This innervation establishes its connection with the nervous system in a distinct segmental and regional pattern through the spinal sensory and motor pathways.

8.
BMC Complement Altern Med ; 19(1): 140, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31221152

RESUMEN

BACKGROUND: Cholera is one of the most deadly diarrheal diseases that require new treatments. We investigated the neutralization of cholera toxin by five plant extracts obtained from the Rosaceae family that have been traditionally used in Poland to treat diarrhea (of unknown origin). METHODS: Hot water extracts were prepared from the dried plant materials and lyophilized before phytochemical analysis and assessment of antimicrobial activity using microdilution assays. The ability of the plant extracts to neutralize cholera toxin was analyzed by measurement of cAMP levels in cell cultures, enzyme-linked immunosorbent assay and electrophoresis, as well as flow cytometry and fluorescence microscopy studies of fluorescent-labeled cholera toxins with cultured human fibroblasts. RESULTS: The antimicrobial assays displayed modest bacteriostatic potentials. We found that the plant extracts modulate the effects of cholera toxin on intracellular cAMP levels. Three plant extracts (Agrimonia eupatoria L., Rubus fruticosus L., Fragaria vesca L.) suppressed the binding of subunit B of cholera toxin to the cell surface and immobilized ganglioside GM1 while two others (Rubus idaeus L., Rosa.canina L.) interfered with the toxin internalization process. CONCLUSIONS: The traditional application of the Rosaceae plant infusions for diarrhea appears relevant to cholera, slowing the growth of pathogenic bacteria and either inhibiting the binding of cholera toxin to receptors or blocking toxin internalization. The analyzed plant extracts are potential complements to standard antibiotic treatment and Oral Rehydration Therapy for the treatment of cholera.


Asunto(s)
Antibacterianos/farmacología , Toxina del Cólera/toxicidad , Cólera/microbiología , Extractos Vegetales/farmacología , Rosaceae/química , Agrimonia/química , Antibacterianos/química , Línea Celular , Cólera/tratamiento farmacológico , Cólera/metabolismo , Toxina del Cólera/metabolismo , Fragaria/química , Gangliósido G(M1)/metabolismo , Humanos , Extractos Vegetales/química , Rubus/química , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/metabolismo
9.
Acta Pharmaceutica Sinica ; (12): 1837-1844, 2019.
Artículo en Chino | WPRIM | ID: wpr-780314

RESUMEN

Calcium-binding protein S100A9 is closely related to inflammation and tumor invasion, and is one of the specific markers of myeloid-derived suppressor cells (MDSC). In this study, a recombinant polypeptide vaccine CTB-S100A9 targeting mouse calcium-binding protein S100A9 was constructed by fusion cholera toxin B subunit (CTB) with S100A9 gene. The CTB-S100A9 fusion protein was expressed in E coli. and purified by Ni+ affinity chromatography. Vaccinate the purified recombinant CTB-S100A9 protein supplemented with aluminum hydroxide adjuvant can break the autoimmune tolerance and produce high titer of S100A9 antibody in mice. Moreover, the S100A9 antibody produced by CTB-S100A9 vaccination is more specific and does not cross-react with S100A8. In the mouse 4T1 breast cancer model, CTB-S100A9 vaccination not only has significant tumor prevention effects, but also has significant tumor therapeutic effects. In addition, CTB-S100A9 significantly inhibited lung metastasis in 4T1 mice breast cancer model. Further analysis by flow cytometry showed that CTB-S100A9 vaccination can significantly reduce the tumor induced Treg cells and granulocyte-derived MDSC in 4T1 mice model, and reverse the tumor immunosuppressive environment, thereby promote the anti-tumor efficacy. The animal experiments in this study were carried out under the animal care guidelines approved by the Animal Ethics Committee of the Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine. This study shows that CTB-S100A9 is a good recombinant vaccine that targets the tumor immune-suppression environment and has great potential for the future clinical application.

10.
Rev. epidemiol. controle infecç ; 8(4): 483-488, out.-dez. 2018.
Artículo en Portugués | LILACS | ID: biblio-1015838

RESUMEN

Justificativa e Objetivos: A cólera é uma doença infecciosa intestinal aguda causada pela toxina do Vibrio cholerae. A transmissão é oral-fecal e ocorre predominantemente em ambientes aquáticos contaminados. Pode ser fatal, mas é facilmente evitada e tratada. Associa-se a sua propagação com a falta de saneamento básico pois cresce exponencialmente nesses ambientes. O diagnóstico é clínico-epidemiológico, laboratorial com meios seletivos para o microrganismo e teste rápido, este último não é sensível e nem especifico. O tratamento é com sais de reidratação oral e antibioticoterapia, indica-se a suplementação com zinco. Existe vacinação para Vibrio cholerae, e essa é a melhor medida para o controle da doença. As pesquisas em cólera já não são mais frequentes, pois ela é considerada uma doença de países que não são desenvolvidos. Conclusão: Nesse contexto, ainda são necessárias pesquisas sobre sistemas de esgoto, monitorização de efluentes, vigilância da qualidade da água de abastecimento público e vigilância da qualidade de alimentos.(AU)


Background and Objectives: Cholera is an acute intestinal infectious disease caused by the toxin of Vibrio cholerae. Transmission is oral-fecal and occurs predominantly in contaminated aquatic environments. It can be fatal, but it is easily avoided and treated. Its propagation is associated with lack of basic sanitation because it grows exponentially in environments. The diagnosis is clinical-epidemiological, laboratory with selective media for the micro-organism and rapid test, the latter is not sensitive or specific. Treatment is with oral rehydration salts and antibiotic therapy, zinc supplementation is indicated. There is vaccination for Vibrio cholerae, and this is the best measure for the control of the disease. Conclusion: Cholera research is no longer frequent, as it is considered a disease of countries that are not developed. In this context, research is still needed on sewage systems, effluent monitoring, public water supply quality surveillance and food quality monitoring.(AU)


Justificación y objetivos: La cólera es una enfermedad infecciosa intestinal aguda causada por la toxina del Vibrio cholerae. La transmisión es oral-fecal y ocurre predominantemente en ambientes acuáticos contaminados. Puede ser fatal, pero es facilmente evitada y tratada. Se asocia su propagación con la falta de saneamiento básico pues crece exponencialmente en ambientes. El diagnóstico es clínico-epidemiológico, de laboratorio con medios selectivos para el microorganismo y la prueba rápida, este último no es sensible ni específico. El tratamiento es con sales de rehidratación oral y antibioticoterapia, se indica la suplementación con cinc. Hay vacunación para Vibrio cholerae, y esa es la mejor medida para el control de la enfermedad. Conclusión: Las investigaciones en cólera ya no son más frecuentes, ya que se considera una enfermedad de países que no se desarrollan. En este contexto todavía son necesarias investigaciones sobre sistemas de alcantarillado, monitorización de efluentes, vigilancia de la calidad del agua de abastecimiento público y vigilancia de la calidad de alimentos.(AU)


Asunto(s)
Humanos , Vibriosis , Cólera , Epidemiología , Enfermedades Transmisibles , Vigilancia Sanitaria , Saneamiento Básico
11.
Mar Drugs ; 16(11)2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400141

RESUMEN

Astaxanthin (Asta), red pigment of the carotenoid family, is known for its anti-oxidant, anti-cancer, anti-diabetic, and anti-inflammatory properties. In this study, we evaluated the effects of Asta on isolated human sperm in the presence of human papillomavirus (HPV) 16 capsid protein, L1. Sperm, purified by gradient separation, were treated with HPV16-L1 in both a dose and time-dependent manner in the absence or presence of 30 min-Asta pre-incubation. Effects of HPV16-L1 alone after Asta pre-incubation were evaluated by rafts (CTB) and Lyn dislocation, Tyr-phosphorylation (Tyr-P) of the head, percentages of acrosome-reacted cells (ARC) and endogenous reactive oxygen species (ROS) generation. Sperm membranes were also analyzed for the HPV16-L1 content. Results show that HPV16-L1 drastically reduced membrane rearrangement with percentage of sperm showing head CTB and Lyn displacement decreasing from 72% to 15.8%, and from 63.1% to 13.9%, respectively. Accordingly, both Tyr-P of the head and ARC decreased from 68.4% to 10.2%, and from 65.7% to 14.6%, respectively. Asta pre-incubation prevented this drop and restored values of the percentage of ARC up to 40.8%. No alteration was found in either the ROS generation curve or sperm motility. In conclusion, Asta is able to preserve sperm by reducing the amount of HPV16-L1 bound onto membranes.


Asunto(s)
Reacción Acrosómica/efectos de los fármacos , Proteínas de la Cápside/metabolismo , Papillomavirus Humano 16/patogenicidad , Proteínas Oncogénicas Virales/metabolismo , Espermatozoides/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/virología , Chlorophyceae/química , Evaluación Preclínica de Medicamentos , Humanos , Masculino , Infecciones por Papillomavirus/prevención & control , Infecciones por Papillomavirus/virología , Unión Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/virología , Xantófilas/farmacología , Xantófilas/uso terapéutico
12.
Nanomedicine ; 14(3): 661-672, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29339186

RESUMEN

Cholera toxin B (CTB) modified mesoporous silica nanoparticle supported lipid bilayers (CTB-protocells) are a promising, customizable approach for targeting therapeutic cargo to motoneurons. In the present study, the endocytic mechanism and intracellular fate of CTB-protocells in motoneurons were examined to provide information for the development of therapeutic application and cargo delivery. Pharmacological inhibitors elucidated CTB-protocells endocytosis to be dependent on the integrity of lipid rafts and macropinocytosis. Using immunofluorescence techniques, live confocal and transmission electron microscopy, CTB-protocells were primarily found in the cytosol, membrane lipid domains and Golgi. There was no difference in the amount of motoneuron activity dependent uptake of CTB-protocells in neuromuscular junctions, consistent with clathrin activation at the axon terminals during low frequency activity. In conclusion, CTB-protocells uptake is mediated principally by lipid rafts and macropinocytosis. Once internalized, CTB-protocells escape lysosomal degradation, and engage biological pathways that are not readily accessible by untargeted delivery methods.


Asunto(s)
Adyuvantes Inmunológicos/metabolismo , Toxina del Cólera/metabolismo , Membrana Dobles de Lípidos/química , Neuronas Motoras/metabolismo , Nanopartículas/administración & dosificación , Dióxido de Silicio/química , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/química , Animales , Transporte Biológico , Toxina del Cólera/administración & dosificación , Toxina del Cólera/química , Endocitosis , Masculino , Nanopartículas/química , Porosidad , Ratas , Ratas Sprague-Dawley
13.
Front Immunol ; 8: 1119, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28951732

RESUMEN

The calcium-binding protein S100A4 has been described to promote pathological inflammation in experimental autoimmune and inflammatory disorders and in allergy and to contribute to antigen presentation and antibody response after parenteral immunization with an alum-adjuvanted antigen. In this study, we extend these findings by demonstrating that mice lacking S100A4 have a defective humoral and cellular immune response to mucosal (sublingual) immunization with a model protein antigen [ovalbumin (OVA)] given together with the strong mucosal adjuvant cholera toxin (CT), and that this impairment is due to defective adjuvant-stimulated antigen presentation by antigen-presenting cells. In comparison to wild-type (WT) mice, mice genetically lacking S100A4 had reduced humoral and cellular immune responses after immunization with OVA plus CT, including a complete lack of detectable germinal center reaction. Further, when stimulated in vitro with OVA plus CT, S100A4-/- dendritic cells (DCs) showed impaired responses in several CT-stimulated immune regulatory molecules including the co-stimulatory molecule CD86, inflammasome-associated caspase-1 and IL-1ß. Coculture of OVA-specific OT-II T cells with S100A4-/- DCs that had been pulse incubated with OVA plus CT resulted in impaired OT-II T cell proliferation and reduced production of Th1, Th2, and Th17 cytokines compared to similar cocultures with WT DCs. In accordance with these findings, transfection of WT DCs with S100A4-targeting small interfering RNA (siRNA) but not mock-siRNA resulted in significant reductions in the expression of caspase-1 and IL-1ß as well as CD86 in response to CT. Importantly, also engraftment of WT DCs into S100A4-/- mice effectively restored the immune response to immunization in the recipients. In conclusion, our results demonstrate that deficiency in S100A4 has a strong impact on the development of both humoral and cellular immunity after mucosal immunization using CT as adjuvant.

14.
Protein Expr Purif ; 139: 57-62, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27335159

RESUMEN

The rates of mosquito-transmitted dengue virus infection in humans have increased in tropical and sub-tropical areas. Domain III of dengue envelope protein (EDIII) is involved in cellular receptor binding and induces serotype-specific neutralizing antibodies. EDIII fused to the B subunit of Vibrio cholera (CTB-EDIII) was expressed in potatoes to develop a plant-based vaccine against dengue virus type 2. CTB-EDIII fused to an endoplasmic reticulum (ER) retention signal, SEKDEL, was introduced into potatoes by A. tumefaciens-mediated gene transformation. The integration of the CTB-EDIII fusion gene into the nuclear genome of transgenic plants was confirmed by genomic DNA polymerase chain reaction (PCR), and mRNA transcripts of CTB-EDIII were detected. CTB-EDIII fusion protein was expressed in potato tubers and assembled into a pentameric form capable of binding monosialotetrahexosylganglioside (GM1). The level of expression was determined to be ∼0.005% of total soluble protein in potato tubers. These results suggest that dengue virus antigen could be produced in potatoes, raising the possibility that edible plants are employed in mucosal vaccines for protection against dengue infection.


Asunto(s)
Toxina del Cólera/metabolismo , Vacunas contra el Dengue/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Toxina del Cólera/genética , Vacunas contra el Dengue/química , Vacunas contra el Dengue/genética , Virus del Dengue , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas del Envoltorio Viral/genética
15.
Nutrients ; 8(4): 242, 2016 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-27120615

RESUMEN

Cocoa powder, a rich source of polyphenols, has shown immunomodulatory properties in both the intestinal and systemic immune compartments of rats. The aim of the current study was to establish the effect of a cocoa diet in a rat oral sensitization model and also to gain insight into the mesenteric lymph nodes (MLN) activities induced by this diet. To achieve this, three-week-old Lewis rats were fed either a standard diet or a diet with 10% cocoa and were orally sensitized with ovalbumin (OVA) and with cholera toxin as a mucosal adjuvant. Specific antibodies were quantified, and lymphocyte composition, gene expression, and cytokine release were established in MLN. The development of anti-OVA antibodies was almost totally prevented in cocoa-fed rats. In addition, this diet increased the proportion of TCRγδ+ and CD103+CD8+ cells and decreased the proportion of CD62L+CD4+ and CD62L+CD8+ cells in MLN, whereas it upregulated the gene expression of OX40L, CD11c, and IL-1ß and downregulated the gene expression of IL-17α. In conclusion, the cocoa diet induced tolerance in an oral sensitization model accompanied by changes in MLN that could contribute to this effect, suggesting its potential implication in the prevention of food allergies.


Asunto(s)
Anticuerpos/fisiología , Chocolate , Toxina del Cólera/inmunología , Citocinas/metabolismo , Ovalbúmina/inmunología , Animales , Peso Corporal , Citocinas/genética , Ingestión de Líquidos , Ingestión de Alimentos , Flavonoides , Regulación de la Expresión Génica , Ganglios Linfáticos , Subgrupos Linfocitarios , Polifenoles , Ratas , Agua
16.
Age (Dordr) ; 38(1): 4, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26718202

RESUMEN

Aging leads to several anatomical and functional deficits in circadian timing system. In previous works, we observed morphological alterations with age in hypothalamic suprachiasmatic nuclei, one central component of this system. However, there are few data regarding aging effects on other central components of this system, such as thalamic intergeniculate leaflet (IGL). In this context, we studied possible age-related alterations in neurochemical components and retinal projections of rat IGL. For this goal, young (3 months), adult (13 months), and aged (23 months) Wistar rats were submitted to an intraocular injection of neural tracer, cholera toxin subunit b (CTb), 5 days before a tissue fixation process by paraformaldehyde perfusion. Optical density measurements and cell count were performed at digital pictures of brain tissue slices processed by immunostaining for glutamic acid decarboxylase (GAD), enkephalin (ENK), neuropeptide Y (NPY) and CTb, characteristic markers of IGL and its retinal terminals. We found a significant age-related loss in NPY immunoreactive neurons, but not in immunoreactivity to GAD and ENK. We also found a decline of retinal projections to IGL with age. We conclude aging impairs both a photic environmental clue afferent to IGL and a neurochemical expression which has an important modulatory circadian function, providing strong anatomical correlates to functional deficits of the aged biological clock.


Asunto(s)
Envejecimiento/metabolismo , Ritmo Circadiano , Hipotálamo/química , Neuropéptido Y/metabolismo , Retina/química , Núcleo Supraquiasmático/química , Animales , Hipotálamo/citología , Inmunohistoquímica , Masculino , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Wistar , Retina/citología , Núcleo Supraquiasmático/citología
17.
Protein Expr Purif ; 109: 62-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25665505

RESUMEN

Peptides containing T-cell epitopes from allergens, which are not reactive to allergen-specific IgE, are appropriate candidates as antigens for specific immunotherapy against allergies. To develop a vaccine that can be used in practical application to prevent and treat Japanese cedar pollen allergy, four major T-cell epitopes from the Cry j 1 antigen and six from the Cry j 2 antigen were selected to design cry j 1 epi and cry j 2 epi, DNA constructs encoding artificial polypeptides of the selected epitopes. To apply cholera toxin B subunit (CTB) as an adjuvant, cry j 1 epi and cry j 2 epi were linked and then fused to the CTB gene in tandem to construct a fusion gene, ctb-linker-cry j 1 epi- cry j 2 epi-flag. The fusion gene was introduced into a pET-28a(+) vector and expressed in Escherichia coli BL21(DE3). The expressed recombinant protein was purified by a His-tag affinity column and confirmed by western blot analysis using anti-CTB and anti-FLAG antibodies. The purified recombinant protein also proved to be antigenic against anti-Cry j 1 and anti-Cry j 2 antibodies. Expression of the recombinant protein induced with 1mM IPTG reached a maximum in 3-5h, and recovery of the affinity-purified recombinant protein was approximately 120mg/L of culture medium. The present study indicates that production of sufficient amounts of recombinant protein with antigenic epitopes may be possible by recombinant techniques using E. coli or other bacterial strains for protein expression.


Asunto(s)
Alérgenos/inmunología , Bioquímica/métodos , Toxina del Cólera/metabolismo , Cryptomeria/metabolismo , Epítopos de Linfocito T/metabolismo , Escherichia coli/metabolismo , Polen/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Alérgenos/química , Secuencia de Aminoácidos , Antígenos de Plantas , Western Blotting , ADN/metabolismo , Electroforesis en Gel de Poliacrilamida , Epítopos de Linfocito T/química , Epítopos de Linfocito T/aislamiento & purificación , Datos de Secuencia Molecular , Péptidos/química , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación
18.
Hum Vaccin Immunother ; 11(3): 584-600, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25715048

RESUMEN

Efforts to develop vaccines for prevention of acute diarrhea have been going on for more than 40 y with partial success. The myriad of pathogens, more than 20, that have been identified as a cause of acute diarrhea throughout the years pose a significant challenge for selecting and further developing the most relevant vaccine candidates. Based on pathogen distribution as identified in epidemiological studies performed mostly in low-resource countries, rotavirus, Cryptosporidium, Shigella, diarrheogenic E. coli and V. cholerae are predominant, and thus the main targets for vaccine development and implementation. Vaccination against norovirus is most relevant in middle/high-income countries and possibly in resource-deprived countries, pending a more precise characterization of disease impact. Only a few licensed vaccines are currently available, of which rotavirus vaccines have been the most outstanding in demonstrating a significant impact in a short time period. This is a comprehensive review, divided into 2 articles, of nearly 50 vaccine candidates against the most relevant viral and bacterial pathogens that cause acute gastroenteritis. In order to facilitate reading, sections for each pathogen are organized as follows: i) a discussion of the main epidemiological and pathogenic features; and ii) a discussion of vaccines based on their stage of development, moving from current licensed vaccines to vaccines in advanced stage of development (in phase IIb or III trials) to vaccines in early stages of clinical development (in phase I/II) or preclinical development in animal models. In this first article we discuss rotavirus, norovirus and Vibrio cholerae. In the following article we will discuss Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic), and Campylobacter jejuni.


Asunto(s)
Vacunas contra el Cólera/inmunología , Diarrea/prevención & control , Gastroenteritis/prevención & control , Vibrio cholerae/inmunología , Vacunas Virales/inmunología , Virus/inmunología , Ensayos Clínicos como Asunto , Diarrea/epidemiología , Diarrea/microbiología , Diarrea/virología , Aprobación de Drogas , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Gastroenteritis/epidemiología , Gastroenteritis/microbiología , Gastroenteritis/parasitología , Gastroenteritis/virología , Humanos
19.
Hum Vaccin Immunother ; 11(3): 601-19, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25715096

RESUMEN

In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral(®)), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed.


Asunto(s)
Vacunas Bacterianas/inmunología , Campylobacter jejuni/inmunología , Diarrea/prevención & control , Escherichia coli/inmunología , Gastroenteritis/prevención & control , Salmonella/inmunología , Shigella/inmunología , Ensayos Clínicos como Asunto , Diarrea/epidemiología , Diarrea/microbiología , Diarrea/virología , Aprobación de Drogas , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Gastroenteritis/epidemiología , Gastroenteritis/microbiología , Gastroenteritis/parasitología , Gastroenteritis/virología , Humanos
20.
Vaccine ; 32(19): 2173-80, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24631089

RESUMEN

Cholera toxin (CT) and its subunits (A and B) have been intensively investigated as adjuvants for protein-based vaccines. Their underlying mechanisms vary with respect to the inoculation route used. By fusing the CTA gene to either the HIV-1-derived Tat-Rev-Vif-Integrase-Nef fusion gene or the OVA gene, our study showed that the fusion of CTA in these DNA vaccines had no cytotoxic effect in vitro and significantly improved both the quantity and quality of the elicited CD8(+) T cell responses. Further experiments identified that the fusion of CTA in these DNA vaccines augmented the secretion of IL-6 in a manner that was dependent on its ADP-ribosyltransferase activity, and protein kinase A (PKA) was found to be the major mediator of its downstream signaling. By site-directed mutagenesis of the ADP-ribosyltransferase catalytic center and in vivo RNAi, we demonstrated that the ADP-ribosyltransferase activity and the upregulation of IL-6 were required for the CTA gene-mediated adjuvant effect. These findings demonstrate that when fused to an immunogen gene, the CTA gene could serve as a potent genetic adjuvant, providing new insights into the mechanisms of CTA as an adjuvant.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Adyuvantes Inmunológicos/genética , Toxina del Cólera/inmunología , Interleucina-6/inmunología , Vacunas de ADN/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Interleucina-1beta/inmunología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes de Fusión/inmunología , Bazo/citología , Bazo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA