Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chin J Nat Med ; 22(3): 249-264, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38553192

RESUMEN

Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1ß, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1ß, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.


Asunto(s)
Codonopsis , Colitis Ulcerosa , Colitis , Ratones , Animales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inulina/metabolismo , Inulina/farmacología , Inulina/uso terapéutico , Interleucina-18 , Codonopsis/metabolismo , Proteínas NLR/metabolismo , Fructanos/metabolismo , Fructanos/farmacología , Fructanos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Claudina-1/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Autofagia , Sulfato de Dextran , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colon/metabolismo , Colon/patología
2.
J Ethnopharmacol ; 327: 118016, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38462027

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Codonopsis pilosula (C. pilosula), also called "Dangshen" in Chinese, is derived from the roots of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. Modesta (Nannf.) L.D.Shen (C. pilosula var. modesta) or Codonopsis pilosula subsp. Tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), is a well-known traditional Chinese medicine. It has been regularly used for anti-aging, strengthening the spleen and tonifying the lungs, regulating blood sugar, lowering blood pressure, strengthening the body's immune system, etc. However, the mechanism, by which, C. pilosula exerts its therapeutic effects on brain aging remains unclear. AIM OF THE STUDY: This study aimed to investigate the underlying mechanisms of the protective effects of C. pilosula water extract (CPWE) on the hippocampal tissue of D-galactose-induced aging mice. MATERIALS AND METHODS: In this research, plant taxonomy has been confirmed in the "The Plant List" database (www.theplantlist.org). First, an aging mouse model was established through the intraperitoneal injections of D-galactose solution, and low-, medium-, and high-dose CPWE were administered to mice by gavage for 42 days. Then, the learning and memory abilities of the mice were examined using the Morris water maze tests and step-down test. Hematoxylin and eosin staining was performed to visualize histopathological damage in the hippocampus. A transmission electron microscope was used to observe the ultrastructure of hippocampal neurons. Immunohistochemical staining was performed to examine the expression of glial fibrillary acidic protein (GFAP), the marker protein of astrocyte activation, and autophagy-related proteins, including microtubule-associated protein light chain 3 (LC3) and sequestosome 1 (SQSTM1)/p62, in the hippocampal tissues of mice. Moreover, targeted metabolomic analysis was performed to assess the changes in polar metabolites and short-chain fatty acids in the hippocampus. RESULTS: First, CPWE alleviated cognitive impairment and ameliorated hippocampal tissue damage in aging mice. Furthermore, CPWE markedly alleviated mitochondrial damage, restored the number of autophagosomes, and activated autophagy in the hippocampal tissue of aging mice by increasing the expression of LC3 protein and reducing the expression of p62 protein. Meanwhile, the expression levels of the brain injury marker protein GFAP decreased. Moreover, quantitative targeted metabolomic analysis revealed that CPWE intervention reversed the abnormal levels of L-asparagine, L-glutamic acid, L-glutamine, serotonin hydrochloride, succinic acid, and acetic acid in the hippocampal tissue of aging mice. CPWE also significantly regulated pathways associated with D-glutamine and D-glutamate metabolism, nitrogen metabolism, arginine biosynthesis, alanine, aspartate, and glutamate metabolisms, and aminoacyl-tRNA biosynthesis. CONCLUSIONS: CPWE could improve cognitive and pathological conditions induced by D-galactose in aging mice by activating autophagy and regulating metabolism, thereby slowing down brain aging.


Asunto(s)
Codonopsis , Ratones , Animales , Codonopsis/química , Galactosa , Encéfalo , Envejecimiento , Autofagia
3.
Phytomedicine ; 128: 155338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520835

RESUMEN

BACKGROUND: Liver cancer, one of the most common types of cancer worldwide, accounts for millions of cases annually. With its multi-target and wide-ranging therapeutic effects, traditional Chinese medicine has emerged as a potential approach for treating various tumors. Codonopsis pilosula, a traditional herb, is known for its anti-inflammatory and antioxidant properties. In this study, we investigated the potential molecular mechanisms of Codonopsis pilosula in regulating the inhibition of CDK1 and the modulation of PDK1/ß-catenin, which are involved in hepatocellular carcinoma growth and metastasis. STUDY DESIGN/METHODS: Firstly, we screened the active chemical constituents of Codonopsis pilosula and identified their respective target proteins using the Herb database. Then, we applied the GeneCards database and transcriptome sequencing analysis to screen for critical genes associated with the occurrence and development of liver cancer. The intersection of the target proteins and disease-related genes was used to determine the potential targets of Codonopsis pilosula in hepatocellular carcinoma. Protein-protein interaction analysis and GO/KEGG analysis were subsequently performed to uncover the pathways through which Codonopsis pilosula acts on liver cancer. The Huh-7 cell line, exhibiting the highest sensitivity to Codonopsis pilosula polysaccharide solution (CPP) intervention, was chosen for subsequent studies. Cell viability was evaluated using the CCK-8 assay, colony formation assay was conducted to determine cell proliferation capacity, flow cytometry was used to analyze cell cycle, TUNEL staining was performed to assess cell apoptosis, scratch assay was carried out to evaluate cell migration ability, the expression of EMT-related proteins was detected and analyzed, and cell sphere formation assay was conducted to investigate cell stemness. Finally, a liver cancer animal model was established, and different doses of CPP were administered via gavage the next day. The expression levels of CDK1, PDK1, and ß-catenin in mouse liver tissues were detected and analyzed, immunohistochemistry staining was performed to assess the expression of tumor cell proliferation-related proteins Ki67 and PCNA in mouse xenografts, and TUNEL staining was carried out to evaluate cell apoptosis in mouse liver tissues. After intervention with CDK1 expression, the expression levels of CDK1, PDK1, and ß-catenin proteins and mRNA in each group of cells were detected using Western blot and RT-qPCR. RESULTS: Through network pharmacology analysis, transcriptome sequencing, and bioinformatics analysis, 35 target genes through which Codonopsis pilosula acts on liver cancer were identified. Among them, CDK1, with the highest degree in the PPI network, was considered an essential target protein for Codonopsis pilosula in treating liver cancer. In vitro cell experiments revealed that CPP could inhibit the expression of CDK1/PDK1/ß-catenin signaling axis factors, suppress cell proliferation, decrease cell migration ability, influence the EMT process, and reduce cell stemness by inhibiting CDK1 and affecting the PDK1/ß-catenin signaling axis. Similarly, in vivo experiments demonstrated that CPP could regulate the CDK1/PDK1/ß-catenin signaling axis, inhibit tumor growth, and induce cell apoptosis. CONCLUSION: Codonopsis pilosula may inhibit hepatocellular carcinoma growth by suppressing CDK1 and affecting the PDK1/ß-catenin signaling axis, limiting cell EMT and reducing cell stemness. These findings provide insights into the potential therapeutic role of Codonopsis pilosula in liver cancer.


Asunto(s)
Proteína Quinasa CDC2 , Carcinoma Hepatocelular , Codonopsis , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Humanos , Codonopsis/química , Línea Celular Tumoral , Proteína Quinasa CDC2/metabolismo , Ratones , Proliferación Celular/efectos de los fármacos , beta Catenina/metabolismo , Antineoplásicos Fitogénicos/farmacología , Ratones Desnudos , Ratones Endogámicos BALB C , Masculino , Movimiento Celular/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ensayos Antitumor por Modelo de Xenoinjerto , Medicamentos Herbarios Chinos/farmacología
4.
Int J Biol Macromol ; 265(Pt 2): 130988, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518942

RESUMEN

Codonopsis pilosula is a famous edible and medicinal plants, in which polysaccharides are recognized as one of the important active ingredients. A neutral polysaccharide (CPP-1) was purified from C. pilosula. The structure was characterized by HPSEC-MALLS-RID, UV, FT-IR, GC-MS, methylation analysis, and NMR. The results showed that CPP-1 was a homogeneous pure polysaccharide, mainly containing fructose and glucose, and a small amount of arabinose. Methylation analysis showed that CPP-1 composed of →1)-Fruf-(2→, Fruf-(1→ and Glcp-(1→ residues. Combined the NMR results the structure of CPP-1 was confirmed as α-D-Glcp-(1 â†’ [2)-ß-D-Fruf-(1 â†’ 2)-ß-D-Fruf-(1]26 â†’ 2)-ß-D-Fruf with the molecular weight of 4.890 × 103 Da. The model of AML12 hepatocyte fat damage was established in vitro. The results showed that CPP-1 could increase the activity of SOD and CAT antioxidant enzymes and reduce the content of MDA, thus protecting cells from oxidative damage. Subsequently, the liver protective effect of CPP-1 was studied in the mouse model of nonalcoholic fatty liver disease (NAFLD) induced by the high-fat diet. The results showed that CPP-1 significantly reduced the body weight, liver index, and body fat index of NAFLD mice, and significantly improved liver function. Therefore, CPP-1 should be a potential candidate for the treatment of NAFLD.


Asunto(s)
Codonopsis , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Codonopsis/química , Espectroscopía Infrarroja por Transformada de Fourier , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Antioxidantes/farmacología
5.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5779-5789, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114173

RESUMEN

This study aims to mine the transcription factors that affect the genuineness of Codonopsis pilosula in Shanxi based on the transcriptome data of C. pilosula samples collected from Shanxi and Gansu, and then analyze the gene expression patterns, which will provide a theoretical basis for the molecular assisted breeding of C. pilosula. Gene ontology(GO) functional annotation, conserved motif prediction, and gene expression pattern analysis were performed for the differential transcription factors predicted based on the transcriptome data of C. pilosula from different habitats. A total of 61 differentially expressed genes(DEGs) were screened out from the transcriptome data. Most of the DEGs belonged to AP2/ERF-ERF family, with the conserved motif of [2X]-[LG]-[3X]-T-[3X]-[AARAYDRAA]-[3X]-[RG]-[2X]-A-[2X]-[NFP]. Forty-three of the DEGs showed significantly higher gene expression in C. pilosula samples from Shanxi than in the samples from Gansu, including 11 genes in the AP2/ERF-ERF family, 5 genes in the NAC fa-mily, 1 gene in the bHLH family, and 2 genes in the RWP-RK family, while 18 transcription factors showed higher expression levels in the samples from Gansu. GO annotation predicted that most of the DEGs were enriched in GO terms related to transcriptional binding activity(103), metabolic process(26), and stress response(23). The expression of transcription factor genes, CpNAC92, CpNAC100, CpbHLH128, and CpRAP2-7 was higher in the samples from Shanxi and in the roots of C. pilosula. CpNAC92, CpbHLH128, and CpRAP2-7 responded to the low temperature, temperature difference, and iron stresses, while CpNAC100 only responded to low temperature and iron stresses. The screening and expression analysis of the specific transcription factors CpNAC92, CpNAC100, CpbHLH128, and CpRAP2-7 in C. pilosula in Shanxi laid a theoretical foundation for further research on the mechanism of genuineness formation of C. pilosula.


Asunto(s)
Codonopsis , Codonopsis/genética , Codonopsis/química , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Transcriptoma , Hierro
6.
Front Vet Sci ; 10: 1302801, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144468

RESUMEN

The objective of this study was to examine the effects of dietary Chinese herbal medicine (CHM) consisting of Astragalus membranaceus (Fisch.) Bunge (AMT) and Codonopsis pilosula (Franch.) Nannf (CPO) extracts on growth performance, antioxidant capacity, immune status, and intestinal health of broiler chickens. Two groups were formed, each consisting of six replicates of 12 one-day-old healthy male 817 white feather broilers. Broilers were fed either a basal diet (CON group) or a basal diet supplemented with 500 mg/kg CHM. The trial lasted 50 days. The results showed that CHM supplementation resulted in enhanced feed efficiency and antioxidant capacity in both the serum and liver, while it reduced uric acid and endotoxin levels, as well as diamine oxidase activity (p < 0.05). Additionally, CHM treatment increased the height of jejunum villi and upregulated Claudin-1 expression in the jejunal mucosa accompanied by an increase in the mRNA levels of interleukin-6 (IL-6), interferon-γ (IFN-γ), interferon-ß (IFN-ß), tumor necrosis factor-α (TNF-α), and anti-inflammatory cytokine interleukin-10 (IL-10) (p < 0.05). The presence of dietary CHM caused an increase in the proportions of Bacteroidetes and unclassified Bacteroidales but led to a decrease in those of Firmicutes and Alistipes (p < 0.05). The composition of the jejunal mucosa microbiota was correlated with the feed conversion ratio, serum metabolites, and gene expression based on Spearman correlation analysis. The findings indicated that the consumption of dietary CHM improved the utilization of feed, increased the mRNA expression of pro-inflammatory cytokines in the jejunal mucosa, and decreased the endotoxin level and activities of diamine oxidase and lactate dehydrogenase in the serum, which could potentially be linked to changes in the gut microbiota of broiler chickens.

7.
Huan Jing Ke Xue ; 44(11): 6387-6398, 2023 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-37973120

RESUMEN

Effects of continuous cropping on rhizosphere soil physical and chemical properties, soil microbial activity, and community characteristics of Codonopsis pilosula were investigated. The C. pilosula plot(CK) fallow for five years and C. pilosula fields with different years of continuous cropping were studied using Illumina high-throughput sequencing technology combined with soil physical and chemical properties analysis. The response of rhizosphere soil physical and chemical properties, microbial activities, and microbial community characteristics to continuous cropping years of C. pilosula were investigated. The results were as follows:the contents of organic carbon, total phosphorus, total nitrogen, and salt in rhizosphere soil of C. pilosula increased with the extension of continuous cropping years. However, soil pH value decreased with the extension of continuous cropping years. Compared with that in the CK treatment, rhizosphere soil organic carbon content of C. pilosula in continuous cropping for one, two, three, and four years increased by 11.1%, 80.5%, 74.9%, and 78.2%, respectively. Total phosphorus content increased by 11.8%, 52.9%, 66.7%, and 78.4%, and total nitrogen content increased by 31.3%, 68.8%, 52.1%, and 56.3%, respectively. Soil salt content increased significantly under continuous cropping of three and four years, and soil conductivity increased by 54.2% and 84.7% compared with that in the CK treatment, respectively. The C/N ratio of microbial biomass in rhizosphere soil exhibited an increasing trend with the extension of continuous cropping years. Soil respiration entropy and microbial entropy showed a decreasing trend. With the increase in continuous cropping years, the diversity and abundance of bacteria in soil decreased, whereas the diversity and abundance of fungi increased. In addition, with the increase in continuous cropping years, the antagonistic effect between bacterial communities was enhanced, whereas the synergistic effect between fungal communities was mainly observed. Correlation analysis showed that soil total phosphorus, available potassium, carbon to nitrogen ratio of microbial biomass, soil respiration entropy, microbial biomass carbon, and electrical conductivity were the main factors affecting the changes in soil bacterial community characteristics. Soil total nitrogen, available potassium, available phosphorus, and soil respiration entropy were the main factors affecting the changes in fungal community characteristics. In conclusion, continuous cropping significantly changed the physical and chemical properties of soil and microbial activity and affected the abundance and diversity of bacteria and fungi in soil. This changed the interaction between microorganisms, which disrupted the stability of microbial communities in the soil.


Asunto(s)
Codonopsis , Suelo , Suelo/química , Carbono , Rizosfera , Microbiología del Suelo , Hongos , Bacterias/genética , Nitrógeno , Fósforo , Potasio
8.
Sci Total Environ ; 902: 166014, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37541498

RESUMEN

Waste plant resource provides a new sustainable feedstock for the biolubricant, and purification of the effective components in biomass oil is vital to improve the performance of biolubricant. In this work, the crude extract of the aerial part of Codonopsis pilosula was divided into four different parts by petroleum ether, ethyl acetate, n-butanol and water, respectively. Their thermal stability, lubricating performances and mechanisms have been systematically investigated. In the four extracts, the petroleum ether extract displays the best thermal stability and lubricating performance over the entire test conditions, and other three extracts are confronted with lubrication failure at high loads and elevated temperatures. Triterpenoid saponin, typical for n-butanol extract exhibit the best lubricity at room temperature, followed by the fatty acid derivatives as phosphatidylcholine; flavonoid, and sugar exhibit poor lubricity. At high temperature, only the petroleum ether extract retains the good lubricity.


Asunto(s)
Codonopsis , Lubrificación , 1-Butanol , Extractos Vegetales
9.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37365694

RESUMEN

The roots of the medicinal plant Codonopsis pilosula (Franch.) Nannf (C. pilosula) possess most medicinal supplements. In current research on C. pilosula root endophytes were isolated, identified, and evaluated for their antimicrobial activity against human pathogens such as Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Salmonella typhi, and Pseudomonas aeruginosa and the fungi Candida albicans and Aspergillus niger. Endophytes C.P-8 and C.P-20 exhibited very significant antimicrobial activity, the secondary metabolite of C.P-8 registered at retention time 24.075 by HPLC analysis. Significant minimum inhibitory concentration (MIC) of C.P-8 was exhibited at 250 µg/ml against S. aureus and 500 µg/ml against B. subtilis. Qualitative, quantitative analyses, and partial purification of enzymes and purity was analysed by molecular weight determined by SDS‒PAGE of enzymes produced by C.P-20, amylase-64 kDa, protease-64 kDa, chitinase-30 kDa, and cellulase-54 kDa. Optimum pH and temperature of the partially purified enzymes, was carried out. The partially purified enzymes from C.P-20 displayed maximum activity at pH 6-7 and temperatures of 40°C-45°C. Moreover, the above endophytes will be useful tools for producing active enzymes and active bioantimicrobial agents against human pathogens.


Asunto(s)
Antiinfecciosos , Codonopsis , Humanos , Codonopsis/química , Codonopsis/metabolismo , Endófitos , Staphylococcus aureus , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Pruebas de Sensibilidad Microbiana
10.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2725-2731, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282932

RESUMEN

To solve the serious problem of stem and leaf shading in the middle and late stage of traditional flat planting of Codonopsis pilosula, this study analyzed the effects of different stereoscopic traction heights on the photosynthetic characteristics and growth of C. pilosula and explored the optimal traction height to improve the yield and quality of C. pilosula. The experiment designed three stereo-scopic traction heights [H1(60 cm), H2(90 cm), and H3(120 cm)] with natural growth without traction as the control(CK). The results showed that the increase in stereoscopic traction heights broadened the growth space of stems and leaves of C. pilosula, enhanced the ventilation effect, significantly increased the average daily net photosynthetic rate of C. pilosula, promoted the absorption of intercellular CO_2, decreased the transpiration rate, and reduced the evaporation of water. Moreover, it effectively avoided the problem of weakened photosynthesis, maintained the carbon balance of individual plants, and promoted the growth and development of the C. pilosula roots. In terms of the seed yield of C. pilosula, it was ranked as H2>H1>H3>CK. To be specific, H1 increased by 213.41% compared with CK, H2 increased by 282.43% compared with CK, and H3 increased by 133.95% compared with CK. The yield and quality of C. pilosula were the highest in the H3 treatment group, with the fresh yield of 6 858.33 kg·hm~(-2), 50.59% higher than CK, dry yield of 2 398.33 kg·hm~(-2), 76.54% higher than CK, and lobetyolin content of 0.56 mg·g~(-1), 45.22% higher than CK. Therefore, the stereoscopic traction height has a great influence on the photosynthetic characteristics, yield, and quality of C. pilosula. Particularly, the yield and quality of C. pilosula can be optimized and improved in the traction height treatment of H3(120 cm). This planting method is worth popularizing and applying in the cultivated management of C. pilosula.


Asunto(s)
Codonopsis , Tracción , Fotosíntesis , Hojas de la Planta , Raíces de Plantas
11.
Plant Physiol Biochem ; 198: 107659, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37031545

RESUMEN

In order to study the relationship between medicinal plant Codonopsis pilosula phenotype, secondary metabolites, antioxidant capacity and its rhizosphere soil nutrients, root-related microorganisms under seasonal and geographical changes, high-throughput sequencing technology was used to explore the bacterial community structure and variation in rhizosphere soil and root endosphere from six regions of Dingxi City, Gansu Province during four seasons. Secondary metabolites composition and antioxidant capacities of C. pilosula root collected successively from four seasons were determined. The chemical properties, nutrient content and enzyme activities of rhizosphere of C. pilosula were significantly different under different temporal and spatial conditions. All soil samples were alkaline (pH 7.64-8.42), with water content ranging from 9.53% to 19.95%, and electrical conductivity varied widely, showing obvious time-scale effects. Different time scales were the main reasons for the diversity and structure of rhizosphere bacterial community of C. pilosula. The diversity and richness of rhizosphere bacterial community in autumn and winter were higher than those in spring and summer, and bacterial community structure in spring and summer was more similar to that in autumn and winter. The root length and diameter of C. pilosula showed significant time gradient difference under different spatiotemporal conditions. Nutrition and niche competition lead to significant synergistic or antagonistic interactions between rhizosphere bacteria and endophytic bacteria, which invisibly affect soil properties, abundance of functional bacteria and even yield and quality of C. pilosula. Soil properties, rhizosphere bacteria and endophytic bacteria directly promoted root phenotype, stress resistance and polysaccharide accumulation of C. pilosula.


Asunto(s)
Codonopsis , Plantas Medicinales , Codonopsis/química , Antioxidantes , Raíces de Plantas/microbiología , Plantas Medicinales/química , Rizosfera , Suelo/química , Bacterias , Microbiología del Suelo
12.
Metabolites ; 13(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984896

RESUMEN

The dried root of Codonopsis pilosula (Franch.) Nannf., referred to as Dangshen in Chinese, is a famous traditional Chinese medicine. Polysaccharides, lobetyolin, and atractylenolide III are the major bioactive components contributing to its medicinal properties. Here, we investigated the dynamic changes of the main substances in annual Dangshen harvested at 12 time points from 20 May to 20 November 2020 (from early summer to early winter). Although the root biomass increased continuously, the crude polysaccharides content increased and then declined as the temperature fell, and so did the content of soluble proteins. However, the content of total phenolics and flavonoids showed an opposite trend, indicating that the carbon flux was changed between primary metabolism and secondary metabolism as the temperature and growth stages changed. The changes in the contents of lobetyolin and atractylenolide III indicated that autumn might be a suitable harvest time for Dangshen. The antioxidant capacity in Dangshen might be correlated with vitamin C. Furthermore, we analyzed the expression profiles of a few enzyme genes involved in the polysaccharide biosynthesis pathways at different growth stages, showing that CpUGpase and CPPs exhibited a highly positive correlation. These results might lay a foundation for choosing cultivars using gene expression levels as markers.

13.
Drug Des Devel Ther ; 17: 659-673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36883114

RESUMEN

Purpose: This study aimed to explore the pharmacological mechanism of Dangshen (Codonopsis pilosula) against hepatocellular carcinoma (HCC) based on network pharmacology and bioinformatics, and to verify the anticancer effect of luteolin, the active ingredient of Codonopsis pilosula, on HCC cells. Methods: The effective compounds and potential targets of Codonopsis pilosula were established using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. The genes related to HCC were obtained through the GeneCards database. The interactive genes were imported into the Visualization and Integrated Discovery database for Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal enrichment, and the hub genes were screened out. The Cancer Genome Atlas database was used to construct a prognosis model, and the prognosis and clinicopathological correlation were analyzed. In in vitro experiments, we verified the effects of luteolin, an active compound of Codonopsis pilosula, on the proliferation, cell cycle, apoptosis and migration of HCC cells. Results: A total of 21 effective compounds of Codonopsis pilosula and 98 potential downstream target genes were screened through the TCMSP database, and 1406 HCC target genes were obtained through the GeneCards database. Finally, 53 interacting genes between the two databases were obtained, among which, the 10 key node genes were CASP3, TP53, MDM2, AKT1, ESR1, BCL2L1, MCL1, HSP90AA1, CASP9, and CCND1, involving 77 typical GO terms and 72 KEGG signals. The Kaplan-Meier survival curve of the model group showed that the overall survival of the low-risk group was significantly higher than that of the high-risk group. Luteolin significantly inhibited the proliferation and migration of HCC cells, induced apoptosis, and increased the G2/M phase ratio. Mechanistically, luteolin significantly inhibited the phosphorylation of MAPK-JNK and Akt (Thr308) and subsequently led to upregulation of ESR1. Pharmacological inhibition of ESR1 with fulvestrant enhanced cell viability and migration and attenuated apoptosis. Conclusion: Codonopsis pilosula has potential for clinical development due to its anti-HCC properties. Luteolin, the effective component of Codonopsis pilosula, plays anti-HCC role through AKT- or MAPK-JNK signaling mediated ESR1.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Codonopsis , Neoplasias Hepáticas , Luteolina , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Biología Computacional , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Luteolina/farmacología , Luteolina/uso terapéutico , Farmacología en Red , Proteínas Proto-Oncogénicas c-akt
14.
J Pharm Biomed Anal ; 229: 115368, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37001273

RESUMEN

Codonopsis pilosula (CP) possesses properties related to nourishing the spleen and stomach, and tonifying Qi of the stomach and mind in traditional Chinese medicine (TCM). Codonopsis pilosula polysaccharides (CPPS), which are the primary active components of CP, are thought to be in charge of their extensive use. Rutin, quercetin, luteoloside, and luteolin, are common and pharmacologically significant flavonoids with many pharmacological activities, but their oral bioavailability is limited by poor solubility and stability. In this study, high-performance gel permeation chromatography (HPGPC) estimated the molecular weight of CPPS to be 9.7 × 105 Da. Sugar analysis revealed that CPPS is composed of D-mannose, D-glucose, and D-xylose with a molar ratio of 5.8:1.9:1.0. Moreover, the antioxidant test showed that CPPS had good antioxidant activity. It is worth noting that CPPS integrated the four flavonoids to form a spongy compound that significantly increased the solubilities and stabilities of flavonoids. The bonding constants of the CPPS and flavonoid-derived inclusion complexes ranged from 60 L mol-1 to 2,030,816 L mol-1, which demonstrated the capacity of CPPS to interact with flavonoids intermolecularly to form a drug complex system, resulting in potentially enhanced biopharmaceutical properties of flavonoids. This finding could provide a reference point for further applications of polysaccharides from herbal medicines.


Asunto(s)
Antioxidantes , Codonopsis , Antioxidantes/farmacología , Codonopsis/química , Solubilidad , Flavonoides , Polisacáridos/química
15.
J Fungi (Basel) ; 9(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36836261

RESUMEN

Codonopsis pilosula is an important Chinese herbal medicine. However, fresh C. pilosula is prone to decay during storage due to microorganism infections, seriously affecting the medicinal value and even causing mycotoxin accumulation. Therefore, it is necessary to study the pathogens present and develop efficient control strategies to mitigate their detrimental effects on the herbs during storage. In this study, fresh C. pilosula was collected from Min County in Gansu Province, China. The natural disease symptoms were observed during different storage stages, and the pathogens causing C. pilosula postharvest decay were isolated from the infected fresh C. pilosula. Morphological and molecular identification were performed, and pathogenicity was tested using Koch's postulates. In addition, the control of ozone was examined against the isolates and mycotoxin accumulation. The results indicated that the naturally occurring symptom increased progressively with the extension of storage time. The mucor rot caused by Mucor was first observed on day 7, followed by root rot caused by Fusarium on day 14. Blue mold disease caused by Penicillum expansum was detected as the most serious postharvest disease on day 28. Pink rot disease caused by Trichothecium roseum was observed on day 56. Moreover, ozone treatment significantly decreased the development of postharvest disease and inhibited the accumulations of patulin, deoxynivalenol, 15-Acetyl-deoxynivalenol, and HT-2 toxin.

16.
China Pharmacy ; (12): 1363-1367, 2023.
Artículo en Chino | WPRIM | ID: wpr-974686

RESUMEN

OBJECTIVE To study the quality of Codonopsis pilosula with different commodity specification grades, and to provide the data support for market transactions, scientific research and clinical use. METHODS According to the classification standard of commodity specification grades of C. pilosula, 17 batches of C. pilosula from different producing areas, origins and commodity specification grades were collected. The contents of tangshenoside Ⅰ, lobetyolin and atractylenolide Ⅲ were determined by HPLC. The contents of alcohol-soluble extracts were determined by hot dipping method stated in general rule 2201 of Chinese Pharmacopeia (part Ⅳ). The contents of polysaccharide were determined by phenol-sulfuric acid method (calculated by D-glucose anhydrous). RESULTS For cultivar of C. pilosula, four specifications and three commodity grades of C. pilosula all contained tangshenoside Ⅰ and lobetyolin; Radix C. pilosula from Shanxi of China and C. pilosula from Wenxian County of China, also contained atractylenolide Ⅲ. In terms of the contents of tangshenoside Ⅰ, lobetyolin and atractylenolide Ⅲ, the content of second class was equivalent to that of first class, even better than the first class, while the content of third class was lower than that of first class and second class; the content of tangshenoside Ⅰ was the highest among the two types of wild C. pilosula. The contents of alcohol-soluble extracts and polysaccharides in first class cultivated C. pilosula were higher than those of second class, and the second class was higher than the third class; wild C. pilosula had low content of alcohol-soluble extracts and polysaccharides. CONCLUSIONS The internal quality of C. pilosula is basically consistent with the classification standard of different commodity specification grades; the content of each indicator in first-class and second-class medicinal herb is high, making them high-quality medicinal herbs.

17.
Chin J Nat Med ; 20(12): 948-960, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36549808

RESUMEN

Codonopsis pilosula (CP), a well-known food medicine homology plant, is commonly used in many countries. In our preliminary study, a series of pyrrolidine alkaloids with high MS responses were detected as characteristic absorbed constituents in rat plasma after oral administration of CP extract. However, their structures were unclear due to the presence of various isomers and the lack of reference standards. In the present study, an MS-guided targeted isolation of pyrrolidine alkaloids of CP extract was performed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF MS). For data analysis under fast data directed acquisition mode (Fast-DDA), an effective approach named characteristic fragmentation-assisted mass spectral networking was successfully applied to discover new pyrrolidine alkaloids with high MS response in CP extract. As a result, seven new pyrrolizidine alkaloids [codonopyrrolidiums C-I (3-9)], together with two known ones (1 and 2), were isolated and identified by NMR spectral analysis. Among them, codonopyrrolidium B (1), codonopyrrolidium D (4) and codonopyrrolidium E (5) were evaluated for lipid-lowering activity, and they could improve high fructose-induced lipid accumulation in HepG2 cells. In addition, the characteristic MS/MS fragmentation patterns of these pyrrolizidine alkaloids were investigated, and 17 pyrrolidine alkaloids were identified. This approach could accelerate novel natural products discovery and characterize a class of natural products with MS/MS fragmentation patterns from similar chemical scaffolds. The research also provides a chemical basis for revealingin vivo effective substances in CP.


Asunto(s)
Alcaloides , Codonopsis , Plantas Medicinales , Alcaloides de Pirrolicidina , Animales , Ratas , Codonopsis/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Alcaloides/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pirrolidinas/farmacología , Pirrolidinas/análisis , Lípidos
18.
Plant Dis ; 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35549323

RESUMEN

As a commonly traditional Chinese medicine, the perennial herb Dangshen (Codonopsis pilosula) has superior curative effects including regulating immunity, strengthening the spleen, and tonifying lungs (Bai et al. 2020). To imitate natural ecological conditions, plants were grown on hillside fields with stems prostrate on the ground, tangle-up with each other. In August 2020, leaf spots were observed on C. pilosula in Wutai county, Shanxi province, China, and indicated a high disease incidence (70%-80%) in investigated fields (6.67 ha). Small brown necrotic spots, occasionally enclosed by chlorotic halos, were observed on leaves, stems, and sepals. For identification of the pathogen, 15 small pieces (5×5 mm) of symptomatic tissues from 5 randomly-collected diseased plants were surface sterilized, placed on potato dextrose agar plates, and incubated for 4 d in darkness at 25 °C to obtain the colonies. Cultures were purified by single spore isolation from these colonies. A total of 15 isolates named as Dcp-3, and Dcp-5~Dcp-18 were recovered. They produced ovoid or obclavate spores with 15.9-57.5×9.1-20.1 µm in size, 1-6 transverse septa, and 0-4 longitudinal septa. The conidial chains with 4 to 6 spores had numerous secondary and occasionally tertiary chains on potato carrot agar plates. Because all isolates had identical morphological traits, five genes from the representative isolate Dcp-3, actin (ACT), Alternaria major allergen (Alt a1), plasma membrane ATPase (ATP), histone 3 (H3), and rDNA ITS, were amplified with primer pairs ACTDF1/ACTDR1, Alt-for/Alt-rev, ATPDF1/ATPDR1, H3-1a/H3-1b, and ITS1/ITS4, respectively (Hong et al. 2005; Lawrence et al. 2013; Ma et al. 2020). BLASTn searches indicated species of Dcp-3 could not be accurately confirmed by rDNA ITS, ATP, ACT, and Alt a1 (GenBank accession nos. OM334894, OM362504, OM326344, OM362500). Phylogenetic analysis showed it was most closely related to Alternaria alternata, A. arborescens, and A. tenuissima based on concatenated sequences of above four genes. The H3 sequence (OM362508) shared 100% homology with that of A. alternata (MN481948). The phylogenetic tree using H3 also confirmed Dcp-3 as A. alternata. Heathly, two-year-old C. pilosula were transplanted to a greenhouse. A surface-sterilized leaf was sprayed with 50 µL spore suspension (106 conidia/mL) of Dcp-3. A leaf sprayed with isometric sterile water was used as controls. Each treatment used six plants (five leaves per plant). Plants were covered with sterilized plastic bags and incubated at 22 ℃. The test was repeated twice. A week later, control leaves were healthy, but brown necrotic spots similar to field symptoms emerged on treated leaves. The A. alternata isolates were re-isolated from the border of lesions, and confirmed by morphological and molecular characteristics mentioned above, fulfilling Koch's postulates. Leaf spot of C. pilosula caused by Septoria codonopsidis has been reported in China (Wang et al. 2011). However, to our knowledge, this is the first report of A. alternata inciting leaf spot of C. pilosula in China. Our report would promote growers to enhance the field management and consider associated strategies on controlling Alternaria leaf spot of C. pilosula.

19.
Front Pharmacol ; 13: 862763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35559259

RESUMEN

Codonopsis Radix (CR) is an important traditional Chinese medicine used for the treatment of spleen deficiency syndrome (SDS). Codonopsis pilosula polysaccharides (CPP) in CR are considered to be responsible for tonifying the spleen function; however, the mechanisms of the polysaccharides have remained unclear. This study aimed to investigate the treatment mechanisms of CPP in SDS mice using a combinational strategy of 16S rRNA gene sequencing and targeted metabolomics. Here, studies demonstrated that CPP had invigorating effect in vivo in Sennae Folium-induced SDS in mice by organ indexes, D-xylose determination, gastrointestinal hormones levels and goblet cells observation. Antibiotic treatment revealed that the intestinal microbiota was required for the invigorating spleen effect of CPP. Furthermore, gut microbiota analysis found that CPP significantly enriched probiotic Lactobacillus and decreased the abundance of some opportunistic pathogens, such as Enterococcus and Shigella. The metabolic profile analysis of the colonic content revealed that 25 chemicals were altered significantly by CPP, including amino acids, organic acids, fatty acids, carbohydrates and carnitine etc., which are mainly related to "energy conversion" related processes such as amino acids metabolism, tricarboxylic acid cycle, and nitrogen metabolism. Spearman's correlation assays displayed there were strong correlations among biochemical indicators-gut microbiota-metabolomics. In summary, these results provided a new perspective for CPP improving SDS by regulating energy metabolism related bacteria and pathways.

20.
Front Pharmacol ; 13: 786141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237158

RESUMEN

An inulin (CPPF), isolated from a traditional Chinese herbal medicine Codonopsis pilosula, was characterized and demonstrated with potential prebiotic activity in vitro before. Based on its non-digested feature, the intestinal mucosa and microbiota modulatory effects in vivo on immunosuppressed mice were investigated after oral administration of 200, 100 and 50 mg/kg of CPPF for 7 days. It was demonstrated that the secretions of sIgA and mucin 2 (Muc2) in ileum were improved by CPPF, and the anti-inflammatory activities in different intestine parts were revealed. The intestine before colon could be the target active position of CPPF. As a potential prebiotic substance, a gut microbiota restorative effect was also presented by mainly modulating the relative abundance of Eubacteriales, including Oscillibacter, unidentified Ruminococcus and Lachnospiraceae after high-throughput pyrosequencing of V4 region of 16S rRNA analysis. All these results indicated that this main bioactive ingredient inulin from C. pilosula was a medicinal prebiotic with enhancing mucosal immune, anti-inflammatory and microbiota modulatory activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA