Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plants (Basel) ; 13(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38592895

RESUMEN

Dendrobium officinale Kimura et Migo (D. officinale) is one of the most important traditional Chinese medicinal herbs, celebrated for its abundant bioactive ingredients. This study demonstrated that the diurnal temperature difference (DIF) (T1: 13/13 °C, T2: 25/13 °C, and T3: 25/25 °C) was more favorable for high chlorophyll, increased polysaccharide, and total flavonoid contents compared to constant temperature treatments in D. officinale PLBs. The transcriptome analysis revealed 4251, 4404, and 4536 differentially expressed genes (DEGs) in three different comparisons (A: 25/13 °C vs. 13/13 °C, B: 13/13 °C vs. 25/25 °C, and C: 25/13 °C vs. 25/25 °C, respectively). The corresponding up-/down-regulated DEGs were 1562/2689, 2825/1579, and 2310/2226, respectively. GO and KEGG enrichment analyses of DEGs showed that the pathways of biosynthesis of secondary metabolites, carotenoid biosynthesis, and flavonoid biosynthesis were enriched in the top 20; further analysis of the sugar- and flavonol-metabolism pathways in D. officinale PLBs revealed that the DIF led to a differential gene expression in the enzymes linked to sugar metabolism, as well as to flavonol metabolism. Certain key metabolic genes related to ingredient accumulation were identified, including those involved in polysaccharide metabolism (SUS, SUT, HKL1, HGL, AMY1, and SS3) and flavonol (UGT73C and UGT73D) metabolism. Therefore, these findings indicated that these genes may play an important role in the regulatory network of the DIF in the functional metabolites of D. officinale PLBs. In a MapMan annotation of abiotic stress pathways, the DEGs with significant changes in their expression levels were mainly concentrated in the heat-stress pathways, including heat-shock proteins (HSPs) and heat-shock transcription factors (HSFs). In particular, the expression levels of HSP18.2, HSP70, and HSF1 were significantly increased under DIF treatment, which suggested that HSF1, HSP70 and HSP18.2 may respond to the DIF. In addition, they can be used as candidate genes to study the effect of the DIF on the PLBs of D. officinale. The results of our qPCR analysis are consistent with those of the transcriptome-expression analysis, indicating the reliability of the sequencing. The results of this study revealed the transcriptome mechanism of the DIF on the accumulation of the functional metabolic components of D. officinale. Furthermore, they also provide an important theoretical basis for improving the quality of D. officinale via the DIF in production.

2.
Environ Sci Pollut Res Int ; 31(17): 25940-25951, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38491238

RESUMEN

Pesticide residue was one of the stress factors affecting quality and safety of Chinese herbal medicines (CHMs). The present study was designed to investigate the occurrence and dietary exposure of 70 pesticide residues in 307 samples of CHMs, including 104 American ginseng, 100 Ganoderma lucidum (G. lucidum), and 103 Dendrobium officinale (D. officinale) in Shandong Province, China. The study revealed that a total of 29 pesticides were detected in the majority (92.5%) of samples, and the pesticide residues of 85 (27.7%) samples exceeded the maximum residue levels (MRLs). Particularly, the maximum concentration of chlorpyrifos was 23.8 mg kg-1, almost 50 times of the MRLs in food in GB 2763-2021, while there's no standard restrictions specified in CHMs in China. The chronic, acute, and cumulative risk assessment results indicated that risk exposure of the three types of CHMs were unlikely to pose a health risk to consumers. However, more attention should be paid to the multiple residues with the presence of four or more pesticides in one sample and high over-standard rate of pesticides. The pesticide users and the government should pay more attention to the pesticides used in CHMs and regularly monitor the presence of these compounds. The study recommended the MRLs of these pesticides in CHMs should be established and perfected by the relevant departments in China.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Alimentos , China , Contaminación de Alimentos/análisis , Extractos Vegetales , Medición de Riesgo
3.
Nutrients ; 16(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542808

RESUMEN

Ethanol fractional precipitation can initially separate polysaccharides according to the structure, which exhibits strong correlation with the biological activities. This study aimed to investigate the impact of varying ethanol concentrations on the structural characteristics, and the antitumor and antioxidant activities of polysaccharides derived from Dendrobium officinale through ethanol fractional precipitation, as well as their internal relationships. The polysaccharides acquired by absolute alcohol additions at a final liquor-ethanol volume ratio of 1:1, 1:2, and 1:4 were named DOP-1, DOP-2, and DOP-4, and the supernatant was named DOP-S. The results of the structural analysis revealed that the increase in ethanol concentrations resulted in a reduction in the molecular weights and the acetylation degree of the polysaccharides, as well as a decrease in mannose content and an increase in glucose content. In vitro experiments demonstrated that DOP-S exhibited optimal antitumor and antioxidant activities. Animal experiments further confirmed that DOP-S suppressed the growth of solid tumors significantly, enhanced lymphocytes, mediated immune ability, and improved the activity of antioxidant enzymes. These findings would establish a theoretical foundation and provide technical support for further advances and applications of polysaccharides derived from D. officinale in the fields of food and medicine.


Asunto(s)
Antioxidantes , Dendrobium , Animales , Antioxidantes/farmacología , Antioxidantes/química , Dendrobium/química , Etanol , Extractos Vegetales/farmacología , Extractos Vegetales/química , Polisacáridos/farmacología , Polisacáridos/química
4.
Environ Sci Pollut Res Int ; 30(49): 107827-107840, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37740810

RESUMEN

Dendrobium officinale Kimura et Migo (D. officinale) is a traditional Chinese medicine homologous to food, and its safety has attracted considerable attention. Pesticide residues are critical indicators for evaluating the safety of D. officinale. This study investigated the levels of 130 pesticides in 137 stem samples and 82 leaf samples from five main production areas of D. officinale in Zhejiang Province, along with the associated risk of dietary exposure for the population between 2019 and 2021. Forty-five pesticides were detected in 171 samples, of which pyraclostrobin had the highest detection frequency. Multiple residues were detected in 52.56% of the stem samples and 54.88% of the leaf samples, and one stem sample contained up to 18 pesticides. Here, the level of difenoconazole in three samples (two stem samples and one leaf sample) was higher than the maximum residue limit (MRL) in China. Considering the possible health risks related to pesticide residues, a risk assessment of human exposure to pesticides via the intake of D. officinale stems and leaves was evaluated, indicating negligible short-term, long-term, and cumulative risks to human health. However, considering the high detection rate of unregistered pesticides, the supplementation of pesticide registration information on D. officinale should be expedited, and MRLs should be established to ensure food and drug safety.


Asunto(s)
Dendrobium , Residuos de Plaguicidas , Plaguicidas , Humanos , Residuos de Plaguicidas/análisis , Medicina Tradicional China , Contaminación de Alimentos/análisis , Medición de Riesgo
5.
Front Pharmacol ; 13: 832134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401206

RESUMEN

Globally, gastric cancer (GC) is one of the three most deadly cancers. Dendrobium officinale (D. officinale) is a traditional Chinese medicine (TCM), and its extract can significantly inhibit the proliferation of gastric cancer cells. However, there are no unified conclusions on its potential active components and possible mechanisms of action. This paper aims at exploring the potential active components, targets, and cell pathways of D. officinale extract in inhibiting the proliferation of gastric cancer cells by using network pharmacology and cytology experiments. In this paper, UPLC-MS/MS was used to identify the main chemical components in the extracts of D. officinale, and the an ADME model was used to screen the potential active components. Network pharmacology methods such as target prediction, pathway identification, and network construction were used to determine the mechanism through which the D. officinale extract inhibited gastric cancer cell proliferation. MTT assays, fluorescence confocal microscopy, clone formation, and flow cytometry were used to verify the inhibitory activity of the D. officinale extract on gastric cancer cell proliferation in vitro. The UPLC-MS/MS analysis identified 178 chemical components from the D. officinale extract. Network pharmacology analysis showed that 13 chemical components had the potential to inhibit the proliferation of gastric cancer cells, with the possible involvement of 119 targets and 20 potential signaling pathways. In vitro experiments confirmed that the D. officinale extract could significantly inhibit the proliferation of gastric cancer cells. Therefore, we believe that the D. officinale extract can inhibit the proliferation of gastric cancer cells through effects on multiple components, multiple targets, and multiple pathways.

6.
Molecules ; 26(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203202

RESUMEN

As an alternative to Dendrobium candidum, protocorm-like bodies (PLBs) of Dendrobium candidum are of great value due to their high yield and low cost. In this work, three glycoside compounds, ß-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat] (I), ß-D-glucopyranose 1-[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat] (II), and 1-O-sinapoyl glucopyranoside (III), were extracted and isolated by ultrahigh pressure extraction (UPE) coupled with high-speed counter-current chromatography (HSCCC) from PLBs of D. officinale. First, the target compounds were optimized and prepared with 50% ethanol solution at a 1:30 (g/mL) solid/liquid ratio in 2 min under 300 MPa by UPE. Then, the crude extract was chromatographed with a silica gel column, and primary separation products were obtained. In addition, the products (150 mg) were separated by HSCCC under the solvent system of MTBE-n-butyl alcohol-acetonitrile-water (5:1:2:6, v/v/v/v), yielding 31.43 mg of compound I, 10.21 mg of compound II, and 24.75 mg of compound III. Their structures were further identified by ESI-MS, 1H NMR, and 13C NMR. The antioxidant results showed that the three compounds expressed moderate effects on the DPPH· scavenging effect. Compound II had the best antioxidant capacity and its IC50 value was 0.0497 mg/mL.


Asunto(s)
Dendrobium/química , Glicósidos , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Distribución en Contracorriente , Glicósidos/química , Glicósidos/aislamiento & purificación
7.
Zhongguo Zhong Yao Za Zhi ; 44(12): 2600-2606, 2019 Jun.
Artículo en Chino | MEDLINE | ID: mdl-31359730

RESUMEN

Books on Chinese herbal medicines have shown that Dendrobium has the effect of nourishing Yin and reinforcing Yin,usually used for constipation induced by spleen Yin deficiency in clinical application. D. huoshanense,as an independent species among many species of Dendrobium,has no experimental studies about its effects on spleen Yin deficiency-type constipation. The purpose of this experiment was to illustrate the therapeutic effect of D. huoshanense on the constipation of spleen Yin deficiency type in rats,investigate its preliminary mechanism,and compare it with the D. officinale and D. nobile contained in the Chinese Pharmacopoeia to clarify its characteristics. The spleen Yin deficiency model was replicated in 70 rats by the composite factor method,and then the model rats were randomly divided into 7 groups: model group,Liuwei Dihuang Pills group( LWDHP),D. huoshanense high( DHS-H),medium( DHS-M),low( DHS-L) dose groups,D. nobile group( DNS),and D. officinale group( DOS),and another 10 rats were used as normal group( Normal). After 7 continuous days of administration,the fecal water content and intestine propulsion rate of each group were detected. HE staining was used to observe the pathological damage of ileum and colon in each group. Immunohistochemistry and Western blot were used to detect aquaporin 3( AQP3) expressions,while the expression levels of the somatostatin( SS) and motilin( MTL) in the ileum of each group were detected by enzyme-linked immunosorbent assay. The results showed that as compared with the model group,the rats in each drug-administered group had increased number of fecal pellets,increased fecal water content,and the increased intestinal propulsion rate( P<0. 01),while the pathological damage of the ileum and colon was significantly reduced; the expression of AQP3 protein was significantly decreased( P<0. 01); the level of MTL was significantly increased and the level of SS was decreased( P<0. 01). All DHS groups showed a good dose-effect relationship,and the same dose treatment effect was equivalent to that of DOS,but it was superior to DNS. Therefore,DHS has a significant therapeutic effect on constipation of spleen Yin deficiency type,and its mechanism may be related to intestinal motility and water-liquid metabolism,with a good therapeutic effect.


Asunto(s)
Estreñimiento/tratamiento farmacológico , Dendrobium/química , Medicamentos Herbarios Chinos/farmacología , Plantas Medicinales/química , Deficiencia Yin/tratamiento farmacológico , Animales , Intestinos , Distribución Aleatoria , Ratas , Bazo
8.
Artículo en Chino | WPRIM | ID: wpr-773220

RESUMEN

Books on Chinese herbal medicines have shown that Dendrobium has the effect of nourishing Yin and reinforcing Yin,usually used for constipation induced by spleen Yin deficiency in clinical application. D. huoshanense,as an independent species among many species of Dendrobium,has no experimental studies about its effects on spleen Yin deficiency-type constipation. The purpose of this experiment was to illustrate the therapeutic effect of D. huoshanense on the constipation of spleen Yin deficiency type in rats,investigate its preliminary mechanism,and compare it with the D. officinale and D. nobile contained in the Chinese Pharmacopoeia to clarify its characteristics. The spleen Yin deficiency model was replicated in 70 rats by the composite factor method,and then the model rats were randomly divided into 7 groups: model group,Liuwei Dihuang Pills group( LWDHP),D. huoshanense high( DHS-H),medium( DHS-M),low( DHS-L) dose groups,D. nobile group( DNS),and D. officinale group( DOS),and another 10 rats were used as normal group( Normal). After 7 continuous days of administration,the fecal water content and intestine propulsion rate of each group were detected. HE staining was used to observe the pathological damage of ileum and colon in each group. Immunohistochemistry and Western blot were used to detect aquaporin 3( AQP3) expressions,while the expression levels of the somatostatin( SS) and motilin( MTL) in the ileum of each group were detected by enzyme-linked immunosorbent assay. The results showed that as compared with the model group,the rats in each drug-administered group had increased number of fecal pellets,increased fecal water content,and the increased intestinal propulsion rate( P<0. 01),while the pathological damage of the ileum and colon was significantly reduced; the expression of AQP3 protein was significantly decreased( P<0. 01); the level of MTL was significantly increased and the level of SS was decreased( P<0. 01). All DHS groups showed a good dose-effect relationship,and the same dose treatment effect was equivalent to that of DOS,but it was superior to DNS. Therefore,DHS has a significant therapeutic effect on constipation of spleen Yin deficiency type,and its mechanism may be related to intestinal motility and water-liquid metabolism,with a good therapeutic effect.


Asunto(s)
Animales , Ratas , Estreñimiento , Quimioterapia , Dendrobium , Química , Medicamentos Herbarios Chinos , Farmacología , Intestinos , Plantas Medicinales , Química , Distribución Aleatoria , Bazo , Deficiencia Yin , Quimioterapia
9.
Zhongguo Zhong Yao Za Zhi ; 42(12): 2223-2227, 2017 Jun.
Artículo en Chino | MEDLINE | ID: mdl-28822173

RESUMEN

In view of the significant difficulties of propagation, planting and simple product in Dendrobium catenatum(D. officinale)industry development, a series of research were carried out. Genome study showed that D. catenatum is a specie of diploid with 38 chromosomes and 28 910 protein-coding genes. It was identified that specific genes accumulated in different organs at the transcriptome level. We got an insight into the gene regulation mechanism of the loss of the endospermous seed, the wide ecological adaptability and the synthesis of polysaccharides, which provided a theoretical basis for genetic engineering breeding and development and utilization of active pharmaceutical ingredients. The rapid propagation system was established for applying to industrialized production by overcoming breeding problems on seed setting and sprouting, which laid a foundation for artificial cultivation of D. catenatum. And in order to give a clear explanation of genetic variation of important economic traits, we built up the breeding system. Since special varieties of D. catenatum were bred, it helped solve the problem of trait segregation of seedling progeny and support the improvement of D. catenatum industry. The regulation of dynamic variation of target compounds, together with the mechanism of nutrient uptake, was revealed. The breakthrough of key technologies including culture substrates, light regulation and precisely collection was carried out. Several cultivation modes like facility cultivation, original ecological cultivation, cliff epiphytic cultivation, stereoscopic cultivation and potting cultivation were set up. Above all, the goal of cultivating D. catenatum as well as producing good D. catenatum will be achieved.


Asunto(s)
Agricultura , Dendrobium/genética , Fitomejoramiento , Dendrobium/química , Medicamentos Herbarios Chinos , Plantas Medicinales/química , Plantas Medicinales/genética , Polisacáridos/biosíntesis
10.
BMC Genomics ; 18(1): 598, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28797234

RESUMEN

BACKGROUND: Lysine succinylation is a ubiquitous and important protein post-translational modification in various eukaryotic and prokaryotic cells. However, its functions in Dendrobium officinale, an important traditional Chinese orchid herb with high polysaccharide contents, are largely unknown. RESULTS: In our study, LC-MS/MS was used to identify the peptides that were enriched by immune-purification with a high-efficiency succinyl-lysine antibody. In total, 314 lysine succinylation sites in 207 proteins were identified. A gene ontology analysis showed that these proteins are associated with a wide range of cellular functions, from metabolic processes to stimuli responses. Moreover, two types of conserved succinylation motifs, '***Ksuc******K**' and '****EKsuc***', were identified. Our data showed that lysine succinylation occurred on five key enzymes in the glycolysis pathway. The numbers of average succinylation sites on these five enzymes in plants were lower than those in bacteria and mammals. Interestingly, two active site amino acids residues, K103 and K225, could be succinylated in fructose-bisphosphate aldolase, indicating a potential function of lysine succinylation in the regulation of glycolytic enzyme activities. Furthermore, the protein-protein interaction network for the succinylated proteins showed that several functional terms, such as glycolysis, TCA cycle, oxidative phosphorylation and ribosome, are consisted. CONCLUSIONS: Our results provide the first comprehensive view of the succinylome of D. officinale and may accelerate future biological investigations of succinylation in the synthesis of polysaccharides, which are major active ingredients.


Asunto(s)
Dendrobium/metabolismo , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Secuencias de Aminoácidos , Sitios de Unión , Dendrobium/citología , Glucólisis , Espacio Intracelular/metabolismo , Lisina/metabolismo , Anotación de Secuencia Molecular , Proteínas de Plantas/química , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Alineación de Secuencia
11.
Appl Microbiol Biotechnol ; 101(6): 2227-2239, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28197691

RESUMEN

Plants of the Dendrobium genus, one of the largest in the Orchidaceae, manifest a diversity of medicinal effects encompassing antiangiogenic, immunomodulating, antidiabetic, cataractogenesis-inhibiting, neuroprotective, hepatoprotective, anti-inflammatory, antiplatelet aggregation, antifungal, antibacterial, antiherpetic, antimalarial, aquaporin-5 stimulating, and hemagglutininating activities and also exert beneficial actions on colonic health and alleviate symptoms of hyperthyroidism. The active principles include a wide range of proteinaceous and non-proteinaceous molecules. This mini-review discusses the latest advances in what is known about the medicinal and pharmaceutical properties of members of the Dendrobium genus and explores how biotechnology can serve as a conduit to mass propagate valuable germplasm for sustainable exploration for the pharmaceutical industry.


Asunto(s)
Dendrobium/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Polisacáridos/farmacología , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Humanos , Factores Inmunológicos/aislamiento & purificación , Factores Inmunológicos/farmacología , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/farmacología , Oligopéptidos/síntesis química , Oligopéptidos/farmacología , Plantas Medicinales , Polisacáridos/aislamiento & purificación
12.
Front Plant Sci ; 7: 5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26904032

RESUMEN

Dendrobium officinale is one of the most important Chinese medicinal herbs. Polysaccharides are one of the main active ingredients of D. officinale. To identify the genes that maybe related to polysaccharides synthesis, two cDNA libraries were prepared from juvenile and adult D. officinale, and were named Dendrobium-1 and Dendrobium-2, respectively. Illumina sequencing for Dendrobium-1 generated 102 million high quality reads that were assembled into 93,881 unigenes with an average sequence length of 790 base pairs. The sequencing for Dendrobium-2 generated 86 million reads that were assembled into 114,098 unigenes with an average sequence length of 695 base pairs. Two transcriptome databases were integrated and assembled into a total of 145,791 unigenes. Among them, 17,281 unigenes were assigned to 126 KEGG pathways while 135 unigenes were involved in fructose and mannose metabolism. Gene Ontology analysis revealed that the majority of genes were associated with metabolic and cellular processes. Furthermore, 430 glycosyltransferase and 89 cellulose synthase genes were identified. Comparative analysis of both transcriptome databases revealed a total of 32,794 differential expression genes (DEGs), including 22,051 up-regulated and 10,743 down-regulated genes in Dendrobium-2 compared to Dendrobium-1. Furthermore, a total of 1142 and 7918 unigenes showed unique expression in Dendrobium-1 and Dendrobium-2, respectively. These DEGs were mainly correlated with metabolic pathways and the biosynthesis of secondary metabolites. In addition, 170 DEGs belonged to glycosyltransferase genes, 37 DEGs were related to cellulose synthase genes and 627 DEGs encoded transcription factors. This study substantially expands the transcriptome information for D. officinale and provides valuable clues for identifying candidate genes involved in polysaccharide biosynthesis and elucidating the mechanism of polysaccharide biosynthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA