Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 235, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561649

RESUMEN

Drought stress considered a key restrictive factor for a warm-season bermudagrass growth during summers in China. Genotypic variation against drought stress exists among bermudagrass (Cynodon sp.), but the selection of highly drought-tolerant germplasm is important for its growth in limited water regions and for future breeding. Our study aimed to investigate the most tolerant bermudagrass germplasm among thirteen, along latitude and longitudinal gradient under a well-watered and drought stress condition. Current study included high drought-resistant germplasm, "Tianshui" and "Linxiang", and drought-sensitive cultivars; "Zhengzhou" and "Cixian" under drought treatments along longitude and latitudinal gradients, respectively. Under water deficit conditions, the tolerant genotypes showed over-expression of a dehydrin gene cdDHN4, antioxidant genes Cu/ZnSOD and APX which leads to higher antioxidant activities to scavenge the excessive reactive oxygen species and minimizing the membrane damage. It helps in maintenance of cell membrane permeability and osmotic adjustment by producing organic osmolytes. Proline an osmolyte has the ability to keep osmotic water potential and water use efficiency high via stomatal conductance and maintain transpiration rate. It leads to optimum CO2 assimilation rate, high chlorophyll contents for photosynthesis and elongation of leaf mesophyll, palisade and thick spongy cells. Consequently, it results in elongation of leaf length, stolon and internode length; plant height and deep rooting system. The CdDHN4 gene highly expressed in "Tianshui" and "Youxian", Cu/ZnSOD gene in "Tianshui" and "Linxiang" and APX gene in "Shanxian" and "Linxiang". The genotypes "Zhongshan" and "Xiaochang" showed no gene expression under water deficit conditions. Our results indicate that turfgrass show morphological modifications firstly when subjected to drought stress; however the gene expression is directly associated and crucial for drought tolerance in bermudagrass. Hence, current research has provided excellent germplasm of drought tolerant bermudagrass for physiological and molecular study and future breeding.


Asunto(s)
Antioxidantes , Cynodon , Cynodon/fisiología , Antioxidantes/metabolismo , Sequías , Fitomejoramiento , Fotosíntesis/genética , Agua/metabolismo , Expresión Génica
2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612625

RESUMEN

Extreme drought weather has occurred frequently in recent years, resulting in serious yield loss in tea plantations. The study of drought in tea plantations is becoming more and more intensive, but there are fewer studies on drought-resistant measures applied in actual production. Therefore, in this study, we investigated the effect of exogenous tea polyphenols on the drought resistance of tea plant by pouring 100 mg·L-1 of exogenous tea polyphenols into the root under drought. The exogenous tea polyphenols were able to promote the closure of stomata and reduce water loss from leaves under drought stress. Drought-induced malondialdehyde (MDA) accumulation in tea leaves and roots was also significantly reduced by exogenous tea polyphenols. Combined transcriptomic and metabolomic analyses showed that exogenous tea polyphenols regulated the abnormal responses of photosynthetic and energy metabolism in leaves under drought conditions and alleviated sphingolipid metabolism, arginine metabolism, and glutathione metabolism in the root system, which enhanced the drought resistance of tea seedlings. Exogenous tea polyphenols induced jasmonic acid-isoleucine (JA-ILE) accumulation in the root system, and the jasmonic acid-isoleucine synthetase gene (TEA028623), jasmonic acid ZIM structural domain proteins (JAMs) synthesis genes (novel.22237, TEA001821), and the transcription factor MYC2 (TEA014288, TEA005840) were significantly up-regulated. Meanwhile, the flavonoid metabolic flow was significantly altered in the root; for example, the content of EGCG, ECG, and EGC was significantly increased. Thus, exogenous tea polyphenols enhance the drought resistance of tea plants through multiple pathways.


Asunto(s)
Camellia sinensis , Ciclopentanos , Resistencia a la Sequía , Oxilipinas , Isoleucina , Polifenoles/farmacología , Camellia sinensis/genética , Flavonoides ,
3.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612475

RESUMEN

MAPKKs, as one of the main members of the mitogen-activated protein kinase (MAPK) cascade pathway, are located in the middle of the cascade and are involved in many physiological processes of plant growth and development, as well as stress tolerance. Previous studies have found that StMAPKK5 is responsive to drought and salt stress. To further investigate the function and regulatory mechanism of StMAPKK5 in potato stress response, potato variety 'Atlantic' was subjected to drought and NaCl treatments, and the expression of the StMAPKK5 gene was detected by qRT-PCR. StMAPKK5 overexpression and RNA interference-mediated StMAPKK5 knockdown potato plants were constructed. The relative water content, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities, as well as proline (Pro) and malondialdehyde (MDA) contents of plant leaves, were also assayed under drought and NaCl stress. The StMAPKK5 interacting proteins were identified and validated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). The results showed that the expression of StMAPKK5 was significantly up-regulated under drought and NaCl stress conditions. The StMAPKK5 protein was localized in the nucleus, cytoplasm, and cell membrane. The expression of StMAPKK5 affected the relative water content, the enzymatic activities of SOD, CAT, and POD, and the proline and MDA contents of potatoes under drought and salt stress conditions. These results suggest that StMAPKK5 plays a significant role in regulating drought and salt tolerance in potato crop. Yeast two-hybrid (Y2H) screening identified four interacting proteins: StMYB19, StZFP8, StPUB-like, and StSKIP19. BiFC confirmed the authenticity of the interactions. These findings suggest that StMAPKK5 is crucial for potato growth, development, and response to adversity.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Sequías , Saccharomyces cerevisiae , Cloruro de Sodio/farmacología , Estrés Salino , Prolina , Superóxido Dismutasa , Agua
4.
J Agric Food Chem ; 72(18): 10257-10270, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38661009

RESUMEN

Drought stress has become the primary severe threat to global agriculture production, including medicinal plants. Plant growth-promoting bacteria (PGPB) and environmentally friendly element silicon (Si) have emerged as effective methods in alleviating drought stress in various plants. Here, the effects of the plant endophytic G5 interaction with Si on regulating nitrogen absorption, assimilation, and metabolism pathways were investigated in the morphophysiological and gene attributes of Glycyrrhiza uralensis exposed to drought. Results showed that G5+Si application improved nitrogen absorption and assimilation by increasing the available nitrogen content in the soil, further improving the nitrogen utilization efficiency. Then, G5+Si triggered the accumulation of the major adjustment substances proline, γ-aminobutyric acid, putrescine, and chlorophyll, which played an important role in contributing to maintaining balance and energy supply in G. uralensis exposed to drought. These findings will provide new ideas for the combined application of PGPR and Si on both soil and plant systems in a drought habitat.


Asunto(s)
Sequías , Endófitos , Glycyrrhiza uralensis , Nitrógeno , Silicio , Nitrógeno/metabolismo , Silicio/metabolismo , Endófitos/metabolismo , Endófitos/fisiología , Glycyrrhiza uralensis/microbiología , Glycyrrhiza uralensis/metabolismo , Glycyrrhiza uralensis/química , Glycyrrhiza uralensis/genética , Bacillus/metabolismo , Estrés Fisiológico , Clorofila/metabolismo , Suelo/química , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo
5.
Plant Physiol Biochem ; 208: 108476, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442628

RESUMEN

Understanding the physiological and biochemical regulations in a medicinal plant under stress environments is essential. Here, the effect of water stress such as flooding and water deficit [80% (control), 60%, 40%, 20% field capacity (FC)] conditions on Valeriana jatamansi was studied. Both types of water stresses retarded the plant growth and biomass. Photosynthetic pigments were reduced with maximum reduction under flood stress. Chlorophyll fluorescence study revealed distinct attributes under applied stresses. Better performance index (PI) of flood-grown plants (than 20% and 40% FC) and higher relative fluorescence decrease ratio (Rfd) in 40% FC and flood-grown plants than that of control plants, indicated the adaptation ability of plants under water deficit (40% FC) and flood stress. Reduction in net photosynthetic rate was lesser in flood stress (40.92%) compared to drought stress (73.92% at 20% FC). Accumulation of starch was also decreased (61.1% at 20% FC) under drought stress, while it was increased (24.59%) in flood stress. The effect of water stress was also evident with modulation in H2O2 content and membrane damage. Differential modulation of biosynthesis of secondary metabolites (valtrate, acevaltrate and hydroxyl valerenic acid) and expression of iridoid biosynthetic genes under water stress was also revealed. The present study demonstrated the distinct effect of drought and flood stress on V. jatamansi plants, and drought [20% FC] caused severe loss and more damage than flood stress. Therefore, severe drought should be avoided during cultivation of V. jatamansi and regulated water stress-applications have potential for modulation of biosynthesis of specific secondary metabolites.


Asunto(s)
Plantas Medicinales , Valeriana , Deshidratación , Peróxido de Hidrógeno , Fotosíntesis/fisiología , Plantas Medicinales/química , Sequías , Estrés Fisiológico
6.
Int J Biol Macromol ; 264(Pt 2): 130735, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471611

RESUMEN

Drought is the stressor with a significant adverse impact on the yield stability of tea plants. HD-ZIP III transcription factors (TFs) play important regulatory roles in plant growth, development, and stress responses. However, whether and how HD-ZIP III TFs are involved in drought response and tolerance in tea plants remains unclear. Here, we identified seven HD-ZIP III genes (CsHDZ3-1 to CsHDZ3-7) in tea plant genome. The evolutionary analysis demonstrated that CsHDZ3 members were subjected to purify selection. Subcellular localization analysis revealed that all seven CsHDZ3s located in the nucleus. Yeast self-activation and dual-luciferase reporter assays demonstrated that CsHDZ3-1 to CsHDZ3-4 have trans-activation ability whereas CsHDZ3-5 to CsHDZ3-7 served as transcriptional inhibitors. The qRT-PCR assay showed that all seven CsHDZ3 genes could respond to simulated natural drought stress and polyethylene glycol treatment. Further assays verified that all CsHDZ3 genes can be cleaved by csn-miR166. Overexpression of csn-miR166 inhibited the expression of seven CsHDZ3 genes and weakened drought tolerance of tea leaves. In contrast, suppression of csn-miR166 promoted the expression of seven CsHDZ3 genes and enhanced drought tolerance of tea leaves. These findings established the foundation for further understanding the mechanism of CsHDZ3-miR166 modules' participation in drought responses and tolerance.


Asunto(s)
Camellia sinensis , Resistencia a la Sequía , Camellia sinensis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta , Té/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Bioelectrochemistry ; 158: 108692, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38547778

RESUMEN

This study explores the impact of pulsed electric field (PEF) application on oat seedling growth and stress tolerance. PEF treatment (99 monopolar, rectangular pulses lasting 10 µs each, with a frequency of 13 Hz and a nominal electric field strength of 2250 V/cm) was applied at two growth stages: (i) when the seedlings had 0.2 cm roots emerging from the kernel, and (ii) when they had a 0.4 cm shoot emerging from the kernel. Post-treatment, the seedlings were hydroponically grown for 8 days. To induce stress, the hydroponic medium was augmented with PEG (15 %) to induce drought stress and NaCl (150 mM) to induce salinity stress. Results demonstrate that applying PEF improved the growth of the root and shoot of oat seedlings. This effect was more pronounced when applied to more developed seedlings. When PEF was applied during the later stage of germination, seedlings exposed to salinity stress showed enhanced shoot growth compared to the control. Under the studied conditions, the application of PEF had no impact on the growth of seedlings under drought stress.


Asunto(s)
Avena , Germinación , Plantones , Estrés Fisiológico , Plantones/crecimiento & desarrollo , Avena/crecimiento & desarrollo , Electricidad , Sequías
8.
3 Biotech ; 14(3): 69, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38362591

RESUMEN

The objective of this study was to assess the effects of phosphate solubilizing rhizo-microbes inoculants on nutrient balance, physiological adaptation, growth characteristics, and rhizome yield traits as well as curcuminoids yield at the secondary-rhizome initiation stage of turmeric plants, subsequently subjected to water-deficit (WD) stress. Phosphorus contents in the leaf tissues of Talaromyces aff. macrosporus and Burkholderia sp. (Bruk) inoculated plants peaked at 0.33 and 0.29 mg g-1 DW, respectively, under well-watered (WW) conditions; however, phosphorus contents declined when subjected to WD conditions (p ≤ 0.05). Similarly, potassium and calcium contents reached their maximum values at 5.33 and 3.47 mg g-1 DW, respectively, in Burk inoculated plants under WW conditions, which contributed to sustained rhizome fresh weight even when exposed to WD conditions (p ≤ 0.05). There was an increase in free proline content in T. aff. macrosporus and Burk inoculated plants under WD conditions, which played a crucial role in controlling leaf osmotic potential, thereby stabilizing leaf greenness and maximum quantum yield of PSII. As indicators of drought stress, there were noticeable restrictions in stomatal gas exchange parameters, including net photosynthetic rate, stomatal conductance, and transpiration rate, accompanied by an increase in leaf temperature. These changes resulted in reduced total soluble sugar levels. Interestingly, total curcuminoids and curcuminoids yield in Burk inoculated plants under WD conditions were retained, especially in relation to rhizome biomass. Burk inoculation in turmeric plants is recommended as a promising technique as it alleviates water-deficit stress, sustains rhizome biomass, and stabilizes curcuminoids yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03922-x.

9.
Plant Sci ; 342: 112027, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38354754

RESUMEN

The APETALA2 (AP2) transcription factors play crucial roles in plant growth and stage transition. Ginkgo biloba is an important medicinal plant renowned for the rich flavonoid content in its leaves. In this study, 18 GbAP2s were identified from the G. biloba genome and classified into three clusters. We found that the members of the euAP2 cluster, including four TOEs (GbTOE1a/1b/1c/3), exhibited a higher expression level in most samples compared to other members. Specifically, GbTOE1a may have a positive regulatory role in salt and drought stress responses. The overexpression of GbTOE1a in G. biloba calli resulted in a significant increase in the flavonoid content and upregulation of flavonoid biosynthesis genes, including PAL, 4CL, CHS, F3H, FLSs, F3'Hs, OMT, and DFRs. By contrast, the silencing of GbTOE1a in seedlings decreased the flavonoid content and the expression of flavonoid synthesizing genes. In addition, the silenced seedlings exhibited decreased antioxidant levels and a higher sensitivity to salt and drought treatments, suggesting a crucial role of GbTOE1a in G. biloba salt and drought tolerance. To the best of our knowledge, this was the first investigation into the identification and characterization of GbAP2s in G. biloba. Our results lay a foundation for further research on the regulatory role of the AP2 family in flavonoid synthesis and stress responses.


Asunto(s)
Sequías , Ginkgo biloba , Ginkgo biloba/genética , Resistencia a la Sequía , Estudio de Asociación del Genoma Completo , Extractos Vegetales/metabolismo , Flavonoides/metabolismo , Cloruro de Sodio/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
BMC Plant Biol ; 24(1): 91, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38317086

RESUMEN

BACKGROUND: Atractylodes chinensis (DC) Koidz., a dicotyledonous and hypogeal germination species, is an important medicinal plant because its rhizome is enriched in sesquiterpenes. The development and production of A. chinensis are negatively affected by drought stress, especially at the seedling stage. Understanding the molecular mechanism of A. chinensis drought stress response plays an important role in ensuring medicinal plant production and quality. In this study, A. chinensis seedlings were subjected to drought stress treatment for 0 (control), 3 (D3), and 9 days (D9). For the control, the sample was watered every two days and collected on the second morning after watering. The integration of physiological and transcriptomic analyses was carried out to investigate the effects of drought stress on A. chinensis seedlings and to reveal the molecular mechanism of its drought stress response. RESULTS: The malondialdehyde, proline, soluble sugar, and crude protein contents and antioxidative enzyme (superoxide dismutase, peroxidase, and catalase) activity were significantly increased under drought stress compared with the control. Transcriptomic analysis indicated a total of 215,665 unigenes with an average length of 759.09 bp and an N50 of 1140 bp. A total of 29,449 differentially expressed genes (DEGs) were detected between the control and D3, and 14,538 DEGs were detected between the control and D9. Under drought stress, terpenoid backbone biosynthesis had the highest number of unigenes in the metabolism of terpenoids and polyketides. To identify candidate genes involved in the sesquiterpenoid and triterpenoid biosynthetic pathways, we observed 22 unigene-encoding enzymes in the terpenoid backbone biosynthetic pathway and 15 unigene-encoding enzymes in the sesquiterpenoid and triterpenoid biosynthetic pathways under drought stress. CONCLUSION: Our study provides transcriptome profiles and candidate genes involved in sesquiterpenoid and triterpenoid biosynthesis in A. chinensis in response to drought stress. Our results improve our understanding of how drought stress might affect sesquiterpenoid and triterpenoid biosynthetic pathways in A. chinensis.


Asunto(s)
Atractylodes , Sesquiterpenos , Triterpenos , Transcriptoma , Atractylodes/genética , Sequías , Perfilación de la Expresión Génica , Terpenos , Agua , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
11.
BMC Genomics ; 25(1): 10, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166714

RESUMEN

BACKGROUND: Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS: This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION: In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.


Asunto(s)
Arabidopsis , Solanum tuberosum , Ubiquitina-Proteína Ligasas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Resistencia a la Sequía , Filogenia , Sequías , Ubiquitinas/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
12.
Environ Geochem Health ; 46(2): 41, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227068

RESUMEN

Stress due to drought lowers crop yield and frequently leads to a rise in food scarcity. Plants' intricate metabolic systems enable them to tolerate drought stress, but they are unable to handle it well. Adding some external, environmentally friendly supplements can boost plant growth and productivity when it comes to drought-stressed plants. In order to prevent the detrimental effects of drought in agricultural regions, environmentally friendly practices must be upheld. Plant growth-promoting rhizobacteria (PGPR) can exhibit beneficial phytostimulation, mineralization, and biocontrol activities under drought stress. The significant impact of the PGPR previously reported has not been accepted as an effective treatment to lessen drought stress. Recent studies have successfully shown that manipulating microbes can be a better option to reduce the severity of drought in plants. In this review, we demonstrate how modifying agents such as biochar, PGPR consortia, PGPR, and mycorrhizal fungi can help overcome drought stress responses in crop plants. This article also discusses CRISPR/Cas9-modifiable genes, increase plant's effectiveness in drought conditions, and increase plant resistance to drought stress. With an eco-friendly approach in mind, there is a need for practical management techniques having potential prospects based on an integrated strategy mediated by CRISPR-Cas9 editing, PGPR, which may alleviate the effects of drought stress in crops and aid in achieving the United Nation Sustainable Development Goals (UN-SDGs-2030).


Asunto(s)
Carbón Orgánico , Sequías , Edición Génica , Agricultura , Productos Agrícolas
13.
Nat Prod Res ; : 1-6, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38156555

RESUMEN

Some Amaranthus species have been shown to have pharmacological properties such as activity against cancer, and it is also used as a traditional herbal medicine in many rural parts of the world. The (3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay was used as a screening tool to determine the approximate cell viability inhibitory concentrations of methanol and aqueous crude extracts of Amaranthus spp. The extracts were screened using small-cell lung cancer (H69V), hepatocellular carcinoma (HepG2/C3A) and non-cancerous kidney cells (Vero) cell lines. Viability was assessed following exposure to a series of concentrations of each extract and A. hypochondriacus showed cytotoxicity of 70.55 µg/mL against H69V with a Si index of 1.8. The fractionated aqueous extract of 40 °C-treated A. hypochondriacus under well-watered conditions had a higher viability inhibition on H69V and Vero cell lines compared to the A. caudatus, A. cruentus and A. spinosus crude extracts. In conclusion, A. hypochondriacus could serve as a potential source of anticancer phytoconstituents for drug development.

14.
Plant Signal Behav ; 18(1): 2291618, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38100609

RESUMEN

Drought stress adversely affects plant growth, often leading to total crop failure. Upon sensing soil water deficits, plants switch on biosynthesis of abscisic acid (ABA), a stress hormone for drought adaptation. Here, we used exogenous ABA application to dark-grown sorghum cell suspension cultures as an experimental system to understand how a drought-tolerant crop responds to ABA. We evaluated intracellular and secreted proteins using isobaric tags for relative and absolute quantification. While the abundance of only ~ 7% (46 proteins) intracellular proteins changed in response to ABA, ~32% (82 proteins) of secreted proteins identified in this study were ABA responsive. This shows that the extracellular matrix is disproportionately targeted and suggests it plays a vital role in sorghum adaptation to drought. Extracellular proteins responsive to ABA were predominantly defense/detoxification and cell wall-modifying enzymes. We confirmed that sorghum plants exposed to drought stress activate genes encoding the same proteins identified in the in vitro cell culture system with ABA. Our results suggest that ABA activates defense and cell wall remodeling systems during stress response. This could underpin the success of sorghum adaptation to drought stress.


Asunto(s)
Ácido Abscísico , Sorghum , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Sorghum/metabolismo , Agua/metabolismo , Grano Comestible/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
15.
Physiol Mol Biol Plants ; 29(9): 1353-1369, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38024952

RESUMEN

Drought is one of the main environmental stresses affecting the quality and quantity of sesame production worldwide. The present study was conducted to investigate the effect of drought stress and subsequent re-watering on physiological, biochemical, and molecular responses of two contrasted sesame genotypes (susceptible vs. tolerant). Results showed that plant growth, photosynthetic rate, stomatal conductance, transpiration rate, and relative water content were negatively affected in both genotypes during water deficit. Both genotypes accumulated more soluble sugars, free amino acids, and proline and exhibited an increased enzyme activity for peroxidase, catalase, superoxide dismutase, and pyruvate dehydrogenase in response to drought damages including increased lipid peroxidation and membrane disruption. However, the tolerant genotype revealed a more extended root system and a more efficient photosynthetic apparatus. It also accumulated more soluble sugars (152%), free amino acids (48%), proline (75%), and antioxidant enzymes while showing lower electrolyte leakage (26%), lipid peroxidation (31%), and starch (35%) content, compared to the susceptible genotype at severe drought. Moreover, drought-related genes such as MnSOD1, MnSOD2, and PDHA-M were more expressed in the tolerant genotype, which encode manganese-dependent superoxide dismutase and the alpha subunit of pyruvate dehydrogenase, respectively. Upon re-watering, tolerant genotype recovered to almost normal levels of photosynthesis, carboxylation efficiency, lipid peroxidation, and electrolyte leakage, while susceptible genotype still suffered critical issues. Overall, these results suggest that a developed root system and an efficient photosynthetic apparatus along with the timely and effective accumulation of protective compounds enabled the tolerant sesame to withstand stress and successfully return to a normal growth state after drought relief. The findings of this study can be used as promising criteria for evaluating genotypes under drought stress in future sesame breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01372-y.

16.
J Proteomics ; 289: 105010, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37797878

RESUMEN

Drought is an important abiotic stress that constrains the quality and quantity of tea plants. The green leaf volatiles Z-3-hexenyl acetate (Z-3-HAC) have been reported to play an essential role in stress responses. However, the underlying mechanisms of drought tolerance in tea plants remain elusive. This study investigated the physiological, proteomic, and phosphoproteomic profiling of two tea plant varieties of Longjingchangye (LJCY) and Zhongcha 108 (ZC108) with contrasting drought tolerance characteristics under drought stress. Physiological data showed that spraying Z-3-HAC exhibited higher activities of superoxide dismutase (SOD) and catalase (CAT) in both LJCY and ZC108 but lower content of malondialdehyde (MDA) in LJCY under drought stress. The proteomic and phosphoproteomic analysis suggested that the drought tolerance mechanism of Z-3-HAC in LJCY and ZC108 was different. Proteomic analyses revealed that Z-3-HAC enhanced the drought tolerance of LJCY by fructose metabolism while enhancing the drought tolerance of ZC108 by promoting glucan biosynthesis and galactose metabolism. Furthermore, the differential abundance phosphoproteins (DAPPs) related to intracellular protein transmembrane transport and protein transmembrane transport were enriched in LJCY, and the regulation of response to osmotic stress and regulation of mRNA processing were enriched in ZC108. In addition, protein-phosphoprotein interactions (PPI) analyses suggested that energy metabolism and starch and sucrose metabolic processes might play critical roles in LJCY and ZC108, respectively. These results will help to understand the mechanisms by which Z-3-HAC enhances the drought resistance of tea plants at the protein level. SIGNIFICANT: Green leaf volatiles (GLVs) are important volatile organic compounds that play essential roles in plant defense against biotic and abiotic stresses. To understand the mechanisms of Z-3-HAC in improving the drought tolerance of tea plants, two contrasting drought tolerance varieties (LJCY and ZC108) were comparatively evaluated by proteomics and phosphoproteomics. This analysis evidenced changes in the abundance of proteins involved in energy metabolism and starch and sucrose metabolic processes in LJCY and ZC108, respectively. These proteins may elucidate new molecular aspects of the drought resistance mechanism of Z-3-HAC, providing a theoretical basis for drought resistance breeding of tea plants.


Asunto(s)
Sequías , Proteómica , Proteómica/métodos , Fitomejoramiento , Estrés Fisiológico , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Sacarosa , , Regulación de la Expresión Génica de las Plantas
17.
Plant Biol (Stuttg) ; 25(7): 1109-1120, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37815250

RESUMEN

The medicinal plant Sophora tonkinensis is a characteristic Chinese shrub of karst areas. The arid climate in karst areas produces high-quality S. tonkinensis; however, the mechanisms of drought tolerance are not clear, which restricts sustainable plantings of S. tonkinensis. This study involved a 20-day drought stress experiment with potted S. tonkinensis and threee soil water regimes: control (CK), mild drought (MDT), and severe drought (SDT). Plant morphology, biomass, physiological indicators, alkaloid content, and other changes under drought stress were monitored. The content of soluble sugars and proteins, and activity of antioxidant enzymes in leaves and roots were higher under drought than CK, indicating that S. tonkinensis is tolerant to osmotic stress in early drought stages. Content of matrine and oxymatrine increased gradually with increasing drought duration in the short term. The epidermis of S. tonkinensis leaves have characteristics of desert plants, including upper epidermal waxy layer, lower epidermal villi, and relatively sunken stomata, suggesting that S. tonkinensis has strong drought tolerance. In conclusion, drought stress changed the cell structure of S. tonkinensis, induced antioxidant enzyme activity and increased its resistance to drought.


Asunto(s)
Alcaloides , Plantas Medicinales , Sophora , Sophora/química , Sequías , Antioxidantes , Alcaloides/análisis , Raíces de Plantas/química , Estrés Fisiológico , Adaptación Fisiológica
18.
3 Biotech ; 13(10): 328, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37667775

RESUMEN

Water stress influences plant growth and metabolism. Carnitine, an amino acid involved in lipid metabolism, has been related to responses of plants to abiotic stresses, also modulating their metabolites. Culantro (Eryngium foetidum L.) is a perennial herb, rich in essential oils, native to Latin America, commonly used due to its culinary and medicinal properties. Here, we investigated the effect of exogenous carnitine on morphophysiology and the essential oil profile of culantro plants under water stress. For this, plants were grown under three water conditions: well-watered, drought stress, and re-watered; and sprayed with exogenous carnitine (100 µM) or water (control). Culantro growth was impaired by drought and enhanced by re-watering. Carnitine, in turn, did not reverse drought effects on growth, and impaired the growth of re-watered plants, also improving photosynthetic pigment content. Water conditions and carnitine application changed the essential oil profile of the plants. Drought and re-watering improved the production of eryngial, which was even increased with exogenous carnitine in re-watered plants. In addition, hydroquinone was only produced with the combination of re-watering and carnitine application. The application of exogenous carnitine can be a strategy to induce the production of essential oil compounds with cosmetic and pharmaceutical importance in culantro. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03757-y.

19.
Planta ; 258(5): 84, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736857

RESUMEN

MAIN CONCLUSION: CsGolS2-1 and CsGolS2-2 are involved in the transcriptional mechanism and play an important role in the drought response of tea plants. GolS is critical for the biosynthesis of galactinol and has been suggested to contribute to drought tolerance in various plants. However, whether GolS plays a role in drought response and the underlying transcriptional mechanism of GolS genes in response to drought stress in tea plants is still unclear. In this study, we found that drought stress promotes the accumulation of galactinol in tea leaves and that the expression of CsGolS2-1 and CsGolS2-2, which encode proteins capable of catalyzing galactinol biosynthesis, is continuously and dramatically induced by drought stress. Moreover, transgenic Arabidopsis plants expressing CsGolS2-1 and CsGolS2-2 were more drought-tolerant than WT plants, as evidenced by increased cell membrane stability. In addition, the drought-responsive transcription factor CsWRKY2 has been shown to positively regulate the expression of CsGolS2-1 and CsGolS2-2 by directly binding to their promoters. Furthermore, CsVQ9 was found to interact with CsWRKY2 and promote its transcriptional function to activate CsGolS2-1 and CsGolS2-2 expression. Taken together, our findings provide insights not only into the positive role played by CsGolS2-1 and CsGolS2-2 in the drought response of tea plants but also into the transcriptional mechanisms involved.


Asunto(s)
Arabidopsis , Camellia sinensis , Sequías , Camellia sinensis/genética , Resistencia a la Sequía , Arabidopsis/genética , Plantas Modificadas Genéticamente ,
20.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37762543

RESUMEN

Basic leucine zipper (bZIP) transcription factors play significant roles in plants' growth and development processes, as well as in response to biological and abiotic stresses. Hypericum perforatum is one of the world's top three best-selling herbal medicines, mainly used to treat depression. However, there has been no systematic identification or functional analysis of the bZIP gene family in H. perforatum. In this study, 79 HpbZIP genes were identified. Based on phylogenetic analysis, the HpbZIP gene family was divided into ten groups, designated A-I and S. The physicochemical properties, gene structures, protein conserved motifs, and Gene Ontology enrichments of all HpbZIPs were systematically analyzed. The expression patterns of all genes in different tissues of H. perforatum (i.e., root, stem, leaf, and flower) were analyzed by qRT-PCR, revealing the different expression patterns of HpbZIP under abiotic stresses. The HpbZIP69 protein is localized in the nucleus. According to the results of the yeast one-hybrid (Y1H) assays, HpbZIP69 can bind to the HpASMT2 (N-acetylserotonin O-methyltransferase) gene promoter (G-box cis-element) to activate its activity. Overexpressing HpbZIP69 in Arabidopsis wild-type lines enhanced their tolerance to drought. The MDA and H2O2 contents were significantly decreased, and the activity of superoxide dismutase (SOD) was considerably increased under the drought stress. These results may aid in additional functional studies of HpbZIP transcription factors, and in cultivating drought-resistant medicinal plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA