Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Ethnopharmacol ; 330: 118222, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38663778

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cinnamomum cassia Presl (Cinnamomum cassia) is a common traditional Chinese medicine, which can promote the secretion and digestion of gastric juice, improve the function of gastrointestinal tract. Cinnamaldehyde (CA) is a synthetic food flavoring in the Chinese Pharmacopoeia. AIM OF THE STUDY: This study aimed to search for the active ingredient (CA) of inhibiting H. pylori from Cinnamomum cassia, and elucidate mechanism of action, so as to provide the experimental basis for the treatment of H. pylori infection with Cinnamomum cassia. MATERIALS AND METHODS: It's in vitro and in vivo pharmacological properties were evaluated based on minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and an acute gastric inflammation model in mice infected with H. pylori. Drug safety was evaluated using the CCK8 method and high-dose administration in mice. The advantageous characteristics of CA in inhibiting H. pylori were confirmed using acidic conditions and in combination with the antibiotics. The mechanism underlying the action of CA on H. pylori was explored using scanning electron microscopy (SEM), adhesion experiments, biofilm inhibition tests, ATP and ROS release experiments, and drug affinity responsive target stability (DARTS) screening of target proteins. The protein function and target genes were verified by molecular docking and Real-Time quantitative reverse transcription PCR (qRT-PCR). RESULTS: The results demonstrated that CA was found to be the main active ingredient against H. pylori in Cinnamomum cassia in-vitro tests, with a MIC of 8-16 µg/mL. Moreover, CA effectively inhibited both sensitive and resistant H. pylori strains. The dual therapy of PPI + CA exhibited remarkable in vivo efficacy in the acute gastritis mouse model, superior to the standard triple therapy. DARTS, molecular docking, and qRT-PCR results suggested that the target sites of action were closely associated with GyrA, GyrB, AtpA, and TopA, which made DNA replication and transcription impossible, then leading to inhibition of bacterial adhesion and colonization, suppression of biofilm formation, and inhibition ATP and enhancing ROS. CONCLUSIONS: This study demonstrated the suitability of CA as a promising lead drug against H. pylori, The main mechanisms can target GyrA ect, leading to reduce ATP and produce ROS, which induces the apoptosis of bacterial.


Asunto(s)
Acroleína , Antibacterianos , Cinnamomum aromaticum , Infecciones por Helicobacter , Helicobacter pylori , Pruebas de Sensibilidad Microbiana , Animales , Acroleína/análogos & derivados , Acroleína/farmacología , Helicobacter pylori/efectos de los fármacos , Cinnamomum aromaticum/química , Antibacterianos/farmacología , Ratones , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Masculino , Simulación del Acoplamiento Molecular , Biopelículas/efectos de los fármacos
2.
Zhongguo Zhong Yao Za Zhi ; 49(3): 779-788, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621882

RESUMEN

This study aims to investigate the essential oil(EOL) of Cinnamomum camphora regarding its anti-depression effect and mechanism in regulating inflammatory cytokines and the nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathway. A mouse model of depression was established by intraperitoneal injection of lipopolysaccharide(LPS). Open field, elevated plus maze, and forced swimming tests were carried out to examine mouse behaviors. Western blot and qRT-PCR were employed to determine the expression of proteins and genes in the Nrf2/HO-1 pathway in the hippocampus. The levels of tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1ß in the serum were measured by enzyme-linked immunosorbent assay(ELISA). The changes of apoptosis in mouse brain were detected by Tunel staining. Compared with the blank control group, the model group showed shortened distance travelled and time spent in the central zone and reduced number of entries in the central zone in the open field test. In the elevated plus maze test, the model group showed reduced open arm time(OT%) and open arm entries(OE%). In the force swimming test, the model group showed extended duration of immobility compared with the blank control group. Compared with the model group, the treatment with EOL significantly increased the distance travelled and time spent in the central zone and increased the number of entries in the central zone in the open field test. In addition, EOL significantly increased the OT% and OE% in the elevated plus maze and shor-tened the immobility duration in the forced swimming test. The model group showed lower expression levels of Nrf2 and HO-1 and hig-her levels of TNF-α, IL-6, and IL-1ß than the blank control group. Compared with the model group, the treatment with EOL up-regulated the expression levels of Nrf2 and HO-1 and lowered the levels of TNF-α, IL-6, and IL-1ß. The Tunel staining results showed that the apoptosis rate in the brain tissue of mice decreased significantly after the treatment with EOL. To sum up, EOL can mitigate the depression-like behaviors of mice by up-regulating the expression of Nrf2 and HO-1 and preventing hippocampal inflammatory damage. The findings provide empirical support for the application of EOL and aromatherapy in the treatment of depression.


Asunto(s)
Cinnamomum camphora , Aceites Volátiles , Femenino , Ratones , Animales , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa , Interleucina-6 , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Depresión/tratamiento farmacológico , Aceites Volátiles/farmacología , Lipopolisacáridos/farmacología
3.
Heliyon ; 10(6): e28026, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533033

RESUMEN

Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm., or Indian Bay Leaf, is a well-known traditional ayurvedic medicine used to treat various ailments. However, the molecular mechanism of action of Cinnamomum tamala essential oil (CTEO) against non-small cell lung cancer (NSCLC) remains elusive. The present study aims to decipher the molecular targets and mechanism of CTEO in treating NSCLC. GC-MS analysis detected 49 constituents; 44 successfully passed the drug-likeness screening and were identified as active compounds. A total of 3961 CTEO targets and 4588 anti-NSCLC-related targets were acquired. JUN, P53, IL6, MAPK3, HIF1A, and CASP3 were determined as hub genes, while cinnamaldehyde, ethyl cinnamate and acetophenone were identified as core compounds. Enrichment analysis revealed that targets were mainly involved in apoptosis, TNF, IL17, pathways in cancer and MAPK signalling pathways. mRNA expression, pathological stage, survival analysis, immune infiltrate correlation and genetic alteration analysis of the core hub genes were carried out. Kaplan-Meier overall survival (OS) curve revealed that HIF1A and CASP3 are linked to worse overall survival in Lung Adenocarcinoma (LUAD) cancer patients compared to normal patients. Ethyl cinnamate and cinnamaldehyde showed high binding energy with the MAPK3 and formed stable interactions with MAPK3 during the molecular dynamic simulations for 100 ns. The MM/PBSA analysis revealed that van der Waals (VdW) contributions predominantly account for a significant portion of the compound interactions within the binding pocket of MAPK3. Density functional theory analysis showed cinnamaldehyde as the most reactive and least stable compound. CTEO exhibited selective cytotoxicity by inhibiting the proliferation of A549 cells while sparing normal HEK293 cells. CTEO triggered apoptosis by arresting the cell cycle, increasing ROS accumulation, causing mitochondrial depolarisation, and elevating caspase-3, caspase-8 and caspase-9 levels in A549 cells. The above study provides insights into the pharmacological mechanisms of action of Cinnamomum tamala essential oil against non-small cell lung cancer treatment, suggesting its potential as an adjuvant therapy.

4.
J Med Food ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38466959

RESUMEN

In the context of diabetes, the use of cinnamon continues to be among the most popular supplements taken by patients for glucose control. To strategically evaluate the available literature comparing various cinnamon species and statistically significant glucose effects after ranking studies based on two tools to assess bias and overall study quality, to clarify cinnamon's role in glucose control. The authors performed a systematic search based upon PRISMA guidelines. The search was conducted utilizing PubMed, AMED, CINAHL, EMBASE, Cochrane, and Medline databases, with the final search performed in September 2022 with restrictions to human subjects and English language. Electronic searches were conducted utilizing the keywords "diabetes mellitus" combined with Cinnamomum zeylanicum/Cinnamomum cassia/Cinnamomum verum combined with blood glucose (BG). A second search utilized "cinnamomum zeylanicum/cinnamomum cassia/cinnamomum verum" combined with "blood glucose," and a final search utilized "diabetes mellitus" combined with "cinnamon." Data extraction and ranking of included studies utilizing the risk of bias 2 tool and modified Heyland Methodological Quality Scoring tool were performed independently by two review authors. These authors compared their results and reconciled any differences in scoring to generate a final ranking of studies. A third author was available for any discrepancies that could not be resolved but was not needed. Forty-five studies were included in the review and were scored for bias and quality. Overall 62% demonstrated statistical significance for positive effects in at least one parameter around BG control. Applying the ranking systems reduced the percentage closer to 50%. Safety was extremely well documented across studies with few adverse effects. Results are limited by heterogeneity of glucose parameters, leading to studies being ranked individually and not synthesized. Cinnamon supplementation likely has a modest positive effect on BG. Based upon the strong safety profile, utilization of this spice as an adjunct to pharmacologic therapy is reasonable.

5.
Molecules ; 29(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542843

RESUMEN

The genus Cinnamomum encompasses diverse species with various applications, particularly in traditional medicine and spice production. This study focuses on Cinnamomum burmanni, specifically on a high-D-borneol-content chemotype, known as the Meipian Tree, in Guangdong Province, South China. This research explores essential oil diversity, chemotypes, and chloroplast genomic diversity among 28 C. burmanni samples collected from botanical gardens. Essential oils were analyzed, and chemotypes classified using GC-MS and statistical methods. Plastome assembly and phylogenetic analysis were conducted to reveal genetic relationships. Results showed distinct chemotypes, including eucalyptol and borneol types, with notable variations in essential oil composition. The chloroplast genome exhibited conserved features, with phylogenetic analysis revealing three major clades. Borneol-rich individuals in clade II suggested a potential maternal inheritance pattern. However, phylogenetic signals revealed that the composition of essential oils is weakly correlated with plastome phylogeny. The study underscores the importance of botanical gardens in preserving genetic and chemical diversity, offering insights for sustainable resource utilization and selective breeding of high-yield mother plants of C. burmanni.


Asunto(s)
Canfanos , Cinnamomum , Lauraceae , Aceites Volátiles , Humanos , Aceites Volátiles/química , Cinnamomum/genética , Filogenia , Herencia Materna
6.
Front Pharmacol ; 15: 1331622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410133

RESUMEN

Objective: This study aims to determine the efficacy of the Acacia arabica (Lam.) Willd. and Cinnamomum camphora (L.) J. Presl. vaginal suppository in addressing heavy menstrual bleeding (HMB) and their impact on participants' health-related quality of life (HRQoL) analyzed using machine learning algorithms. Method: A total of 62 participants were enrolled in a double-dummy, single-center study. They were randomly assigned to either the suppository group (SG), receiving a formulation prepared with Acacia arabica gum (Gond Babul) and camphor from Cinnamomum camphora (Kafoor) through two vaginal suppositories (each weighing 3,500 mg) for 7 days at bedtime along with oral placebo capsules, or the tranexamic group (TG), receiving oral tranexamic acid (500 mg) twice a day for 5 days and two placebo vaginal suppositories during menstruation at bedtime for three consecutive menstrual cycles. The primary outcome was the pictorial blood loss assessment chart (PBLAC) for HMB, and secondary outcomes included hemoglobin level and SF-36 HRQoL questionnaire scores. Additionally, machine learning algorithms such as k-nearest neighbor (KNN), AdaBoost (AB), naive Bayes (NB), and random forest (RF) classifiers were employed for analysis. Results: In the SG and TG, the mean PBLAC score decreased from 635.322 ± 504.23 to 67.70 ± 22.37 and 512.93 ± 283.57 to 97.96 ± 39.25, respectively, at post-intervention (TF3), demonstrating a statistically significant difference (p < 0.001). A higher percentage of participants in the SG achieved normal menstrual blood loss compared to the TG (93.5% vs 74.2%). The SG showed a considerable improvement in total SF-36 scores (73.56%) compared to the TG (65.65%), with a statistically significant difference (p < 0.001). Additionally, no serious adverse events were reported in either group. Notably, machine learning algorithms, particularly AB and KNN, demonstrated the highest accuracy within cross-validation models for both primary and secondary outcomes. Conclusion: The A. arabica and C. camphora vaginal suppository is effective, cost-effective, and safe in controlling HMB. This botanical vaginal suppository provides a novel and innovative alternative to traditional interventions, demonstrating promise as an effective management approach for HMB.

7.
Heliyon ; 10(2): e24120, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298712

RESUMEN

Inflammatory diseases contribute to more than 50 % of global deaths. Research suggests that network pharmacology can reveal the biological mechanisms underlying inflammatory diseases and drug effects at the molecular level. The aim of the study was to clarify the biological mechanism of Cinnamomum zeylanicum essential oil (CZEO) and predict molecular targets of CZEO against inflammation by employing network pharmacology and in vitro assays. First, the genes related to inflammation were identified from the Genecards and Online Mendelian Inheritance in Man (OMIM) databases. The CZEO targets were obtained from the SwissTargetPrediction and Similarity Ensemble Approach (SEA) database. A total of 1057 CZEO and 526 anti-inflammation targets were obtained. The core hub target of CZEO anti-inflammatory was obtained using the protein-protein interaction network. KEGG pathway analysis suggested CZEO to exert anti-inflammatory effect mainly through Tumor necrosis factor, Toll-like receptor and IL-17 signalling pathway. Molecular docking of active ingredients-core targets interactions was modelled using Pyrx software. Docking and simulation studies revealed benzyl benzoate to exhibit good binding affinity towards IL8 protein. MTT assay revealed CZEO to have non-cytotoxic effect on RAW 264.7 cells. CZEO also inhibited the production of NO, PGE2, IL-6, IL-1ß and TNF-α and promoted the activity of endogenous antioxidant enzymes in LPS-stimulated RAW 264.7 cells. Additionally, CZEO inhibited intracellular ROS generation, NF-kB nuclear translocation and modulated the expression of downstream genes involved in Toll-like receptor signalling pathway. The results deciphered the mechanism of CZEO in treating inflammation and provided a theoretical basis for its clinical application.

8.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38268238

RESUMEN

Cigarette smoking poses various health risks, such as increasing the susceptibility to respiratory infections, contributing to osteoporosis, causing reproductive issues, delaying postoperative recovery, promoting ulcer formation and heightening the risk of diabetes. While many harmful effects of smoking are attributed to other cigarette components, it is nicotine's pharmacological effects that underlie tobacco addiction. Nicotine replacement therapy (NRT) aims to alleviate the urge to smoke and mitigate physiological and psychomotor withdrawal symptoms by delivering nicotine. This study explores the potential of sesquiterpene derivative compounds derived from the Cinnamomum genus using computational techniques. The research incorporates molecular docking analyses, Lipinski's rule of five filtration for drug-likeness, pharmacokinetic and toxicity predictions to assess safety profiles and molecular dynamics (MD) simulations to gauge interaction stability. The findings reveal that all sesquiterpene derivative compounds from the Cinnamomum genus can potentially inhibit nicotinic acetylcholine receptors (nAChRs), particularly nAChRÿ7. However, only abscisic acid exhibit active inhibition, along with suitable drug properties, pharmacokinetics and toxicity profiles. MD studies confirm the stability of interactions between abscisic acid with nAChRÿ7. Consequently, abscisic acid, as sesquiterpene derivatives from the Cinnamomum genus, holds substantial promise for further investigation as nAChRÿ7 inhibitors.Communicated by Ramaswamy H. Sarma.

9.
Nutrients ; 16(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38257142

RESUMEN

Metabolic syndrome (MetS) is associated with cardiovascular risk factors, such as insulin resistance, dyslipidaemia, hypertension and abdominal obesity. Given the growing need to investigate food supplements with positive health effects, this study was aimed at testing the benefits of a specific supplement for people with MetS. Fifty-eight subjects with MetS and T2DM or impaired glucose tolerance assuming metformin, were randomly assigned to take a food supplement of glucomannan, D-chiro-inositol, Cinnamomum zeylanicum blume and inulin at a daily fixed dose of 4 g orally for four months. Body weight, waist circumference, plasma lipid profile (total cholesterol, LDL, HDL and triglyc-erides), plasma glycaemic profile and visceral adiposity index (VAI) were measured at baseline and after four months of supplementation. After 16 weeks, in subjects with T2DM or insulin resistance who took the supplement (+ metformin), there was a significant reduction in body weight and BMI (p < 0.0001), serum insulin (p < 0.05) and the HOMA index (p < 0.01), as well as in the lipaemic pattern, with a significant improvement in total serum cholesterol (p < 0.005), triglycerides (p < 0.03) and LDL (p < 0.02). Our study shows that the food supplement tested is a valid and safe alternative therapeutic approach in the management of MetS and all its resulting risk factors, as its efficacy has been demonstrated across anthropometric, glucose, lipid and hepatic parameters.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Mananos , Síndrome Metabólico , Metformina , Humanos , Síndrome Metabólico/tratamiento farmacológico , Cinnamomum zeylanicum , Inulina , Inositol , Suplementos Dietéticos , Peso Corporal , Lípidos
10.
Plant Sci ; 339: 111956, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101618

RESUMEN

Cinnamomum camphora has great economic value for its wide utilization in traditional medicine and furniture material, and releases lots of monoterpenes to tolerate high temperature. To uncover the adjusting function of monoterpenes on primary metabolism and promoting their utilization as anti-high temperature agents, the photosynthetic capacities, primary metabolite levels, cell ultrastructure and associated gene expression were surveyed in C. camphora when it was blocked monoterpene biosynthesis with fosmidomycin (Fos) and fumigated with camphor (a typical monoterpene in the plant) under high temperature (Fos+38 °C+camphor). Compared with the control (28 °C), high temperature at 38 °C decreased the starch content and starch grain size, and increased the fructose, glucose, sucrose and soluble sugar content. Meanwhile, high temperature also raised the lipid content, with the increase of lipid droplet size and numbers. These variations were further intensified in Fos+ 38 °C treatment. Compared with Fos+ 38 °C treatment, Fos+ 38 °C+camphor treatment improved the starch accumulation by promoting 4 gene expression in starch biosynthesis, and lowered the sugar content by suppressing 3 gene expression in pentose phosphate pathway and promoting 15 gene expression in glycolysis and tricarboxylic acid cycle. Meanwhile, Fos+ 38 °C+camphor treatment also lowered the lipid content, which may be caused by the down-regulation of 2 genes in fatty acid formation and up-regulation of 4 genes in fatty acid decomposition. Although Fos+ 38 °C+camphor treatment improved the photosynthetic capacities in contrast to Fos+ 38 °C treatment, it cannot explain the variations of these primary metabolite levels. Therefore, camphor should adjust related gene expression to maintain the primary metabolism in C. camphora tolerating high temperature.


Asunto(s)
Alcanfor , Cinnamomum camphora , Alcanfor/química , Alcanfor/metabolismo , Cinnamomum camphora/química , Cinnamomum camphora/genética , Cinnamomum camphora/metabolismo , Temperatura , Monoterpenos/metabolismo , Azúcares/metabolismo , Ácidos Grasos/metabolismo , Almidón/metabolismo , Lípidos
11.
Microsc Res Tech ; 87(1): 42-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37660303

RESUMEN

The development of antibiotic resistant microbial pathogens has become a global health threat and a major concern in modern medicine. The problem of antimicrobial resistance (AMR) has majorly arisen due to sub-judicious use of antibiotics in health care and livestock industry. A slow progress has been made in last two decades in discovery of new antibiotics. A new strategy in combatting AMR is to modulate or disarm the microbes for their virulence and pathogenicity. Plants are considered as promising source for new drugs against AMR pathogens. In this study, fraction-based screening of the Cinnamomum zeylanicum extract was performed followed by detailed investigation of antiquorum sensing and antibiofilm activities of the most active fraction that is, C. zeylanicum hexane fraction (CZHF). More than 75% reduction in violacein pigment of C. violaceum 12472 was overserved. CZHF successfully modulated the virulence of Pseudomonas aeruginosa PAO1 by 60.46%-78.35%. A similar effect was recorded against Serratia marcescens MTCC 97. A broad-spectrum inhibition of biofilm development was found in presence of sub-MICs of CZHF. The colonization of bacteria onto the glass coverslips was remarkably reduced apart from the reduction in exopolymeric substances. Alkaloids and terpenoids were found in CZHF. GC/MS analysis revealed the presence of cinnamaldehyde dimethyl acetal, 2-propenal, coumarin, and α-copaene as major phytocompounds. This study provides enough evidence to support potency of C. zeylanicum extract in targeting the virulence of Gram -ve pathogenic bacteria. The plant extract or active compounds can be developed as successful drugs after careful in vivo examination to target microbial infections. RESEARCH HIGHLIGHTS: Hexane fraction of Cinnamomum zeylanicum is active against QS and biofilms. The broad-spectrum antibiofilm activity was further confirmed by microscopic analysis. Dimethyl acetal, 2-propenal, coumarin, α-copaene, and so forth are major phytocompounds.


Asunto(s)
Cinnamomum zeylanicum , Percepción de Quorum , Hexanos/farmacología , Acroleína/farmacología , Biopelículas , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Bacterias , Cumarinas/farmacología
12.
Curr Issues Mol Biol ; 45(11): 8607-8621, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37998718

RESUMEN

Astragalus membranaceus and Cinnamomum cassia are used as spices and flavorful ingredients, or medicinal herbs with pharmacological effects. In this study, the hair-growth-promoting effects of the YH complex, a newly developed formula consisting of membranaceus and C. cassia, are investigated with the prediction of its molecular mechanism. The target gene of the YH complex was about 74.8% overlapped with the gene set of 'Hair growth' on the GO Biological Process database. The oral administration of the YH complex promoted hair regrowth and increased hair-shaft thickness in depilated hair loss mice. In addition, the anagen/telogen hair follicle ratio was significantly increased by the YH complex. The growth factors affecting the growth of hair follicles were dose-dependently increased by treatment with the YH complex. The Wnt/ß-catenin signaling pathway expressions in skin tissues were apparently increased by the administration of the YH complex. In conclusion, the YH complex consisting of A. membranaceus and C. cassia induced hair follicle differentiation and preserved the growing-anagen phase by increasing growth factors and the Wnt/ß-catenin signaling pathway, leading to the restoration of hair loss. The YH complex can be a remedy for hair loss diseases, such as alopecia areata, androgenetic alopecia, telogen effluvium, and chemotherapy-induced alopecia.

13.
Molecules ; 28(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37836747

RESUMEN

The accumulated dental biofilm can be a source of oral bacteria that are aspirated into the lower respiratory tract causing ventilator-associated pneumonia in hospitalized patients. The aim of this study was to evaluate the synergistic antibiofilm action of the produced and phytochemically characterized extracts of Cinnamomum verum and Brazilian green propolis (BGP) hydroethanolic extracts against multidrug-resistant clinical strains of Acinetobacter baumannii and Pseudomonas aeruginosa, in addition to their biocompatibility on human keratinocyte cell lines (HaCaT). For this, High-performance liquid chromatography analysis of the plant extracts was performed; then the minimum inhibitory and minimum bactericidal concentrations of the extracts were determined; and antibiofilm activity was evaluated with MTT assay to prevent biofilm formation and to reduce the mature biofilms. The cytotoxicity of the extracts was verified using the MTT colorimetric test, evaluating the cellular enzymatic activity. The data were analyzed with one-way ANOVA and Tukey's tests as well as Kruskal-Wallis and Dunn's tests, considering a significance level of 5%. It was possible to identify the cinnamic aldehyde in C. verum and p-coumaric, caffeic, and caffeoylquinic acids as well as flavonoids such as kaempferol and kaempferide and Artepillin-C in BGP. The combined extracts were effective in preventing biofilm formation and reducing the mature biofilms of A. baumannii and P. aeruginosa. Moreover, both extracts were biocompatible in different concentrations. Therefore, C. verum and BGP hydroethanolic extracts have bactericidal and antibiofilm action against multidrug resistant strains of A. baumannii and P. aeruginosa. In addition, the combined extracts were capable of expressively inhibiting the formation of A. baumannii and P. aeruginosa biofilms (prophylactic effect) acting similarly to 0.12% chlorhexidine gluconate.


Asunto(s)
Acinetobacter baumannii , Própolis , Humanos , Pseudomonas aeruginosa , Própolis/farmacología , Cinnamomum zeylanicum , Brasil , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Queratinocitos
14.
Int J Environ Health Res ; : 1-15, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855230

RESUMEN

Combination therapy at appropriately suitable doses presents a promising alternative to monotherapeutic drugs. In this study, Cinnamomum verum and Syzygium aromaticum essential oils and their major compounds have exhibited substantial leishmaniacidal potential against both promastigote and amastigote forms of Leishmania (L.) major. However, they displayed high cytotoxicity against Raw264.7 macrophage cells. Interestingly, when combined with each other or with amphotericin B, they demonstrated a synergistic effect (FIC<0.5) with low cytotoxicity. These combinations are able to modulate the production of nitric oxide (NO) by macrophages. Notably, the combination of S. aromaticum Essential oil with amphotericin B stimulates macrophage cells by increasing NO production to eliminate leishmanial parasites. Furthermore, investigation of the molecular mechanism of action of these synergistic combinations reveals potent inhibition of the sterol pathway through the inhibition of the CYP51 gene expression. The findings suggest that combination therapy may offer significant therapeutic benefits in both food and pharmaceutical fields.

15.
Contact Dermatitis ; 89(3): 190-197, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37403438

RESUMEN

OBJECTIVE: To analyse the clinical characteristics and sensitivity of an essential oil patch test series (EOS) in patients sensitized to their own essential oils (EOs). METHOD: We analysed the clinical data and patch test results obtained with the European baseline series (BSE) and an EOS, as well as the mode of use of EOs, through a questionnaire included in the patient file. RESULTS: The study included 42 patients (79% women, average age 50 years) with allergic contact dermatitis (ACD), 8 patients required hospitalization. All patients were sensitized to the EO they used, primarily lavender (Lavandula augustifolia, 8000-28-0), tea tree (Melaleuca alternifolia leaf oil, 68647-73-4), ravintsara (Cinnamomum camphora oil, 92201-50-8), and 2 cases were attributed to helichrysum (helichrysum italicum flower absolute, 90045-56-0). 71% had positive patch tests to fragrance mix I or II, 9 only to the EOS and 4 only with their personal EO. Interestingly, 40% of patients did not spontaneously mention the use of EOs, and only 33% received advice on their use at the time of purchase. CONCLUSION: Patch tests with the BSE, limonene and linalool HP, and oxidized tea tree oil is sufficient to detect most EO-sensitized patients. The most important is to test the patient's own used EOs.


Asunto(s)
Dermatitis Alérgica por Contacto , Dermatología , Lavandula , Aceites Volátiles , Aceite de Árbol de Té , Humanos , Femenino , Persona de Mediana Edad , Masculino , Aceites Volátiles/efectos adversos , Dermatitis Alérgica por Contacto/diagnóstico , Dermatitis Alérgica por Contacto/etiología , Pruebas del Parche , Aceite de Árbol de Té/efectos adversos
16.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2307-2315, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282859

RESUMEN

Cinnamomum camphora is an important economic tree species in China. According to the type and content of main components in the volatile oil of leaf, C. camphora were divided into five chemotypes, including borneol-type, camphor-type, linalool-type, cineole-type, and nerolidol-type. Terpene synthase(TPS) is the key enzyme for the formation of these compounds. Although several key enzyme genes have been identified, the biosynthetic pathway of(+)-borneol, which has the most economic value, has not been reported. In this study, nine terpenoid synthase genes CcTPS1-CcTPS9 were cloned through transcriptome analysis of four chemical-type leaves. After the recombinant protein was induced by Escherichia coli, geranyl pyrophosphate(GPP) and farnesyl pyrophosphate(FPP) were used as substrates for enzymatic reaction, respectively. Both CcTPS1 and CcTPS9 could catalyze GPP to produce bornyl pyrophosphate, which could be hydrolyzed by phosphohydrolase to obtain(+)-borneol, and the product of(+)-borneol accounted for 0.4% and 89.3%, respectively. Both CcTPS3 and CcTPS6 could catalyze GPP to generate a single product linalool, and CcTPS6 could also react with FPP to generate nerolidol. CcTPS8 reacted with GPP to produce 1,8-cineol(30.71%). Nine terpene synthases produced 9 monoterpene and 6 sesquiterpenes. The study has identified the key enzyme genes responsible for borneol biosynthesis in C. camphora for the first time, laying a foundation for further elucidating the molecular mechanism of chemical type formation and cultivating new varieties of borneol with high yield by using bioengineering technology.


Asunto(s)
Transferasas Alquil y Aril , Cinnamomum camphora , Cinnamomum camphora/enzimología , Transferasas Alquil y Aril/química
17.
Chin Herb Med ; 15(2): 310-316, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37265774

RESUMEN

Objective: The barks, leaves, and branches of Cinnamomum cassia have been historically used as a traditional Chinese medicine, spice, and food preservative, in which phenylpropanoids are responsible compounds. However phenylpropanoid biosynthesis pathways are not clear in C. cassia. We elucidated the pathways by descriptive analyses of differentially expressed genes related to phenylpropanoid biosynthesis as well as to identify various phenylpropanoid metabolites. Methods: Chemical analysis, metabolome sequencing, and transcriptome sequencing were performed to investigate the molecular mechanisms underlying the difference of active components content in the barks, branches and leaves of C. cassia. Results: Metabolomic analysis revealed that small amounts of flavonoids, coumarine, and cinnamaldehyde accumulated in both leaves and branches. Transcriptome analysis showed that genes associated with phenylpropanoid and flavonoid biosynthesis were downregulated in the leaves and branches relative to the barks. The observed differences in essential oil content among the three tissues may be attributable to the differential expression of genes involved in the phenylpropanoid and flavonoid metabolic pathways. Conclusion: This study identified the key genes in the phenylpropanoid pathway controling the flavonoid, coumarine, and cinnamaldehyde contents in the barks, branches and leaves by comparing the transcriptome and metabolome. These findings may be valuable in assessing phenylpropanoid and flavonoid metabolites and identifying specific candidate genes that are related to the synthesis of phenylpropanoids and flavonoids in C. cassia.

18.
J Med Food ; 26(6): 428-434, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37262194

RESUMEN

Cinnamomum cassia is a medicinal plant whose use has demonstrated benefits on body weight, blood pressure, glucose, and lipids. This study aimed to evaluate the effect of C. cassia on arterial stiffness and endothelial dysfunction (ED) in patients with type 2 diabetes mellitus (T2DM). A randomized, double-blind, placebo-controlled clinical trial was carried out in 18 subjects aged 40-65 years, with a diagnosis of T2DM of one year or less since diagnosis and treated with Metformin 850 mg daily. Patients were randomly assigned to receive either C. cassia or a placebo in 1000 mg capsules, thrice a day, before each meal for 12 weeks. At baseline and after 12 weeks of intervention, brachial-ankle pulse wave velocity and Flow Mediated Dilation were measured, as well as body weight, body mass index (BMI), blood pressure (BP), fasting glucose (FG), glycated hemoglobin A1c (HbA1c), total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol, and very low density lipoprotein cholesterol, respectively, triglycerides, creatinine, and transaminases. The Mann-Whitney U test for differences between groups and the Wilcoxon signed-rank test for intragroup differences were used, and a P ≤ .05 was considered statistically significant. After C. cassia administration, statistically significant reductions in body weight (81.4 ± 10.4 kg vs. 79.9 ± 9.0 kg, P = .037), BMI (30.6 ± 4.2 kg/m2 vs. 30.1 ± 4.2 kg/m2, P = .018), and HbA1c (53 ± 5.4 mmol/mol vs. 45 ± 2.1 mmol/mol, P = .036) were observed. No changes statistically significant on arterial stiffness, ED, FG, BP, and lipids were observed. C. cassia administration decreases body weight, BMI, and HbA1c without statistically significant changes on arterial stiffness, ED, FG, BP, and lipids. CTR Number: NCT04259606.


Asunto(s)
Cinnamomum aromaticum , Diabetes Mellitus Tipo 2 , Rigidez Vascular , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Índice Tobillo Braquial , Análisis de la Onda del Pulso , Triglicéridos , Glucosa , Peso Corporal
19.
J Adv Pharm Technol Res ; 14(2): 69-74, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255869

RESUMEN

Cinnamon is one of the world's oldest spices that is also widely used as medicine for antimicrobe, anti-inflammation, and immune stimulant to now developed as an antidiabetic herbal medicine. Among its bioactive contents, the coumarin must have been controlled; since of its toxicities. Therefore, in this study aimed to reduce the amount of coumarin in the extracts by chloroform preextraction to dried powdered cinnamons and determine their glucose binding capacity. The extractions were used two methods by water infusion and ethanol soxhletation. To measure the coumarin's was used validated thin-layer chromatography (TLC)-densitometry, while for the chemical profiling of the extract was examined with liquid chromatography-mass spectrometry. The activity antidiabetic of the extracts was obtained by glucose binding. The TLC-densitometry method has been validated with silica gel 60F254 and n-hexane: ethyl acetate (8:2, v/v) systems. The coumarin's spot was observed at a wavelength of 285 nm on retention factor (Rf) 0.33, with tailings factor 1. The intraday and interday linearities tests showed a linear response result. The recovery value, coefficient of variation, and detection and a quantitation limit were met the standard requirements, respectively. Moreover, the results were observed (1) the solvent preextraction may reduce the coumarin content, (2) the coumarin content in the ethanol extract was higher than in the infusion, and (3) the preextraction solvents would reduce the glucose-binding capacity in ethanol and water cinnamomi's extract. These results may be developed further and applied for producing cinnamon's free coumarin extracts.

20.
J Agric Food Chem ; 71(23): 9175-9186, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37252901

RESUMEN

The underlying mechanisms of Cinnamomum kanehirae-stimulated growth and metabolism of Antrodia camphorata remain unknown. Herein, we first observed that the methanol extract of C. kanehirae trunk (MECK) (2 g/L) showed a potent stimulatory effect on A. camphorata triterpenoids production (115.6 mg/L). Second, MECK treatment considerably increased the category and abundance of many secondary metabolites in the mycelia. We identified 93 terpenoids (8 newly formed and 49 upregulated) in the MECK-treated mycelia, wherein 21 terpenoids were the same as those in the fruiting bodies. Third, 42 out of the 93 terpenoids were annotated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, mainly involving monoterpenoids and diterpenoids syntheses. Finally, 27 monoterpenes and 16 sesquiterpenes were detected in the MECK, and the two terpenoids with the highest abundance (linalool and α-pinene) were selected for verification and found to considerably increase the terpenoids production of A. camphorata and demonstrate the regulation of mRNA expression levels of nine key genes in the mevalonate pathway via RT-qPCR. This study is beneficial for elucidating the terpenoids synthesis mechanism in A. camphorata.


Asunto(s)
Antrodia , Cinnamomum , Triterpenos , Fermentación , Terpenos/farmacología , Terpenos/metabolismo , Triterpenos/farmacología , Triterpenos/metabolismo , Monoterpenos/farmacología , Monoterpenos/metabolismo , Metabolómica , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Antrodia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA