Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(15): 8618-8631, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38569082

RESUMEN

Daidzein (DAN) is an isoflavone, and it is often found in its natural form in soybean and food supplements. DAN has poor bioavailability owing to its extremely low water solubility and first-pass metabolism. Herein, we hypothesized that a bioactivatable natural amino acid-bearing carbamate prodrug strategy could increase the water solubility and metabolic stability of DAN. To test our hypothesis, nine amino acid prodrugs of DAN were designed and synthesized. Compared with DAN, the optimal prodrug (daidzein-4'-O-CO-N-isoleucine, D-4'-I) demonstrated enhanced water solubility and improved phase II metabolic stability and activation to DAN in plasma. In addition, unlike the passive transport of DAN, D-4'-I maintained high permeability via organic anion-transporting polypeptide 2B1 (OATP2B1)-mediated transport. Importantly, D-4'-I increased the oral bioavailability by 15.5-fold, reduced the gender difference, and extended the linear absorption capacity in the pharmacokinetics of DAN in rats. Furthermore, D-4'-I exhibited dose-dependent protection against liver injury. Thus, the natural amino acid-bearing carbamate prodrug strategy shows potential in increasing water solubility and improving phase II metabolic stability to enhance the oral bioavailability of DAN.


Asunto(s)
Isoflavonas , Profármacos , Animales , Ratas , Administración Oral , Aminoácidos/química , Disponibilidad Biológica , Carbamatos/química , Profármacos/química , Solubilidad , Agua
2.
J Ethnopharmacol ; 325: 117824, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38278375

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cornus officinalis var. koreana Kitam (Cornus officinalis) is a commonly used Chinese herbal medicine and has a good clinical efficacy in kidney and liver diseases. Recent years, a number of studies reported the significant effects of Cornus officinalis on renal fibrosis. However, it is still unclear about the underlying specific mechanism, the bioactive ingredients, and the target gene regulatory network. AIM OF THE STUDY: We investigated the impact of Cornus officinalis extract on cadmium-induced renal fibrosis, screened the bioactive ingredients of Cornus officinalis using a pharmacological sub-network analysis, and explored the regulatory effects of Cornus officinalis extracts on target gene matrix metallopeptidase 9 (MMP9). METHODS: Male C57BL/6N mice were treated with single or combinatorial agents such as saline, cadmium chloride, Cornus officinalis, Isoginkgetin and FSL-1. Isoginkgetin is a compound with anti-MMP9 activity. FSL-1 can induce MMP9 expression. Masson staining and Western blot and immunohistochemistry analyses were used for assessing renal fibrosis. In addition, wound healing model was established using BUMPT (Boston university mouse proximal tubular) cells to investigate how Cornus officinalis affected cadmium-induced cell migration. The main Cornus officinalis bioactive compounds were identified by UHPLC-MS (Ultra-high-performance liquid chromatography - mass spectrometry). The MMP9 target for Cornus officinalis active ingredients were confirmed through a pharmacological sub-network analysis. RESULTS: Aqueous extracts of Cornus officinalis protected from renal dysfunction and kidney fibrosis induced by cadmium chloride in mice. In vitro experiments validated that Cornus officinalis extracts inhibited cell migration ability especially in cadmium chloride condition. The sub-network analysis and chemical components profiling technique revealed the active compounds of Cornus officinalis. Cellular thermal shift assay verified the binding abilities of three active components Daidzein, N-Acetyl-L-tyrosine or Swertisin with matrix metalloproteinase-9. Gelatin zymography assay revealed that the activity of MMP9 was inhibited by the three active components. We further confirmed that MMP9 was involved in the process of Cornus officinalis extracts reducing renal fibrosis. Cornus officinalis attenuated the cadmium-induced renal fibrosis was correlated with decreased expression of MMP9, collagen I, α-SMA (alpha-smooth muscle actin) and vimentin. CONCLUSIONS: This study demonstrated that Cornus officinalis extracts could alleviate the cadmium chloride-induced renal fibrosis by targeting MMP9, and might provide new insights into the mechanism of treating renal fibrosis by Cornus officinalis.


Asunto(s)
Cornus , Enfermedades Renales , Humanos , Masculino , Ratones , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Cornus/química , Cadmio/toxicidad , Metaloproteinasa 9 de la Matriz , Cloruro de Cadmio , Ratones Endogámicos C57BL , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/prevención & control , Fibrosis
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4871-4881, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38159158

RESUMEN

Lung cancer is the most common cause of cancer-related mortality, chemo-resistance, and toxicity limit treatment. The focus is on innovative combined phytotherapy to improve treatment outcomes. Our aim was to investigate the potential effects of daidzein nanosuspension (DZ-NS) and its combination with cisplatin (CIS) on A549 non-small lung cancer cells. Cytotoxicity was investigated using MTT and Chou-Talalay methods. Oxidative, apoptotic, and inflammatory markers were analyzed by ELISA and qRT-PCR. The IC50 value for DZ-NS was 25.23 µM for 24 h and was lower than pure DZ (IC50 = 835 µM for pure DZ). DZ-NS (at IC50x2 and IC50 values) showed synergistic cytotoxicity with CIS. The cells treated with DZ-NS had low TOS and OSI levels. However, DZ-NS failed to regulate Cas3 and TGF-ß1 activation in A549 cells. MMP-9 gene expression was significantly suppressed in DZ-NS-treated cells, especially in combination therapy. DZ represents a potential combination option for the treatment of lung cancer, and its poor toxicokinetic properties limit its clinical use. To overcome these limitations, the effects of the nanosuspension formulation were tested. DZ-NS showed a cytotoxic effect on A549 cells and optimized the therapeutic effect of CIS. This in vitro synergistic effect was mediated by suppression of MMP-9 and not by oxidative stress or Cas3-activated apoptosis. This study provides the basis for an in vivo and clinical trial of DZ-NS with concurrent chemotherapy.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Cisplatino , Sinergismo Farmacológico , Isoflavonas , Neoplasias Pulmonares , Humanos , Cisplatino/farmacología , Cisplatino/administración & dosificación , Células A549 , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Isoflavonas/farmacología , Isoflavonas/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Apoptosis/efectos de los fármacos , Nanopartículas , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Suspensiones , Estrés Oxidativo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética
4.
Zhongguo Zhong Yao Za Zhi ; 48(18): 5068-5077, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802849

RESUMEN

This study investigated the drug delivery performance of oral co-loaded puerarin(PUE) and daidzein(DAZ) mixed micelles(PUE/DAZ-FS/PMMs) from the perspectives of pharmacokinetics, pharmacodynamics, and tissue distribution. The changes in PUE plasma concentration in rats were evaluated based on PUE suspension, single drug-loaded micelles(PUE-FS/PMMs), and co-loaded micelles(PUE/DAZ-FS/PMMs). Spontaneously hypertensive rats(SHR) were used to monitor systolic blood pressure, diastolic blood pressure, and mean arterial pressure for 10 weeks after administration by tail volume manometry. The content of PUE in the heart, liver, spleen, lung, kidney, brain, and testes was determined using LC-MS/MS. The results showed that compared with PUE suspension and PUE-FS/PMMs, PUE/DAZ-FS/PMMs significantly increased C_(max) in rats(P<0.01) and had a relative bioavailability of 122%. The C_(max), AUC_(0-t), AUC_(0-∞), t_(1/2), and MRT of PUE/DAZ-FS/PMMs were 1.77, 1.22, 1.22, 1.17, and 1.13 times higher than those of PUE suspension, and 1.76, 1.16, 1.08, 0.84, and 0.78 times higher than those of PUE-FS/PMMs, respectively. Compared with the model control group, PUE/DAZ-FS/PMMs significantly reduced systolic blood pressure, diastolic blood pressure, and mean arterial pressure in SHR rats(P<0.05). The antihypertensive effect of PUE/DAZ-FS/PMMs was greater than that of PUE suspension, and even greater than that of PUE-FS/PMMs at high doses. Additionally, the distribution of PMMs in various tissues showed dose dependency. The distribution of PMMs in the kidney and liver, which are metabolically related tissues, was lower than that in the suspension group, while the distribution in the brain was higher than that in the conventional dose group. In conclusion, PUE/DAZ-FS/PMMs not only improved the bioavailability of PUE and synergistically enhanced its therapeutic effect but also prolonged the elimination of the drug to some extent. Furthermore, the micelles facilitated drug penetration through the blood-brain barrier. This study provides a foundation for the development of co-loaded mixed micelles containing homologous components.


Asunto(s)
Isoflavonas , Micelas , Ratas , Animales , Distribución Tisular , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ratas Endogámicas SHR , Isoflavonas/farmacología
5.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446033

RESUMEN

The impact and safety of phytoestrogens, plant-derived isoflavones with estrogenic activity predominantly present in soy, on female reproductive health and IVF outcomes continues to be hotly debated. In this prospective cohort study, 60 women attending IVI-RMA New Jersey undergoing IVF with single frozen embryo transfer (SET/FET) of good-quality euploid blastocyst after PGT-A analysis were recruited. Concentrations of two phytoestrogens (daidzein and genistein) in follicular fluid (FF) and urine (U) were measured by UPLC-MSMS, both collected on vaginal oocyte retrieval day. These measurements correlated with IVF clinical outcomes. In models adjusted for age, BMI, race/ethnicity, and smoking status, higher FF phytoestrogen concentrations were significantly associated with higher serum estradiol, enhanced probability of implantation, clinical pregnancy, and live birth. Moreover, higher urine phytoestrogen concentrations were significantly associated with improved oocyte maturation and fertilization potential and increased probability of clinical pregnancy and live birth. Finally, higher FF and urine phytoestrogen concentrations were associated with a higher probability of live birth from a given IVF cycle. Our results suggest that dietary phytoestrogens improved reproductive outcomes of women undergoing IVF treatment. However, additional prospective studies are needed to optimize the use of phytoestrogens to further enhance reproductive outcomes and/or protect against reproductive insults.


Asunto(s)
Fertilización In Vitro , Fitoestrógenos , Embarazo , Femenino , Humanos , Fertilización In Vitro/métodos , Líquido Folicular , Estudios Prospectivos , Transferencia de Embrión/métodos , Índice de Embarazo , Estudios Retrospectivos
6.
Aquat Toxicol ; 261: 106639, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37515925

RESUMEN

In the last two decades, much controversy has grown over the use of soybean products in aquafeeds, especially for carnivorous fish like sturgeons. One point of discussion is the effect of soybean phytoestrogens on fish health. There are many aspects of phytoestrogen utilization in aquafeeds, therefore, the aim of this study is to verify if common legume phytoestrogens can affect juvenile cultured sturgeon erythrocyte and hepatocyte genotoxicity and cause liver pathology. Russian sturgeons were fed from 100 till 365 dph1 with daidzein, genistein, and coumestrol supplemented diets in concentrations: 10, 0.05 and 0.001 g kg-1 of feed, respectively. The SCGE2 method combined with qPCR of three genes involved in DNA repair and genome maintenance, namely cyp1a1, gaad45a and p53 were analyzed. The results were compared with histopathological evaluation of liver tissue. In fish fed with coumestrol supplemented diet, DNA strand damage was the highest in both erythrocytes and hepatocytes, however, simultaneously the lowest level of oxidative DNA damage was found. Additionally, slightly elevated expression of the p53 gene was observed along with a decreased number of apoptotic hepatocytes, which suggests that low concentration of coumestrol may support DNA repair mechanisms in the liver. Although, daidzein showed a preventive effect only against fibrosis. Isoflavones did not show a significant effect on DNA damage in studied cells. Genistein was found to increase macro- and microvesicular steatosis, portal hepatitis and fibrosis, indicating its negative role in the development of liver injuries. Daidzein alleviated some sturgeon liver damage, especially macrovesicular steatosis and interface hepatitis. However, it increased hepatocyte apoptosis, which may suggest daidzein potentially inducing liver injury, though not manifested by other histopathological lesions. Therefore, it can be concluded that at given concentrations, the tested phytoestrogens did not show clearly hepatoprotective effect in sturgeons.


Asunto(s)
Estrógenos no Esteroides , Contaminantes Químicos del Agua , Animales , Fitoestrógenos/toxicidad , Genisteína/toxicidad , Genisteína/metabolismo , Cumestrol/toxicidad , Estrógenos no Esteroides/metabolismo , Estrógenos no Esteroides/farmacología , Contaminantes Químicos del Agua/toxicidad , Glycine max , Dieta , Fibrosis
7.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2949-2957, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37381955

RESUMEN

This study aims to improve the solubility and bioavailability of daidzein by preparing the ß-cyclodextrin-daidzein/PEG_(20000)/Carbomer_(940) nanocrystals. Specifically, the nanocrystals were prepared with daidzein as a model drug, PEG_(20000), Carbomer_(940), and NaOH as a plasticizer, a gelling agent, and a crosslinking agent, respectively. A two-step method was employed to prepare the ß-cyclodextrin-daidzein/PEG_(20000)/Carbomer_(940) nanocystals. First, the insoluble drug daidzein was embedded in ß-cyclodextrin to form inclusion complexes, which were then encapsulated in the PEG_(20000)/Carbomer_(940) nanocrystals. The optimal mass fraction of NaOH was determined as 0.8% by the drug release rate, redispersability, SEM morphology, encapsulation rate, and drug loading. The inclusion status of daidzein nanocrystals was determined by Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TGA), and X-ray diffraction(XRD) analysis to verify the feasibility of the preparation. The prepared nanocrystals showed the average Zeta potential of(-30.77±0.15)mV and(-37.47±0.64)mV and the particle sizes of(333.60±3.81)nm and(544.60±7.66)nm before and after daidzein loading, respectively. The irregular distribution of nanocrystals before and after daidzein loading was observed under SEM. The redispersability experiment showed high dispersion efficiency of the nanocrystals. The in vitro dissolution rate of nanocrystals in intestinal fluid was significantly faster than that of daidzein, and followed the first-order drug release kinetic model. XRD, FTIR, and TGA were employed to determine the polycrystalline properties, drug loading, and thermal stability of the nanocrystals before and after drug loading. The nanocrystals loaded with daidzein demonstrated obvious antibacterial effect. The nanocrystals had more significant inhibitory effects on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa than daidzein because of the improved solubility of daidzein. The prepared nanocrystals can significantly increase the dissolution rate and oral bioavailability of the insoluble drug daidzein.


Asunto(s)
Resinas Acrílicas , Nanopartículas , Hidróxido de Sodio , Escherichia coli
8.
Nutrients ; 15(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37242235

RESUMEN

BACKGROUND: Soy isoflavones belong to the group of phytoestrogens and are associated with beneficial health effects but are also discussed to have adverse effects. Isoflavones are intensively metabolized by the gut microbiota leading to metabolites with altered estrogenic potency. The population is classified into different isoflavone metabotypes based on individual metabolite profiles. So far, this classification was based on the capacity to metabolize daidzein and did not reflect genistein metabolism. We investigated the microbial metabolite profile of isoflavones considering daidzein and genistein. METHODS: Isoflavones and metabolites were quantified in the urine of postmenopausal women receiving a soy isoflavone extract for 12 weeks. Based on these data, women were clustered in different isoflavone metabotypes. Further, the estrogenic potency of these metabotypes was estimated. RESULTS: Based on the excreted urinary amounts of isoflavones and metabolites, the metabolite profiles could be calculated, resulting in 5 metabotypes applying a hierarchical cluster analysis. The metabotypes differed in part strongly regarding their metabolite profile and their estimated estrogenic potency.


Asunto(s)
Genisteína , Isoflavonas , Humanos , Femenino , Genisteína/análisis , Posmenopausia , Isoflavonas/análisis , Fitoestrógenos , Glycine max/metabolismo
9.
Poult Sci ; 102(6): 102674, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37104906

RESUMEN

This study aims to compare the effect of quercetin and daidzein on production performance, anti-oxidation, hormones, and cecal microflora in laying hens during the late laying period. A total of 360 53-week-old healthy Hyline brown laying hens were randomly divided into 3 groups (control, 0.05% quercetin, and 0.003% daidzein). Diets were fed for 10 wk, afterwards 1 bird per replicate (6 replicates) were euthanized for sampling blood, liver and cecal digesta. Compared with the control, quercetin significantly increased laying rate and decreased feed-to-egg weight ratio from wk 1 to 4, wk 5 to 10, and wk 1 to 10 (P < 0.05). Quercetin significantly increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased catalase (CAT) activity and malondialdehyde (MDA) content in serum and liver (P < 0.05) and increased content of total antioxidant capacity (T-AOC) in liver (P < 0.05). Quercetin increased content of estradiol (E2), luteinizing hormone (LH), follicle-stimulating hormone (FSH), growth hormone (GH), insulin-like growth factor 1 (IGF-1), triiodothyronine (T3) and thyroxine (T4) in serum (P < 0.05). Quercetin significantly decreased the relative abundance of Bacteroidaceae and Bacteroides (P < 0.01) and significantly increased the relative abundance of Lactobacillaceae and Lactobacillus (P < 0.05) at family and genus levels in cecum. Daidzein did not significantly influence production performance from wk 1 to 10. Daidzein significantly increased SOD activity and decreased CAT activity and MDA content in serum and liver (P < 0.05), and increased T-AOC content in liver (P < 0.05). Daidzein increased content of FSH, IGF-1, T3 in serum (P < 0.05). Daidzein increased the relative abundance of Rikenellaceae RC9 gut group at genus level in cecum (P < 0.05). Quercetin increased economic efficiency by 137.59% and 8.77%, respectively, compared with daidzein and control. In conclusion, quercetin improved production performance through enhancing antioxidant state, hormone levels, and regulating cecal microflora in laying hens during the late laying period. Quercetin was more effective than daidzein in improving economic efficiency.


Asunto(s)
Microbioma Gastrointestinal , Quercetina , Femenino , Animales , Quercetina/farmacología , Antioxidantes/metabolismo , Factor I del Crecimiento Similar a la Insulina , Pollos/fisiología , Dieta/veterinaria , Hormona Luteinizante , Hormona Folículo Estimulante , Superóxido Dismutasa , Ciego/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos/análisis
10.
Phytother Res ; 37(6): 2578-2604, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37118928

RESUMEN

Daidzein, 7-hydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one is a naturally occurring compound present in leguminous plants, especially in soybeans. Chemically it belongs to the isoflavone class and possesses high nutritive value. Daidzein acts on estrogen receptor and is non-steroidal in nature hence it can also be called as non-steroidal phytoestrogenic compound. Daidzein has been studied by many researchers for its pharmacological activities. Daidzein metabolites were also studied in detail for their health benefits. Researchers have developed novel formulations of daidzein in the past few years to improve its aqueous solubility and bioavailability. Self-emulsified daidzein, poly(lactic-co-glycolic) acid daidzein nanoparticles, nanoemulsion, nanoemulsion gel, and co-crystals are a few of them. The present review provides detailed information on the chemistry, drug development aspects, pharmacokinetics, and pharmacodynamics of daidzein. A literature search was performed using various datasets like PubMed, EBSCO, ProQuest Scopus, and selected websites including the National Institutes of Health and the World Health Organization. Daidzein has a wide range of pharmacodynamic properties in the treatment of cancer, neurodegenerative disorders, cardiac disorders, diabetes and its complication, osteoporosis, and skin disorders. The pharmacokinetic, pharmacodynamics, and drug development aspects of daidzein will help researchers to design further research work on daidzein in the future.


Asunto(s)
Isoflavonas , Isoflavonas/farmacología , Isoflavonas/metabolismo , Glycine max/química , Fitoestrógenos , Disponibilidad Biológica
11.
Phytomedicine ; 114: 154749, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36931097

RESUMEN

BACKGROUND: Phospholipid peroxidation signaling was recently revealed as a novel pathological mechanism of coronary heart disease (CHD), and small molecules involved in this redox-metabolic pathway are suggested as the potential anti-CHD drugs. Danlou Tablet (DLT), a famous traditional Chinese medicine (TCM) formula characterized by multi-component and multi-target regulation, is widely used in the clinical treatment of CHD by regulating lipid metabolism. However, little information is available addressing the corresponding pharmacological mechanisms and associated active components of DLT. PURPOSE: To study whether phospholipid peroxidation involves a novel mechanism of DLT for the therapeutic effect of CHD and to explain the essential active components. METHODS: Firstly, the HPLC fingerprint was constructed to ensure the controllability of the quality of DLT. Then, a CHD animal model with the characteristics of lipid disorder and myocardial ischemia was established by a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation. The therapeutic effect of DLT was further evaluated based on the results of the rat survival rate, cardiac function, cardiac histopathology, and myocardial ischemia indicators. Correspondingly, whether DLT can regulate the key indicators (ALOX15, GPX4, MDA, GSH, and NADPH) of the phospholipid peroxidation pathway was investigated, and Alox15-/- mice have been applied to confirm the mechanism of DLT. Finally, the target-mediated characterization strategy based on ALOX15, including the integration of in vivo component characterization, network pharmacology, molecular docking analysis, and activity verification, has been further implemented to reveal the key bio-active components in DLT. RESULTS: In this study, a high-fat diet (HFD) combined with left anterior descending coronary artery (LAD) ligation was utilized to generate a CHD model, and DLT significantly improved the cardiac dysfunction and reduced the myocardial cell death susceptibility. Further results revealed that DLT reversed the protein expression of ALOX15 and GPX4, the key proteins of phospholipid peroxidation pathways, which subsequently influenced the parameters of phospholipid peroxidation (MDA, GSH, and NADPH). The ALOX15 knockout transgenic animal model confirmed that Alox15-/- mice lost their cardioprotective effects with DLT, suggesting that DLT exerted therapeutic effects on CHD by regulating ALOX15-mediated phospholipid peroxidation. Finally, the target-mediated characterization strategy identified that daidzein is an active component in DLT against CHD by modulating ALOX15. CONCLUSION: Innovatively, ALOX15-mediated phospholipid peroxidation was identified as one of the critical mechanisms of DLT exerting cardioprotective effects. Our findings elucidate a novel mechanism of DLT and provide some new drug evaluation targets and therapeutic strategies for CHD.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Isquemia Miocárdica , Ratas , Ratones , Animales , Medicina Tradicional China , Simulación del Acoplamiento Molecular , NADP/uso terapéutico , Enfermedad Coronaria/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Isquemia Miocárdica/tratamiento farmacológico , Fosfolípidos
12.
J Diabetes Investig ; 14(5): 707-715, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36852538

RESUMEN

AIMS/INTRODUCTION: Equol, which is produced by enteric bacteria from soybean isoflavones, has a chemical structure similar to estrogen. Both in vivo and in vitro studies have shown the beneficial metabolic effects of equol. However, its effects on type 2 diabetes remain unclear. We investigated the association between the equol producers/non-producers and type 2 diabetes. MATERIALS AND METHODS: The participants included 147 patients with type diabetes mellitus aged 70-89 years, and 147 age- and sex-matched controls. To ascertain the equol producers or non-producers, we used the comparative logarithm between the urinary equol and daidzein concentrations (cut-off value -1.75). RESULTS: The urinary equol concentration was significantly lower in the diabetes group compared with the non-diabetes group (P = 0.01). A significant difference in the proportion of equol producers was observed among all participants (38.8% in the diabetes group and 53.1% in the non-diabetes group; P = 0.01). The proportion of equol producers among women was significantly lower in the diabetes group (31.4%) than in the non-diabetes group (52.8%; P < 0.01). Additionally, the frequency of dyslipidemia in female equol producers was significantly lower than that in female non-equol producers (P < 0.01). Among men, no such differences were observed. We found a significant positive correlation between the urinary equol and daidzein concentrations among equol producers (r = 0.55, P < 0.01). CONCLUSIONS: Our study findings showed that postmenopausal women had a low proportion of equol producers with diabetes and dyslipidemia.


Asunto(s)
Diabetes Mellitus Tipo 2 , Equol , Microbioma Gastrointestinal , Glycine max , Isoflavonas , Anciano , Femenino , Humanos , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/orina , Pueblos del Este de Asia , Equol/metabolismo , Equol/orina , Isoflavonas/metabolismo , Isoflavonas/orina , Anciano de 80 o más Años , Microbioma Gastrointestinal/fisiología , Glycine max/metabolismo , Fitoestrógenos/metabolismo , Factores Sexuales , Posmenopausia/metabolismo , Posmenopausia/orina , Dislipidemias/metabolismo , Dislipidemias/microbiología , Dislipidemias/orina
13.
Molecules ; 28(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36838751

RESUMEN

Herbal drugs have been attracting much scientific interest in the last few decades and nowadays, phytoconstituents-based research is in progress to disclose their unidentified medicinal potential. Daidzein (DAI) is the natural phytoestrogen isoflavone derived primarily from leguminous plants, such as the soybean and mung bean, and its IUPAC name is 4',7-dihydroxyisoflavone. This compound has received great attention as a fascinating pharmacophore with remarkable potential for the therapeutic management of several diseases. Certain pharmacokinetic properties of DAI such as less aqueous solubility, low permeability, and poor bioavailability are major obstacles restricting the therapeutic applications. In this review, distinctive physicochemical characteristics and pharmacokinetics of DAI has been elucidated. The pharmacological applications in treatment of several disorders like oxidative stress, cancer, obesity, cardiovascular, neuroprotective, diabetes, ovariectomy, anxiety, and inflammation with their mechanism of action are explained. Furthermore, this review article comprehensively focuses to provide up-to-date information about nanotechnology-based formulations which have been investigated for DAI in preceding years which includes polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carrier, polymer-lipid nanoparticles, nanocomplexes, polymeric micelles, nanoemulsion, nanosuspension, liposomes, and self-microemulsifying drug delivery systems.


Asunto(s)
Isoflavonas , Nanopartículas , Sistemas de Liberación de Medicamentos , Nanotecnología , Nanopartículas/química , Micelas , Polímeros/química
14.
Front Vet Sci ; 10: 1301542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188719

RESUMEN

In this study, the effects of quercetin and daidzein on egg quality, lipid metabolism, and cecal short-chain fatty acids (SCFAs) were compared in layers. Hyline brown layers at 385 days of age with a similar laying rate (81.36% ± 0.62%) and body weight (2.10 kg ± 0.04 kg) were randomly divided into three treatments, six replicates per treatment, and 20 layers per replicate. Layers in control, quercetin, and daidzein treatment were fed by a basal diet supplemented with 0 mg/kg, 500 mg/kg quercetin, and 30 mg/kg of daidzein for 10 weeks. Results showed that eggshell strength and albumen height in week 4, egg yolk diameter in week 10, and eggshell thickness and egg yolk height in weeks 4 and 10 were significantly increased in the quercetin treatment (P ≤ 0.05); contents of phospholipid (PL) and lecithin (LEC) in egg yolk and high-density lipoprotein (HDL) content in serum were significantly increased; however, contents of malondialdehyde (MDA), total cholesterol (TC), and triglyceride (TG) in egg yolk, contents of TC, TG, low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) in serum, and contents of TC and TG in the liver were significantly decreased in the quercetin treatment (P ≤ 0.05); contents of isobutyric acid and valeric acid were significantly increased in the cecum of the quercetin treatment (P ≤ 0.05), compared with control. Moreover, egg yolk height in week 10 and eggshell thickness in weeks 4 and 10 were significantly increased in the daidzein treatment (P ≤ 0.05); contents of MDA, TC, and TG in egg yolk, TC, TG, and VLDL in serum, and TC and TG in liver were significantly decreased in the daidzein treatment (P ≤ 0.05); and HDL content was significantly increased in serum of the daidzein treatment (P ≤ 0.05) compared with control. However, daidzein did not affect SCFA content in the cecum. In conclusion, egg quality was improved by quercetin and daidzein by increasing the antioxidant ability of egg yolk and by regulating lipid metabolism in layers. Quercetin worked better than daidzein in improving egg quality under this experimental condition.

15.
Clin Nutr ESPEN ; 52: 158-168, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36513449

RESUMEN

BACKGROUND & AIMS: Populations consuming soy have reduced risk for breast cancer, but the mechanisms are unclear. We tested the hypothesis that soy isoflavones, which have ovarian hormone-like effects, can reduce fibroglandular breast tissue (FGBT, 'breast density'), a strong risk marker for breast cancer. METHODS: Premenopausal women (age 30-42 years) were randomized to consume isoflavones (136.6 mg as aglycone equivalents, n = 99) or placebo (n = 98) for 5 days per week up to 2 years, and changes in breast composition measured by magnetic resonance imaging at baseline and yearly intervals were compared after square root transformation using linear mixed effects regression models. RESULTS: By intention-to-treat analyses (n = 194), regression coefficients (ß estimates) of the interaction of time and isoflavone treatment were -0.238 (P = 0.06) and -0.258 (P < 0.05) before and after BMI adjustment, respectively for FGBT, 0.620 (P < 0.05) and 0.248 (P = 0.160), respectively for fatty breast tissue (FBT), and -0.155 (P < 0.05) and -0.107 (P < 0.05), respectively for FGBT as percent of total breast (FGBT%). ß Estimates for interaction of treatment with serum calcium were -2.705 for FBT, and 0.588 for FGBT% (P < 0.05, before but not after BMI adjustment). BMI (not transformed) was related to the interaction of treatment with time (ß = 0.298) or with calcium (ß = -1.248) (P < 0.05). Urinary excretion of isoflavones in adherent subjects (n = 135) significantly predicted these changes in breast composition. Based on the modeling results, after an average of 1.2, 2.2 and 3.3 years of supplementation, a mean decrease of FGBT by 5.3, 12.1, and 19.3 cc, respectively, and a mean decrease of FGBT% by 1.37, 2.43, and 3.50%, respectively, were estimated for isoflavone exposure compared to placebo treatment. Subjects with maximum isoflavone excretion were estimated to have 38 cc less FGBT (or ∼3.13% less FGBT%) than subjects without isoflavone excretion. Decrease in FGBT and FGBT% was more precise with daidzein than genistein. CONCLUSIONS: Soy isoflavones can induce a time- and concentration-dependent decrease in FGBT, a biomarker for breast cancer risk, in premenopausal women, and moderate effects of calcium on BMI and breast fat, suggesting a beneficial effect of soy consumption. TRIAL REGISTRATION: www. CLINICALTRIALS: gov identifier: NCT00204490. TRIAL REGISTRATION: www. CLINICALTRIALS: gov identifier: NCT00204490.


Asunto(s)
Neoplasias de la Mama , Isoflavonas , Femenino , Humanos , Adulto , Calcio , Premenopausia , Imagen por Resonancia Magnética
16.
J Nutr Biochem ; 110: 109145, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36049671

RESUMEN

Adequate ovarian hormones secretion is essential for pregnancy success. Oxidative damage and following inflammation can destroy the ovarian normal function in mammals. Daidzein (DAI) is a classical isoflavonic phytoestrogen with specific oestrogenic activity. This study aimed to explore the effects of daidzein supplementation on fertility and ovarian characteristics of sows through biochemical analysis and RNA-seq technology. Twelve multiparous Yorkshire × Landrace sows were randomly divided into CON and DAI groups. We found that DAI increased total number of embryos as well as P4 and E2 levels of serum. DAI not only elevated the activities of T-AOC and GSH-Px, but also tended to decrease the content of MDA and IL-6 in the serum. In ovary, RNA-Seq identified 237 differentially expressed genes (DEGs), and GO analysis showed that these DEGs were linked to functions associated with immune dysfunction. Moreover, STRING analysis demonstrated that most interacting nodes were TLR-4, LCP2, and CD86. Furthermore, DAI decreased the content of MDA, IL-1ß, IL-6, and TNF-α, and increased the activities of T-AOC and CAT in ovarian tissue. Interestingly, a partial mantel correlation showed that T-AOC was the strongest correlation between the ovarian dataset and selected DEGs. Additionally, DAI supplementation not only increased the protein expressions of Nrf2, HO-1, and NQO1, but also decreased the protein expressions of TLR-4, p-NFκB, p-AKT, and p-IκBα. Altogether, our results indicated that DAI could ameliorate ovarian oxidative stress and inflammation in sows, which might be mediated by suppressing the TLR4/NF-κB signaling pathway and activating the Nrf2/HO-1 signaling pathway.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Ovario , Animales , Femenino , Embarazo , Suplementos Dietéticos/análisis , Fertilidad , Inflamación/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mamíferos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Ovario/metabolismo , Estrés Oxidativo , Porcinos , Receptor Toll-Like 4/metabolismo
17.
Plant Physiol Biochem ; 190: 231-239, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36137309

RESUMEN

This study aimed to investigate the roles of selenium (Se) application on the profile of photosynthetic pigments, oxidant metabolism, flavonoids biosynthesis, nodulation, and its relation to agronomic traits of peanut plants. Two independent experiments were carried out: one conducted in soil and the other in a nutrient solution. When the plants reached the V2 growth stage, five Se doses (0, 7.5, 15, 30, and 45 µg kg-1) and four Se concentrations (0, 5, 10, and 15 µmol L-1) were supplied as sodium selenate. The concentration of photosynthetic pigments, activity of antioxidant enzymes and the concentration of total sugars in peanut leaves increased in response to Se fertilization. In addition, Se improves nitrogen assimilation efficiency by increasing nitrate reductase activity which results in a higher concentration of ureides, amino acids and proteins. Se increases the synthesis of daidzein and genistein in the root, resulting in a greater number of nodules and concentration and transport of ureides to the leaves. Se-treated plants showed greater growth, biomass accumulation in shoots and roots, yield and Se concentration in leaves and grains. Our results contribute to food security and also to increase knowledge about the effects of Se on physiology, biochemistry and biological nitrogen fixation in legume plants.


Asunto(s)
Fabaceae , Selenio , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Arachis/metabolismo , Fabaceae/metabolismo , Genisteína/metabolismo , Isoflavonas , Nitrato Reductasas/metabolismo , Nitrógeno/metabolismo , Oxidantes/metabolismo , Ácido Selénico , Selenio/farmacología , Suelo , Azúcares/metabolismo
18.
Reprod Biol ; 22(3): 100683, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35932513

RESUMEN

Phytoestrogens are considered to be endocrine disruptors, since they can alter the endocrine system, thus disturbing many reproductive events. The intake of diets containing a high content of phytoestrogens has increased worldwide in human populations and in domestic animals. Phytoestrogens in maternal blood can pass through the placenta to the fetus in high amounts and can have long-term organizational effects. Mesquite (Prosopis sp) is a leguminous plant widely used to feed several livestock species, and is also used in the human diet. In this study we assessed the effects of exposure to mesquite pod extract during the periconception and pregnancy periods on the reproduction of male and female descendants. The females of three experimental groups received one of the following treatments: 1) vehicle injection; 2) mesquite pod extract or 3) the isoflavone daidzein during the periconception and pregnancy periods. Estrous cyclicity, sexual behavior and hormones, as well as uterine and vaginal epithelia were evaluated in the female descendants. In the males, sexual behavior and hormones, apoptosis in testicular cells and sperm quality were evaluated. In females the following was observed: alterations in estrous cycles, decreased sexual behavior, estradiol and progesterone levels, increased uterine and vaginal epithelia. In males, we observed a decrease in sexual behavior, testosterone and sperm quality, and apoptosis increased in testicular cells. All these effects were similar to those caused by daidzein. These results indicate that prenatal exposure to mesquite pod extract or daidzein, administered to females before and during pregnancy, can disrupt normal organizational-activational programming of reproductive physiology in female and male descendants.


Asunto(s)
Isoflavonas , Prosopis , Animales , Estradiol , Femenino , Humanos , Masculino , Fitoestrógenos , Extractos Vegetales , Embarazo , Ratas , Reproducción , Semillas
19.
Int J Biol Sci ; 18(9): 3636-3652, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813479

RESUMEN

Lung cancer is the major cause of cancer associated mortality. Mutations in EGFR have been implicated in lung cancer pathogenesis. Gefitinib (GF) is a RTKI (receptor tyrosine kinase inhibitor) first-choice drug for EGFR mutated advanced lung cancer. However, drug toxicity and cancer cell resistance lead to treatment failure. Consequently, new therapeutic strategies are urgently required. Therefore, this study was aimed at identifying tumor suppressive compounds that can synergistically improve Gefitinib chemosensitivity in the lung cancer treatment. Medicinal plants offer a vast platform for the development of novel anticancer agents. Daidzein (DZ) is an isoflavone compound extracted from soy plants and has been shown to possess many medicinal benefits. The anticancer potential of GF and DZ combination treatment was investigated using MTT, western blot, fluorescent microscopy imaging, flow cytometry and nude mice tumor xenograft techniques. Our results demonstrate that DZ synergistically induces c-Jun nuclear translocation through ROS/ASK1/JNK and downregulates EGFR-STAT/AKT/ERK pathways to activate apoptosis and a G0/G1 phase cell cycle blockade. In in-vivo, the combination treatment significantly suppressed A549 lung cancer cells tumor xenograft growth without noticeable toxicity. Daidzein supplements with current chemotherapeutic agents may well be an alternative strategy to improve the treatment efficacy of lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Antineoplásicos , Isoflavonas , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Gefitinib/farmacología , Gefitinib/uso terapéutico , Humanos , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Neoplasias Pulmonares/genética , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno
20.
Biomolecules ; 12(6)2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35740885

RESUMEN

BACKGROUND: Aging society faces significant health challenges, among which cognitive-related disorders are emerging. Diet quality has been recognized among the major contributors to the rising prevalence of cognitive disorders, with increasing evidence of the putative role of plant-based foods and their bioactive components, including polyphenols. Dietary polyphenols, including phytoestrogens, have been hypothesized to exert beneficial effects toward brain health through various molecular mechanisms. However, the evidence on the association between dietary phytoestrogen intake and cognitive function is limited. The aim of this study was to investigate the association between phytoestrogen intake and cognitive status in a cohort of older adults living in Sicily, Southern Italy. METHODS: Dietary information from 883 individuals aged 50 years or older was collected through a validated food frequency questionnaire. Cognitive status was assessed through the Short Portable Mental Status Questionnaire. RESULTS: The highest total isoflavone (including daidzein and genistein) intake was inversely associated with cognitive impairment compared to the lowest (odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.20-0.92). Higher intake of total lignans and, consistently, all individual compounds (with the exception of secoisolariciresinol) were inversely associated with cognitive impairment only in the unadjusted model. CONCLUSIONS: A higher intake of phytoestrogens, especially isoflavones, was associated with a better cognitive status in a cohort of older Italian individuals living in Sicily. Taking into account the very low intake of isoflavones in Italian diets, it is noteworthy to further investigate selected populations with habitual consumption of such compounds to test whether these results may be generalized to the Italian population.


Asunto(s)
Isoflavonas , Lignanos , Anciano , Cognición , Genisteína , Humanos , Fitoestrógenos , Polifenoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA