Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Ethnopharmacol ; 327: 117835, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38490290

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Croton crassifolius has been used as a traditional Chinese medicine (TCM), called Radix Croton Crassifolius, and commonly known as "Ji Gu Xiang" in Chinese. Its medicinal value has been recorded in several medical books or handbooks, such as "Sheng Cao Yao Xing Bei Yao", "Ben Cao Qiu Yuan" and "Zhong Hua Ben Cao". It has been traditional employed for treating sore throat, stomach-ache, rheumatism and cancer. AIM OF THE STUDY: At present, there are limited studies on the evaluation of low-polarity extracts of roots in C. crassifolius. Consequently, the aim of this study was to evaluate the antitumor effect of the low-polarity extract of C. crassifolius root. MATERIALS AND METHODS: Extracts were obtained by supercritical fluid extraction. The extracts were tested for antitumor effects in vitro on several cancer cell lines. A CCK-8 kit was used for further analysis of cell viability. A flow cytometer and propidium iodide staining were used to evaluate the cell cycle and apoptosis. Hoechst staining, JC-1 staining and the fluorescence probe DCFH-DA were used to evaluate apoptotic cells. Molecular mechanisms of action were analyzed by quantitative RT‒PCR and Western blotting. Immunohistochemistry was used for the evaluation of xenograft tumors in male BALB/c mice. Finally, molecular docking was employed to predict the bond between the desired bioactive compound and molecular targets. RESULTS: Eleven diterpenoids were isolated from low-polarity C. crassifolius root extracts. Among the compounds, chettaphanin II showed the strongest activity (IC50 = 8.58 µM) against A549 cells. Evaluation of cell viability and the cell cycle showed that Chettaphanin II reduced A549 cell proliferation and induced G2/M-phase arrest. Chttaphanin II significantly induced apoptosis in A549 cells, which was related to the level of apoptosis-related proteins. The growth of tumor tissue was significantly inhibited by chettaphanin II in experiments performed on naked mice. The antitumor mechanism of chettaphanin II is that it can obstruct the mTOR/PI3K/Akt signaling pathway in A549 cells. Molecular docking established that chettaphanin II could bind to the active sites of Bcl-2 and Bax. CONCLUSIONS: Taken together, the natural diterpenoid chettaphanin II was identified as the major antitumor active component, and its potential for developing anticancer therapies was demonstrated for the first time by antiproliferation evaluation in vitro and in vivo.


Asunto(s)
Cromatografía con Fluido Supercrítico , Croton , Diterpenos , Humanos , Masculino , Ratones , Animales , Croton/química , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Extractos Vegetales/uso terapéutico , Diterpenos/farmacología , Proliferación Celular , Ratones Endogámicos BALB C , Apoptosis , Línea Celular Tumoral
2.
J Nat Med ; 76(4): 849-856, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35639239

RESUMEN

Two new clerodane diterpenoids (1 and 2), a new pyran-2-one derivative (3), along with five known compounds (4‒8), were isolated from Croton crassifolius. Notably, crassifolin X (1) is a novel clerodane diterpenoid, characterized with a peculiar δ-lactone core being formed between C-1 and C-4. Their structures, including absolute configurations, were established on the basis of spectroscopic methods (UV, IR, HRESIMS and NMR), and circular dichroism experiments. In addition, all compounds were evaluated for their anti-neuroinflammatory activities based on the expression of TNF-α and IL-6 levels on LPS-induced BV2 cells, and compounds 1‒3 and 5 showed potential anti-neuroinflammatory activity.


Asunto(s)
Croton , Diterpenos de Tipo Clerodano , Diterpenos , Croton/química , Diterpenos/química , Diterpenos de Tipo Clerodano/química , Diterpenos de Tipo Clerodano/farmacología , Estructura Molecular , Raíces de Plantas/química , Piranos/análisis
3.
Phytomedicine ; 87: 153570, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34062350

RESUMEN

BACKGROUND: Croton crassifolius Geisel (CCG, also known as Ji-Gu-Xiang in Traditional Chinese Medicine), is traditionally prescribed for the therapy of rheumatic arthritis and gastrointestinal ulcer. However, the effect of CCG on ulcerative colitis (UC) has not been investigated. PURPOSE: To explore the therapeutic potential and underlying mechanism of CCG extract against UC by colonic and serum metabolomics. METHODS: In order to standardize the CCG extract, UPLC-QTOF-MS was used for quantitative and qualitative analysis of the representative terpenoids. C57BL/6J mice were divided into control, Dextran Sulfate Sodium (DSS), mesalazine (100 mg•kg-1), CCG extract (150 and 600 mg•kg-1) groups. The mice were provided 3% DSS dissolved in distilled water ad libitum for 7 days except control group. Weight change, disease activity index (DAI), colon lengths and expression of inflammatory mediators iNOS and COX-2 in colonic tissue were determined. Serum and colon metabolomics using UPLC-QTOF-MS technology coupled with multivariate data analysis were performed to reveal the underlying mechanism. RESULTS: Thirty-five terpenoids in CCG were identified by fingerprint, in which ten representative terpenes were quantified. CCG could relieve the weight loss, the degree of bloody stool and ulcer of colon, as well as significantly lowering the expression level of iNOS and COX-2. Metabolomics analysis showed that 25 biomarkers were obviously interfered by CCG treatment and 16 of them were highly correlated with the efficacy of CCG. The analysis of metabolic pathway showed that the anti-UC effect of CCG was associated with the regulation on linoleic acid metabolism, sphingolipid metabolism, α-linolenic acid metabolism, and glycerophospholipids metabolism. CONCLUSIONS: The oral administration of CCG significantly alleviated DSS-induced UC symptoms by reducing inflammation and rectifying the metabolic disorder. CCG may provide a new strategy for the management of UC.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Croton/química , Extractos Vegetales/uso terapéutico , Administración Oral , Animales , Colitis Ulcerosa/inducido químicamente , Colon/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Sulfato de Dextran/efectos adversos , Inflamación/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/química , Transducción de Señal/efectos de los fármacos
4.
Nat Prod Res ; 34(20): 2945-2951, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31081703

RESUMEN

A pair of new neo-clerodane diterpenoid epimers, 3S-methoxyl-teucvin (1) and 3R-methoxyl-teucvin (2), were isolated from the Roots of Croton crassifolius. Their structures were completely established on the basis of spectroscopic methods, and the absolute configurations were determined by analysis of electronic circular dichroism (ECD) spectroscopy and X-ray diffraction analysis. Compounds 1 and 2 exhibited anti-inflammatory activities with IC50 values of 0.82 and 0.54 µM, respectively, while the IC50 value of dexamethasone as a positive control was found to be 0.14 µM.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Croton/química , Diterpenos de Tipo Clerodano/química , Diterpenos de Tipo Clerodano/farmacología , Animales , Antiinflamatorios/análisis , Antiinflamatorios no Esteroideos/química , Dicroismo Circular , Cristalografía por Rayos X , Diterpenos , Evaluación Preclínica de Medicamentos , Furanos , Espectroscopía de Resonancia Magnética , Ratones , Raíces de Plantas/química , Células RAW 264.7
5.
Phytomedicine ; 61: 152846, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31035041

RESUMEN

BACKGROUND: The use of plant essential oils as pharmaceuticals is a fast-growing market especially in China. Throughout the 20th century, a rapid increase took place in the use of many essential oil-derived products in the medicinal industry as nutraceuticals, medicinal supplements, and pharmaceuticals. PURPOSE: The objective of this study was to explore the chemical composition of Croton crassifolius essential oil as well as its potential anti-tumour properties and related anti-proliferative, autophagic, and apoptosis-inducing effects. METHODS: Supercritical CO2 fluid extraction technology was used to extract CCEO and the chemical constituents of the essential oil were identified by comparing the retention indices and mass spectra data taken from the NIST library with those calculated based on the C7-C40 n-alkanes standard. The cytotoxic activity and anti-proliferative effects of CCEO were evaluated against five cancer cell lines and one normal human cell line via CCK-8 assays. In addition, flow cytometry was used to detect cell cycle arrest. The efficacy of CCEO treatments in controlling cancer cell proliferation was assessed by cell cycle analysis, clonal formation assays, RT-qPCR, and western blot analysis. Autophagic and apoptosis-inducing effects of oils and the associated molecular mechanisms were assessed by flow cytometry, cell staining, reactive oxygen species assays, RT-qPCR, and western blot analysis. CONCLUSION: Forty compounds representing 92.90% of the total oil were identified in CCEO. The results showed that CCEO exerted a measurable selectivity for cancer cell lines, especially for A549 with the lowest IC50 value of 25.00 ± 1.62 µg/mL. Assessment of the anti-proliferative effects of CCEO on A549 cells showed that the oil inhibited cell proliferation and colony formation in a dose- and time-dependent manner. Investigation of the molecular mechanisms of cell cycle regulation confirmed that the oil arrested A549 cells in G2/M phase by decreasing the expression of cyclin B1-CDK1 and cyclin A-CDK1 and increasing the expression of cyclin-dependent kinase inhibitor (CKI) P21 at both the transcriptional and translational levels. Autophagy staining assays and western blot analysis revealed that CCEO promoted the formation of autophagic vacuoles in A549 cells and increased the expression of autophagy-related proteins beclin-1 and LC3-II in a dose-dependent manner. A series of apoptosis analyses indicated that CCEO induces apoptosis through a mitochondria-mediated intrinsic pathway. This study revealed that CCEO is a promising candidate for development into an anti-tumour drug of the future.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Cromatografía con Fluido Supercrítico/métodos , Croton/química , Aceites Volátiles/química , Células A549 , Antineoplásicos Fitogénicos/química , Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Proteína Quinasa CDC2/metabolismo , Dióxido de Carbono/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Aceites Volátiles/análisis , Raíces de Plantas/química , Especies Reactivas de Oxígeno/metabolismo
6.
Molecules ; 24(4)2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30769949

RESUMEN

Clerodane diterpenoids are the main bioactive constituents of Croton crassifolius and are proved to have multiple biological activities. However, quality control (QC) research on the constituents are rare. Thus, the major research purpose of the current study was to establish an efficient homogenate extraction (HGE) process combined with a sensitive and specific ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC⁻MS) technique together for the rapid extraction and determination of clerodane diterpenoids in C. crassifolius. All calibration curves showed good linearity (r > 0.9943) within the test ranges and the intra- and inter-day precisions and repeatability were all within required limits. This modified HGE⁻UHPLC⁻MS method only took 5 min to extract nine clerodane diterpenoids in C. crassifolius and another 12 min to quantify these components. The results indicated that the quantitative analysis based on UHPLC⁻MS was a feasible method for QC of clerodane diterpenoids in C. crassifolius, and the findings outlined in the current study also inferred the potential of the method in the QC of clerodane diterpenoids in other complex species of plants.


Asunto(s)
Cromatografía Líquida de Alta Presión , Croton/química , Diterpenos/química , Espectrometría de Masas , Extractos Vegetales/química , Fraccionamiento Químico , Diterpenos/análisis , Diterpenos/farmacología , Estructura Molecular , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Bioorg Med Chem Lett ; 27(5): 1237-1242, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28174107

RESUMEN

Hepatocellular carcinoma (HCC) is the most common type of liver cancer, and treatment options for HCC are limited. In addition, the discovery of new natural compounds with anti-hepatocarcinoma activity is attracting increasing attention. For this reason, phytochemical investigation of Croton crassifolius led to the isolation of 17 diterpenoids, including three new clerodane diterpenoids, named crassifolius A-C (1-3), along with 14 known ones (4-17). Their structures were established by 1D, 2D NMR, HR-ESI-MS, detailed calculated electronic circular dichroism (ECD) spectra and the assistance of quantum chemical predictions (QCP) of 13C NMR chemical shifts. The cytotoxicities of all these compounds against human liver cancer lines (HepG2 and Hep3B) were determined. Among them, compound 1 exhibited good cytotoxicity with IC50 value of 17.91µM against human liver tumor cells Hep3B. Following further studies of the anti-tumor mechanism of compound 1-induced cell growth inhibition, we found that compound 1 caused apoptotic cell death in Hep3B cells by detecting morphologic changes and Western blotting analysis.


Asunto(s)
Apoptosis/efectos de los fármacos , Croton/química , Diterpenos de Tipo Clerodano/química , Diterpenos de Tipo Clerodano/farmacología , Extractos Vegetales/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diterpenos de Tipo Clerodano/aislamiento & purificación , Diterpenos de Tipo Clerodano/uso terapéutico , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Neoplasias Hepáticas/tratamiento farmacológico , Espectroscopía de Resonancia Magnética , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas/química
8.
Fitoterapia ; 108: 81-6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26611371

RESUMEN

Two new clerodane diterpenoids (1-2), one new clerodane diterpenoid alkaloid (3), as well as thirteen known compounds were isolated from Croton crassifolius. The structures of new compounds were established by a combination of spectroscopic methods, including HRMS, (1)H NMR, (13)C NMR, (1)H (1)H COSY, HSQC, HMBC, NOESY and X-ray crystallographic analysis. Compound 3 is firstly reported as the clerodane-type diterpenoid alkaloid in natural products. All of the compounds were evaluated for in vitro cytotoxic activities against CT26.WT cell using the MTT method.


Asunto(s)
Croton/química , Diterpenos de Tipo Clerodano/química , Extractos Vegetales/química , Raíces de Plantas/química , Línea Celular Tumoral , Diterpenos de Tipo Clerodano/aislamiento & purificación , Humanos , Estructura Molecular
9.
J Ethnopharmacol ; 175: 185-91, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26386379

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Croton crassifolius Geisel is traditionally used in China for the treatment of snake bites, stomach ache, sternalgia, joint pain, pharyngitis, jaundice and rheumatoid arthritis, while in Thailand, it has been used as an anticancer herbal medicine by the indigenous people. Yet, its pharmacological studies are still limited, especially towards its anticancer property. Anti-angiogenesis is a promising therapeutic strategy in the anti-cancer treatment. Previous studies have shown strong anti-angiogenic activity in the low polar fraction of the herb. Nevertheless, the potent compound which is responsible for the anti-angiogenesis, and its molecular mechanism have never been reported. AIM OF THE STUDY: To determine the potent anti-angiogenic component in C. crassifolius and its molecular mechanism of action. MATERIALS AND METHODS: C. crassifolius was extracted using supercritical fluid extraction and steam distillation. The anti-angiogenic activities of the two extracts were evaluated in the zebrafish model by quantitative endogenous alkaline phosphatase assay. The chemical compounds in the active extract were isolated using chromatographic methods, and their structures were elucidated using different spectroscopic techniques. The content/quantity of the active compounds in this extract was determined with HPLC analysis. The molecular mechanism of the most active compound was further studied using the real-time PCR assay. Besides, its cytotoxicity on various cancer and normal cell lines was evaluated using the cell-counting kit. RESULTS: Supercritical fluid extract (SFE) of C. crassifolius showed better anti-angiogenic activity than that of steam distillation extract (SDE). Three sesquiterpenes, namely, cyperenoic acid, 8-hydroxy-α-guaiene and (+)-guaia-l(10),ll-dien-9-one, were isolated and identified in the SFE. Among them, cyperenoic acid displayed the strongest anti-angiogenic activity by 51.7% of the control at 10µM, while the others showed little effect. HPLC results showed that cyperenoic acid was the major component in the SFE with 9.97% (w/w). Results of the real-time PCR assay suggested that the cyperenoic acid affected multiple molecular targets related to angiogenesis including vascular endothelial growth factor (Vegfa), angpiopoietin (Angpt), and their receptors. Cytotoxicity assay showed cyperenoic acid possessed little toxicity toward cancer and normal cells. CONCLUSIONS: Cyperenoic acid is an important anti-angiogenic component present in C. crassifolius and serve as a potent inhibitor in the angiogenesis in the zebrafish embryo model. The anti-angiogenic property, but not the cytotoxicity, of C. crassifolius provides a scientific basis for its traditional use in cancer treatment.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Croton , Extractos Vegetales/farmacología , Angiopoyetina 1/genética , Angiopoyetina 2/genética , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Embrión no Mamífero , Humanos , Raíces de Plantas , Receptor TIE-1/genética , Receptor TIE-2/genética , Factor A de Crecimiento Endotelial Vascular/genética , Células Vero , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA