Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(19): e202403271, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38497510

RESUMEN

Unnatural amino acids, and their synthesis by the late-stage functionalization (LSF) of peptides, play a crucial role in areas such as drug design and discovery. Historically, the LSF of biomolecules has predominantly utilized traditional synthetic methodologies that exploit nucleophilic residues, such as cysteine, lysine or tyrosine. Herein, we present a photocatalytic hydroarylation process targeting the electrophilic residue dehydroalanine (Dha). This residue possesses an α,ß-unsaturated moiety and can be combined with various arylthianthrenium salts, both in batch and flow reactors. Notably, the flow setup proved instrumental for efficient scale-up, paving the way for the synthesis of unnatural amino acids and peptides in substantial quantities. Our photocatalytic approach, being inherently mild, permits the diversification of peptides even when they contain sensitive functional groups. The readily available arylthianthrenium salts facilitate the seamless integration of Dha-containing peptides with a wide range of arenes, drug blueprints, and natural products, culminating in the creation of unconventional phenylalanine derivatives. The synergistic effect of the high functional group tolerance and the modular characteristic of the aryl electrophile enables efficient peptide conjugation and ligation in both batch and flow conditions.


Asunto(s)
Alanina , Alanina/análogos & derivados , Péptidos , Péptidos/química , Péptidos/síntesis química , Catálisis , Alanina/química , Procesos Fotoquímicos , Estructura Molecular
2.
J Ethnobiol Ethnomed ; 20(1): 24, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409039

RESUMEN

BACKGROUND: Local medical systems (LMS) include native and exotic plants used for the treatment of diseases of physical and spiritual nature. The incorporation of exotic plants into these systems has been the subject of many studies. In this context, an analysis was conducted on the influence of the origin of plants on diseases of physical and spiritual nature in order to evaluate the therapeutic versatility of native and exotic species in these therapeutic targets, to investigate whether exotic plants mainly fill gaps not met by native plants (diversification hypothesis), and identify which species are prioritized in the redundant targets in these two therapeutic groups in the rural community of Morrinhos, Monsenhor Hipólito, Piauí. METHODS: Data collection took place in 2 stages. First, free lists and semi-structured interviews with local residents (n = 134) were conducted to survey plants used for therapeutic purposes and the associated illnesses. Then, another phase of interviews was carried out to evaluate the prioritization between native and exotic plants in redundant therapeutic targets. To test the diversification hypothesis (DH) in each group of illnesses, data were analyzed using generalized linear models (Poisson and Binomial GLMs); versatility was measured by the number of therapeutic indications and compared between resources using the Mann-Whitney test, and prioritization in each group was verified by comparing the proportions of native and exotic plants with the χ2 test. RESULTS: One hundred and thirty-two species of plants were surveyed, being 71 exotic and 61 native, with indications for physical and spiritual illnesses. The results revealed that the diversification hypothesis did not explain the inclusion of exotic plants in the local medical system to treat physical or spiritual illnesses and that the therapeutic versatility of exotic and native resources in the two groups was also similar (p > 0.05). However, exotic plants were prioritized in illnesses with physical causes and native plants in illnesses with spiritual causes. CONCLUSIONS: The local medical system presents similar and distinct patterns in the therapeutic targets, depending on the perspective evaluated. Therefore, it is necessary to investigate the patterns of use of medicinal plants in different sociocultural contexts in order to broaden the debate about the role of plant origin in the selection of treatments for illnesses with different causes.


Asunto(s)
Plantas Medicinales , Humanos , Brasil , Medicina Tradicional , Fitoterapia , Encuestas y Cuestionarios
3.
J Ethnobiol Ethnomed ; 20(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169414

RESUMEN

BACKGROUND: Herbal tea usually refers to "beverage plants that do not belong to the genus Camellia", and it holds a significant historical legacy as a traditional beverage among specific regions and ethnic groups. In light of this, our research aims to investigate and analyze the traditional knowledge pertaining to herbal tea plants used by local people in the Qianxinan Buyi and Miao Autonomous Prefecture, Guizhou Province. We also initiated preliminary efforts to create tea products from herbal tea leaves using various processing techniques. Additionally, we attempted to test hypotheses to elucidate how local people select herbal tea plants. METHODS: Data related to the use of herbal tea plants in this study were collected through semi-structured interviews and participatory observations in four villages in Qianxinan. Quantitative indicators, including the relative frequency of citation (RFC) and the relative importance (RI) value, were calculated, and the availability of plants was also evaluated. General linear model was performed to examine the relationship between the frequency of citation and resource availability, as well as the correlation between the relative frequency of citation and the relative importance, to test both the resource availability hypothesis and the versatility hypothesis. Centella asiatica tea was processed using techniques from green tea, black tea and white tea, with a preliminary sensory evaluation conducted. RESULTS: A total of 114 plant species were documented as being used for herbal teas by local residents, representing 60 families and 104 genera. Of these, 61% of herbal tea plants were found growing in the wild, and 11 species were exotic plants. The family with the highest number of species was Asteraceae (20 species). The study identified 33 major medicinal functions of herbal tea, with clearing heat-toxin and diuresis being the most common functions. General linear model revealed a strong correlation (correlation coefficient of 0.72, p < 0.001) between the frequency of citation and plant availability, as well as a significant correlation (correlation coefficient of 0.63, p < 0.001) between RFC and RI. Under different processing conditions, the characteristics of Centella asiatica tea exhibited variations and were found to be suitable for consumption. CONCLUSION: The consumption of herbal tea serves as a preventive measure against common ailments for local residents. The resource availability hypothesis, diversification hypothesis and the versatility hypothesis were shown to provide some insight into "how and why local communities select plants for use." Exotic herbal tea plants in the study area also possess valuable therapeutic properties. The processing and production of Centella asiatica herbal tea products hold promising prospects.


Asunto(s)
Plantas Medicinales , Tés de Hierbas , Humanos , Etnobotánica , Fitoterapia/métodos , , China
4.
Biosystems ; 236: 105108, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159673

RESUMEN

The present work is aimed to review the concepts of continuity and discontinuity in the reproductive processes and their impact on the evolutionary outcome, emphasizing on the plant model. Let be stated that evolutionary changes need to pass down generation after generation through the cellular reproductive mechanisms, and these mechanisms can account for changes from single nucleotide to genome-wide mutations. Patterns of continuity and discontinuity in sexual and asexual species pose notorious differences as the involvement of the cellular genetic material from single or different individuals, the changes in the ploidy level, or the independence between nuclear and plastid genomes. One relevant aspect of the plant model is the open system for pollen donation, which can be driven from every male flower to every female flower in the neighborhood, as well as the facilitated seed dispersal patterns, that may break or restore the contact between populations. Three significative processes are distinguishable, syngenesis, anagenesis, and cladogenesis. The syngenesis refers to the reproduction between individuals, either if they pertain to the same species, from different populations or even from different species. The anagenesis refers to the pursuit of all the possible rearrangements of genes and alleles pooled in a population of individuals, and the cladogenesis represents the absence of reproduction that leads to differentiation. Recent developments on the genomic analysis of single cells, single chromosomes and fragments of homologous chromosomes could bring new insights into the processes of the evolution, in generational time and in a broad spectrum of spatial/geographic extents.


Asunto(s)
Plantas , Reproducción , Humanos , Plantas/genética , Reproducción/genética , Genoma , Mutación , Polen/genética
5.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982787

RESUMEN

Solanum tuberosum L. (common potato) is one of the most important crops produced almost all over the world. Genomic sequences of potato opens the way for studying the molecular variations related to diversification. We performed a reconstruction of genomic sequences for 15 tetraploid potato cultivars grown in Russia using short reads. Protein-coding genes were identified; conserved and variable parts of pan-genome and the repertoire of the NBS-LRR genes were characterized. For comparison, we used additional genomic sequences for twelve South American potato accessions, performed analysis of genetic diversity, and identified the copy number variations (CNVs) in two these groups of potato. Genomes of Russian potato cultivars were more homogeneous by CNV characteristics and have smaller maximum deletion size in comparison with South American ones. Genes with different CNV occurrences in two these groups of potato accessions were identified. We revealed genes of immune/abiotic stress response, transport and five genes related to tuberization and photoperiod control among them. Four genes related to tuberization and photoperiod were investigated in potatoes previously (phytochrome A among them). A novel gene, homologous to the poly(ADP-ribose) glycohydrolase (PARG) of Arabidopsis, was identified that may be involved in circadian rhythm control and contribute to the acclimatization processes of Russian potato cultivars.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Variaciones en el Número de Copia de ADN , Genoma de Planta , Genómica , Tetraploidía
6.
J Agric Food Chem ; 71(1): 488-498, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36562642

RESUMEN

The high accumulation of galloylated flavan-3-ols in Camellia sp. is a noteworthy phenomenon. We identified a flavan-3-ol galloylation-related functional gene cluster in tannin-rich plant Camellia sp., which included UGT84A22 and SCPL-AT gene clusters. We investigated the possible correlation between the accumulation of metabolites and the expression of SCPL-ATs and UGT84A22. The results revealed that C. sinensis, C. ptilophylla, and C. oleifera accumulated galloylated cis-flavan-3-ols (EGCG), galloylated trans-flavan-3-ols (GCG), and hydrolyzed tannins, respectively; however, C. nitidissima did not accumulate any galloylated compounds. C. nitidissima exhibited no expression of SCPL-AT or UGT84A22, whereas the other three species of Camellia exhibited various expression patterns. This indicated that the functions of the paralogs of SCPL-AT vary. Enzymatic analysis revealed that SCPL5 was neofunctionalized as a noncatalytic chaperone paralog, a type of chaerone-like protein, associating with flavan-3-ol galloylation; moreover, CsSCPL4 was subfunctionalized in association with the galloylation of cis- and trans-flavan-3-ols. In C. nitidissima, an SCPL4 homolog was noted with mutations in two cysteine residues forming a disulfide bond, which suggested that this homolog was defunctionalized. The findings of this study improve our understanding of the functional diversification of SCPL paralogs in Camellia sp.


Asunto(s)
Camellia sinensis , Camellia , Camellia/genética , Flavonoides/química , Taninos/metabolismo , Camellia sinensis/química
7.
Front Immunol ; 13: 1072702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569848

RESUMEN

The diversity of three hypervariable loops in antibody heavy chain and light chain, termed the complementarity-determining regions (CDRs), defines antibody's binding affinity and specificity owing to the direct contact between the CDRs and antigens. These CDR regions typically contain tyrosine (Tyr) residues that are known to engage in both nonpolar and pi stacking interaction with antigens through their complementary aromatic ring side chains. Nearly two decades ago, sulfotyrosine residue (sTyr), a negatively charged Tyr formed by Golgi-localized membrane-bound tyrosylprotein sulfotransferases during protein trafficking, were also found in the CDR regions and shown to play an important role in modulating antibody-antigen interaction. This breakthrough finding demonstrated that antibody repertoire could be further diversified through post-translational modifications, in addition to the conventional genetic recombination. This review article summarizes the current advances in the understanding of the Tyr-sulfation modification mechanism and its application in potentiating protein-protein interaction for antibody engineering and production. Challenges and opportunities are also discussed.


Asunto(s)
Regiones Determinantes de Complementariedad , Cadenas Pesadas de Inmunoglobulina , Regiones Determinantes de Complementariedad/genética , Cadenas Pesadas de Inmunoglobulina/genética , Antígenos , Aparato de Golgi/metabolismo , Tirosina/metabolismo
8.
Curr Biol ; 32(21): 4688-4698.e6, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36198321

RESUMEN

Angiosperm flowers and their animal visitors have co-evolved for at least 140 Ma, and early flowers were likely used mainly as mating and feeding sites by several groups of insects, including beetles, flies, true bugs, and thrips. Earlier studies suggested that shifts from such neutral or antagonistic relationships toward mutualistic pollination interactions between flowers and insects occurred repeatedly during angiosperm evolution. However, the evolutionary mechanisms and adaptations, which accompanied shifts toward effective pollination, are barely understood, and evidence for such scenarios has been lacking. Here, we show that Syngonium hastiferum (Araceae), a Neotropical representative of an otherwise beetle-pollinated clade, is pollinated by plant bugs (Miridae; Heteroptera), which are florivores of Syngonium schottianum and other Araceae species. We found that S. hastiferum differs in several floral traits from its beetle-pollinated relatives. Scent emission and thermogenesis occur in the morning instead of the evening hours, and its pollen surface is spiny instead of smooth. Furthermore, the floral scent of S. hastiferum includes a previously unknown natural product, (Z)-3-isopropylpent-3-en-1-ol, which we show to have a function in specifically attracting the plant bug pollinators. This is the first known case of a specialized plant bug pollination system and provides clear evidence for the hypothesis that the adoption of antagonistic florivores as pollinators can drive flower diversification. VIDEO ABSTRACT.


Asunto(s)
Araceae , Escarabajos , Heterópteros , Animales , Polinización , Flores , Insectos , Polen
9.
Agron Sustain Dev ; 42(4): 78, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35945988

RESUMEN

Diversification of smallholder rice-based cropping systems has the potential to increase cropping system intensity and boost food security. However, impacts on resource use efficiencies (e.g., nutrients, energy, and labor) remain poorly understood, highlighting the need to quantify synergies and trade-offs among different sustainability indicators under on-farm conditions. In southern coastal Bangladesh, aman season rice is characterized by low inputs and low productivity. We evaluated the farm-level impacts of cropping system intensification (adding irrigated boro season rice) and diversification (adding chili, groundnut, mungbean, or lathyrus) on seven performance indicators (rice equivalent yield, energy efficiency, partial nitrogen productivity, partial potassium productivity, partial greenhouse gas footprint, benefit-cost ratio, and hired labor energy productivity) based on a comprehensive survey of 501 households. Indicators were combined into a multi-criteria performance index, and their scope for improvement was calculated by comparing an individual farmer's performance to top-performing farmers (highest 20%). Results indicate that the baseline system (single-crop aman season rice) was the least productive, while double cropped systems increased rice equivalent yield 72-217%. Despite gains in productivity, higher cropping intensity reduced resource use efficiencies due to higher inputs of fertilizer and energy, which also increased production costs, particularly for boro season rice. However, trade-offs were smaller for diversified systems including legumes, largely owing to lower N fertilizer inputs. Aman season rice had the highest multi-criteria performance index, followed by systems with mungbean and lathyrus, indicating the latter are promising options to boost food production and profitability without compromising sustainability. Large gaps between individual and top-performing farmers existed for each indicator, suggesting significant scope for improvement. By targeting indicators contributing most to the multi-criteria performance index (partial nitrogen productivity, energy efficiency, hired labor energy productivity), results suggest further sustainability gains can be achieved through future field research studies focused on optimizing management within diversified systems. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-022-00795-3.

10.
Front Plant Sci ; 13: 921815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774804

RESUMEN

Isatis indigotica is a popular herbal medicine with its noticeable antiviral properties, which are primarily due to its lignan glycosides such as lariciresinol-4-O-ß-D-glucoside and lariciresinol-4,4'-bis-O-ß-D-glucosides (also called clemastanin B). UDP-glucose-dependent glycosyltransferases are the key enzymes involved in the biosynthesis of these antiviral metabolites. In this study, we systematically characterized the UGT72 family gene IiUGT1 and two UGT71B family genes, IiUGT4 and IiUGT71B5a, with similar enzymatic functions. Kinetic analysis showed that IiUGT4 was more efficient than IiUGT1 or IiUGT71B5a for the glycosylation of lariciresinol. Further knock-down and overexpression of these IiUGTs in I. indigotica's hairy roots indicates that they play different roles in planta: IiUGT71B5a primarily participates in the biosynthesis of coniferin not pinoresinol diglucoside, and IiUGT1 primarily participates in the biosynthesis of pinoresinol diglucoside, while IiUGT4 is responsible for the glycosylation of lariciresinol and plays a dominant role in the biosynthesis of lariciresinol glycosides in I. indigotica. Analysis of the molecular docking and site-mutagenesis of IiUGT4 have found that key residues for its catalytic activity are H373, W376, E397, and that F151 could be associated with substrate preference. This study elucidates the biosynthetic route of anti-viral lignan glycosides in I. indigotica, and provides the foundation for the production of anti-viral lignan glycosides via synthetic biology under the heterologous model.

11.
Trials ; 23(1): 449, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650583

RESUMEN

BACKGROUND: Climate change heavily affects child nutritional status in sub-Saharan Africa. Agricultural and dietary diversification are promising tools to balance agricultural yield losses and nutrient deficits in crops. However, rigorous impact evaluation of such adaptation strategies is lacking. This project will determine the potential of an integrated home gardening and nutrition counseling program as one possible climate change adaptation strategy to improve child health in rural Burkina Faso and Kenya. METHODS: Based on careful co-design with stakeholders and beneficiaries, we conduct a multi-center, cluster-randomized controlled trial with 2 × 600 households in North-Western Burkina Faso and in South-Eastern Kenya. We recruit households with children at the age of complementary feed introduction (6-24 months) and with access to water sources. The intervention comprises the bio-diversification of horticultural home gardens and nutritional health counseling, using the 7 Essential Nutrition Action messages by the World Health Organization. After 12-months of follow-up, we will determine the intervention effect on the primary health outcome height-for-age z-score, using multi-level mixed models in an intention-to-treat approach. Secondary outcomes comprise other anthropometric indices, iron and zinc status, dietary behavior, malaria indicators, and household socioeconomic status. DISCUSSION: This project will establish the potential of a home gardening and nutrition counseling program to counteract climate change-related quantitative and qualitative agricultural losses, thereby improving the nutritional status among young children in rural sub-Saharan Africa. TRIAL REGISTRATION: German Clinical Trials Register (DRKS) DRKS00019076 . Registered on 27 July 2021.


Asunto(s)
Trastornos de la Nutrición del Niño , Desnutrición , Burkina Faso , Niño , Trastornos de la Nutrición del Niño/diagnóstico , Trastornos de la Nutrición del Niño/prevención & control , Preescolar , Consejo , Jardinería , Jardines , Humanos , Lactante , Kenia , Desnutrición/diagnóstico , Desnutrición/prevención & control , Estudios Multicéntricos como Asunto , Estado Nutricional , Ensayos Clínicos Controlados Aleatorios como Asunto
12.
Free Radic Biol Med ; 187: 113-122, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35580774

RESUMEN

The discoveries leading to our present understanding of the glutathione peroxidases (GPxs) are recalled. The cytosolic GPx, now GPx1, was first described by Mills in 1957 and claimed to depend on selenium by Rotruck et al., in 1972. With the determination of a stoichiometry of one selenium per subunit, GPx1 was established as the first selenoenzyme of vertebrates. In the meantime, the GPxs have grown up to a huge family of enzymes that prevent free radical formation from hydroperoxides and, thus, are antioxidant enzymes, but they are also involved in regulatory processes or synthetic functions. The kinetic mechanism of the selenium-containing GPxs is unusual in neither showing a defined KM nor any substrate saturation. More recently, the reaction mechanism has been investigated by the density functional theory and nuclear magnetic resonance of model compounds mimicking the reaction cycle. The resulting concept sees a selenolate oxidized to a selenenic acid. This very fast reaction results from a concerted dual attack on the hydroperoxide bond, a nucleophilic one by the selenolate and an electrophilic one by a proton that is unstably bound in the reaction center. Postulated intermediates have been identified either in the native enzymes or in model compounds.


Asunto(s)
Selenio , Animales , Antioxidantes/metabolismo , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno , Oxidación-Reducción , Selenio/metabolismo
13.
Indian J Clin Biochem ; 37(2): 149-158, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35463109

RESUMEN

Prevalence of anemia in India is almost 40% with no significant change since 1998-99, whereas globally this prevalence has been reduced to < 15%. This could be because our national nutritional programs (mainly National Nutritional Anemia Control Program-NNACP) focus on supplementation with iron and folate but not with vitamin B12. Some Indian studies, including our study (2012), indicated high prevalence of B12 deficiency in North Indian urban population. Hence, we conducted a retrospective analysis of 3 years' data (2012-2014 including 48,317 subjects) and compared it with last year's retrospective data (April 2019-March 2020 including 4775 subjects) to ascertain prevalence of deficiencies of these micronutrient with special reference to patients of anemia, and improvement therein over the subsequent 5-year period. Our results indicate that amongst our subjects with anemia, iron deficiency has reduced from 66.73% (2012-2014) to 56.86% (2019), but prevalence of vitamin B12 deficiency is still the same (36.54% in 2012-2014; 37.04% in 2019). Folate deficiency was similar in both sets of data (2.95% in 2012-2014 and 2.55% in 2019). Thus, NNACP has reduced prevalence of iron deficiency by ~ 10%points and folate deficiency marginally; B12 deficiency has not been addressed. It would, therefore, follow that we need to add to our current national programs to effectively deal with these deficiencies. Food fortification (with iron, folate and B12) seems the most likely means to add value to the existing programs. In addition, food diversification needs to be included in regular school curriculum to bring about community awareness and change in food habits.

14.
J Environ Manage ; 313: 114957, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390656

RESUMEN

Phosphogypsum is one of the hottest issues in the field of environmental solid waste treatment, with complex and changeable composition. Meanwhile, phosphogypsum contains a large number of impurities, thus leading to the low resource utilization rate, and it can only be stockpiled in large quantities. Phosphogypsum occupies a lot of land and poses a serious pollution threat to the ecological environment. This paper mainly summarizes the existing pretreatment and resource utilization technology of phosphogypsum. The pretreatment mainly includes dry method and wet method. The resource utilization technology mainly includes building materials, chemical raw materials, agriculture, environmental functional materials, filling materials, carbon sequestration and rare and precious extraction. Although there are many aspects of resource utilization of phosphogypsum, the existing technology is far from being able to consume a large amount of accumulated and generated phosphogypsum. Through the analysis, the comparison and mechanism analysis of the existing multifaceted and multi-level resource treatment technologies of phosphogypsum, the four promising resource utilization directions of phosphogypsum are put forward, mainly including prefabricated building materials, eco-friendly materials and soil materials, and new green functional materials and chemical fillers. Moreover, this paper summarizes the research basis of multi field and all-round treatment and disposal of phosphogypsum, which reduces repeated researches and development, as well as the treatment cost of phosphogypsum. This paper could provide a feasible research direction for the resource treatment technology of phosphogypsum in the future, so as to improve the consumption of phosphogypsum and reduce environmental risks.


Asunto(s)
Residuos Industriales , Residuos Sólidos , Sulfato de Calcio/química , Fósforo/química
15.
Cladistics ; 38(2): 204-226, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35277891

RESUMEN

Pollen, the microgametophyte of seed plants, has an important role in plant reproduction and, therefore, evolution. Pollen is variable in, for example, size, shape, aperture number; these features are particularly diverse in some plant taxa and can be diagnostic. In one family, Boraginaceae, the range of pollen diversity suggests the potential utility of this family as a model for integrative studies of pollen development, evolution and molecular biology. In the present study, a comprehensive survey of the diversity and evolution of pollen from 538 species belonging to 72 genera was made using data from the literature and additional scanning electron microscopy examination. Shifts in diversification rates and the evolution of various quantitative characters were detected, and the results revealed remarkable differences in size, shape and number of apertures. The pollen of one subfamily, Boraginoideae, is larger than that in Cynoglossoideae. The diversity of pollen shapes and aperture numbers in one tribe, Lithospermeae, is greater than that in the other tribes. Ancestral pollen for the family was resolved as small, prolate grains that bear three apertures and are iso-aperturate. Of all the tribes, the greatest number of changes in pollen size and aperture number were observed in Lithospermeae and Boragineae, and the number of apertures was found to be stable throughout all tribes of Cynoglossoideae. In addition, the present study showed that diversification of Boraginaceae cannot be assigned to a single factor, such as pollen size, and the increased rate of diversification for species-rich groups (e.g. Cynoglossum) is not correlated with pollen size or shape evolution. The palynological data and patterns of character evolution presented in the study provide better resolution of the roles of geographical and ecological factors in the diversity and evolution of pollen grains of Boraginaceae, and provide suggestions for future palynological research across the family.


Asunto(s)
Boraginaceae , Genes de Plantas , Microscopía Electrónica de Rastreo , Polen , Semillas
16.
R Soc Open Sci ; 9(3): 211771, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35345430

RESUMEN

Beetles constitute the most biodiverse animal order with over 380 000 described species and possibly several million more yet unnamed. Recent phylogenomic studies have arrived at considerably incongruent topologies and widely varying estimates of divergence dates for major beetle clades. Here, we use a dataset of 68 single-copy nuclear protein-coding (NPC) genes sampling 129 out of the 193 recognized extant families as well as the first comprehensive set of fully justified fossil calibrations to recover a refined timescale of beetle evolution. Using phylogenetic methods that counter the effects of compositional and rate heterogeneity, we recover a topology congruent with morphological studies, which we use, combined with other recent phylogenomic studies, to propose several formal changes in the classification of Coleoptera: Scirtiformia and Scirtoidea sensu nov., Clambiformia ser. nov. and Clamboidea sensu nov., Rhinorhipiformia ser. nov., Byrrhoidea sensu nov., Dryopoidea stat. res., Nosodendriformia ser. nov. and Staphyliniformia sensu nov., and Erotyloidea stat. nov., Nitiduloidea stat. nov. and Cucujoidea sensu nov., alongside changes below the superfamily level. Our divergence time analyses recovered a late Carboniferous origin of Coleoptera, a late Palaeozoic origin of all modern beetle suborders and a Triassic-Jurassic origin of most extant families, while fundamental divergences within beetle phylogeny did not coincide with the hypothesis of a Cretaceous Terrestrial Revolution.

17.
Crit Rev Food Sci Nutr ; 62(32): 8815-8828, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34096415

RESUMEN

Iron is a vital micronutrient required for growth and development at all stages of human life. Its deficiency is the primary cause of anemia that poses a significant global health problem and challenge for developing countries. Various risks are involved during iron deficiency anemia (IDA), such as premature delivery, low birth weight, etc. Further, it affects children's cognitive functioning, delays motor development, hampers physical performance and quality of life. It also speeds up the morbidity and mortality rate among women. The major reasons accountable are elevated iron demand in diet, socio-economic status, and disease condition. Various strategies have been adopted to reduce the IDA occurrence, such as iron supplementation, iron fortificants salts, agronomic practices, dietary diversification, biofortification, disease control measures, and nutritional education. Usually, the staple food groups for fortification are considered, but the selection of food fortificants and their combination must be safe for the consumers and not alter the finished product's stability and acceptability. Genetically modified breeding practices also increase the micronutrient levels of cereal crops. Therefore, multiple strategies could be relied on to combat IDA.


Asunto(s)
Anemia Ferropénica , Anemia , Deficiencias de Hierro , Niño , Femenino , Humanos , Alimentos Fortificados , Hierro , Prevalencia , Calidad de Vida , Micronutrientes , Anemia Ferropénica/epidemiología , Anemia Ferropénica/prevención & control
18.
Proc Biol Sci ; 288(1959): 20210533, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34547912

RESUMEN

The role of plant-pollinator interactions in the rapid radiation of the angiosperms have long fascinated evolutionary biologists. Studies have brought evidence for pollinator-driven diversification of various plant lineages, particularly plants with specialized flowers and concealed rewards. By contrast, little is known about how this crucial interaction has shaped macroevolutionary patterns of floral visitors. In particular, there is currently no empirical evidence that floral host association has increased diversification in bees, the most prominent group of floral visitors that essentially rely on angiosperm pollen. In this study, we examine how floral host preference influenced diversification in eucerine bees (Apidae, Eucerini), which exhibit large variations in their floral associations. We combine quantitative pollen analyses with a recently proposed phylogenetic hypothesis, and use a state speciation and extinction probabilistic approach. Using this framework, we provide the first evidence that multiple evolutionary transitions from host plants with accessible pollen to restricted pollen from 'bee-flowers' have significantly increased the diversification of a bee clade. We suggest that exploiting host plants with restricted pollen has allowed the exploitation of a new ecological niche for eucerine bees and contributed both to their colonization of vast regions of the world and their rapid diversification.


Asunto(s)
Flores , Polinización , Animales , Abejas , Evolución Biológica , Filogenia , Polen
19.
Front Plant Sci ; 12: 682181, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367208

RESUMEN

Plants produce more than 20,000 nitrogen-containing heterocyclic metabolites called alkaloids. These chemicals serve numerous eco-physiological functions in the plants as well as medicines and psychedelic drugs for human for thousands of years, with the anti-cancer agent vinblastine and the painkiller morphine as the best-known examples. Cytochrome P450 monooxygenases (P450s) play a key role in generating the structural variety that underlies this functional diversity of alkaloids. Most alkaloid molecules are heavily oxygenated thanks to P450 enzymes' activities. Moreover, the formation and re-arrangement of alkaloid scaffolds such as ring formation, expansion, and breakage that contribute to their structural diversity and bioactivity are mainly catalyzed by P450s. The fast-expanding genomics and transcriptomics databases of plants have accelerated the investigation of alkaloid metabolism and many players behind the complexity and uniqueness of alkaloid biosynthetic pathways. Here we discuss recent discoveries of P450s involved in the chemical diversification of alkaloids and how these inform our approaches in understanding plant evolution and producing plant-derived drugs.

20.
Environ Sci Pollut Res Int ; 28(46): 65255-65264, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34231147

RESUMEN

To comprehensively investigate the effects of exposure to legal doses of sulfamethoxazole (SMZ) in Nile tilapia (Oreochromis niloticus), fishes were exposed to diets supplemented with different doses of SMZ (NS, normal feed; LS, 20 mg/kg·day; MS, 200 mg/kg·day; and HS, 1000 mg/kg·day) for 4 weeks and then fed with normal feed for 4 weeks. General SMZ accumulation, growth performance, intestinal short-chain fatty acids, intestinal flora diversity, composition, and function were systemically evaluated. Results indicated that the SMZ accumulation in O. niloticus muscles, intestinal contents, and aquaculture environment positively correlated to the exposure dose. The growth performance, measured by weight increase, was MS>LS>NS, while HS antibiotics retarded the growth. SMZ-exposed O. niloticus had an increased number of fat particles in the liver and a change in the content of intestinal SCFAs. Moreover, SMZ exposure changed the biological diversity of the intestinal flora and subsequently induced microbiota dysbiosis, primarily inhibiting the growth of Fusobacteria, especially in HS group. Overall, exposure to higher SMZ doses than the recommended ones impair general intestinal functions and provokes health risk in fish. This study highlights the importance of rational and regulated use of SMZ in aquaculture.


Asunto(s)
Cíclidos , Alimentación Animal/análisis , Animales , Antibacterianos , Dieta , Suplementos Dietéticos , Sulfametoxazol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA