Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int Immunopharmacol ; 101(Pt A): 108177, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34626872

RESUMEN

Osteoporosis, characterized by bone loss and microstructure damage, occurs when osteoclast activity outstrips osteoblast activity. Natural compounds with inhibitory effect on osteoclast differentiation and function have been evidenced to protect from osteoporosis. After multiple compounds screening, 12-deoxyphorbol 13-acetate (DPA) was found to decline RANKL-induced osteoclastogenesis dose-dependently by attenuating activities of NFATc1 and c-Fos, followed by decreasing the level of osteoclast function-associated genes and proteins including Acp5, V-ATPase-d2 and CTSK. Mechanistically, we found that DPA suppressing RANKL-induced downstream signaling pathways, including MAPK signaling pathway and calcium oscillations. Furthermore, the in vivo efficacy of DPA was further confirmed in an OVX-induced osteoporosis mice model. Collectively, the results in our presentation reveal that DPA might be a promising compound to manage osteoporosis.


Asunto(s)
Factores de Transcripción NFATC/antagonistas & inhibidores , Osteoporosis/tratamiento farmacológico , Ésteres del Forbol/farmacología , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/inmunología , Ratones , Factores de Transcripción NFATC/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/fisiología , Osteogénesis/efectos de los fármacos , Osteogénesis/inmunología , Osteoporosis/inmunología , Ésteres del Forbol/uso terapéutico , Células RAW 264.7
2.
J Ethnopharmacol ; 279: 113889, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33524514

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbia fischeriana S. (E. fischeriana) is a classic Chinese herb with toxicity that is mainly used for cancer treatment and in insect repellent, anti-inflammatory and anti-edema applications (Liu et al., 2001). 12-Deoxyphorbol13-palmitate (DP), a tetracyclic diterpene monomer compound, was extracted from the roots of E. fischeriana by our research groups. AIM: Previous studies found that DP could inhibit the proliferation of leukemia cells in vitro. However, the underlying mechanism of DP in leukemia is unknown. Hence, DP's pharmacological effect on leukemia cells was investigated in this study. MATERIALS AND METHODS: DP was obtained from the Natural Medicine Chemistry Laboratory of Qiqihaer Medical University. In vitro, K562 cells and HL60 cells were incubated with DP or DP combined with LY294002 at different concentrations. Cell proliferation and apoptosis were detected by the relevant experimental methods. In vivo, nude mouse xenograft models were established by injecting K562 cells. DP was intraperitoneally administered to observe the influence on the growth of transplanted tumors. Gene detection and immunoblot analysis were performed to validate the mechanisms. RESULTS: The cell counting kit-8 (CCK-8) assay proved that DP inhibited the growth of K562 and HL60 cells in a time- or dose-dependent manner. At 12 h, DP could induce apoptosis by Annexin V-FITC/propidium iodide (PI) dual labeling, loss of mitochondrial membrane potential (MMP), intracellular reactive oxygen species (ROS), acridine orange/ethidium bromide (AO/EB) staining and transmission electron microscopy (TEM) observation in K562 or HL60 cells. Furthermore, in an assay of gene and protein expression, we found that DP could downregulate the gene and protein expression levels of Bcl-2, upregulate the gene and protein expression levels of Bax and Bim, and downregulate the protein expression levels of PI3k, p-Akt, and p-FoxO3a. Moreover, the effects of DP on proliferation and apoptosis in K562 cells were enhanced by LY294002. Then, we tested the antitumor effects of DP in vivo. Nude mouse xenograft models were established by subcutaneously injecting K562 cells. We found that tumor volume was significantly decreased in DP-treated xenograft nude mice. Morphologic changes, apoptosis degree, and related gene and protein expression levels in transplanted tumor tissue of DP-treated nude mice were assessed by different experimental methods. CONCLUSIONS: The in vivo and in vitro experimental results indicated that DP might inhibit the proliferation and induce the apoptosis of leukemia cells, which might be a result of suppressing the PI3k/Akt signaling pathways.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Euphorbia/química , Leucemia/tratamiento farmacológico , Ésteres del Forbol/farmacología , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células HL-60 , Humanos , Células K562 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ésteres del Forbol/aislamiento & purificación , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Chromatogr A ; 1422: 128-139, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26522744

RESUMEN

This paper reports our effort to develop a comprehensive HPLC-MS(n)-based dereplication strategy for phorbol ester (PE), deoxyphorbol ester (dPE) and ingenol ester (IE) profiling in plant extracts. This strategy is composed of two sequential analysis exploiting specific hybrid triple quadrupole/linear ion trap instrument modes. A first run was performed using a multiple reaction monitoring (MRM) mode targeting fragmentation of PE and dPE/IE coupled with the acquisition of MS(2) spectrum for the ions at m/z 311 and m/z 313, respectively. A second run was then completed based on precursor ion scan mode (PIS) and automatic MS(2) acquisition for each quasimolecular ion. The developed approach was used to investigate ten Euphorbia extracts showing bioactivity against chikungunya virus replication. Experiments allowed partial annotation of three dPE/IE but no PE was detected. Results suggested that other types of diterpene esters displayed PE- and dPE/IE-like fragmentations. The study of jatrophane ester (JE) standards by CID fragmentation using low and high resolution mass spectrometry confirmed this hypothesis, highlighting challenges and difficulties of diterpene esters profiling within plant extracts. Nonetheless, the present LC-MS(n) method can be easily adapted to profile other types of diterpene esters.


Asunto(s)
Técnicas de Química Analítica/métodos , Cromatografía Líquida de Alta Presión , Ésteres/análisis , Euphorbia/química , Espectrometría de Masas , Extractos Vegetales/química , Diterpenos/análisis , Diterpenos/química
4.
Fitoterapia ; 105: 202-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26151856

RESUMEN

Recently, phorbol esters from Euphorbiaceae have been shown to elicit potent and selective antiviral activity on the replication of Chikungunya virus (CHIKV) in cell culture. With the objective to found new compounds with anti-CHIKV activities, 45 extracts from various plant parts of 11 Mediterranean Euphorbia and one Mercurialis species were evaluated for selective inhibition of CHIKV replication. All EtOAc extracts, especially those prepared from latex, exhibited significant and selective antiviral activity in a Chikungunya virus-cell-based assay. An LC-MS(2) dereplication method was then developed to investigate whether known diterpenoids with anti-CHIKV activity, such as the potent anti-CHIKV 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-didecanoate, and prostratin as well as 24 other commercially available diterpenoids of tigliane-, ingenane-, and daphnane-type for which the anti-CHIKV activity have been established in advance (Nothias-Scaglia et al. 2015), were present in the Euphorbia extracts. Only ingenol-3-mebutate, 13-O-isobutyryl-12-deoxyphorbol-20-acetate, and ingenol-3,20-dibenzoate, all exhibiting weak anti-CHIKV activities, were detected in the EtOAc extracts of Euphorbia peplus, Euphorbia segetalis ssp. pinea, and Euphorbia pithyusa ssp. pithyusa. Given the potent anti-CHIKV activities of these Euphorbia extracts, the present study suggested that their antiviral activities are probably due to untargeted diterpenoids.


Asunto(s)
Antivirales/química , Virus Chikungunya/efectos de los fármacos , Euphorbia/química , Extractos Vegetales/química , Replicación Viral/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Virus Chikungunya/fisiología , Chlorocebus aethiops , Diterpenos/química , Diterpenos/aislamiento & purificación , Estructura Molecular , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA