Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 328: 118124, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38556138

RESUMEN

ETHNOPHAMACOLOGICAL RELEVANCE: Morinda officinalis oligosaccharides (MOs) is a mixture of oligosaccharides extracted from the roots of Morinda officinalis (MO). It is approved by Chinese Food and Drug Administration (CFDA) for depression treatment. MOs could improve the antidepressant efficacy of escitalopram in clinic. AIM OF THE STUDY: We aim to explore the antidepressant activity and potential mechanism of the combination usage of MOs and escitalopram on animal model of depression. MATERIALS AND METHODS: Depressive animal model was induced by chronic mild stress (CMS). Behavioral tests were conducted to evaluate the antidepressant efficacy of MOs and escitalopram. Serum neurotransmitter levels were detected by High-performance liquid chromatography (HPLC). Quantitative real-time PCR and Western blotting were applied to assay the hippocampus neurotrophic factors' mRNA and protein levels. Peripheral cytokines levels were measured through Enzyme-Linked Immunosorbent Assay (ELISA). Micorglia polization phenotype was assayed by immunofluorescence and flow cytometry. RESULTS: MOs and escitalopram obviously attenuated depression-like behaviors of CMS mice. Importantly, MOs plus escitalopram exhibited better antidepressant activity on CMS mice than monotherapy. At the same time, MOs combined escitalopram treatment significantly increased hippocampus neurotransmitters and neurotrophic factor levels, stimulated hippocampus neurogenesis and relieved central nervous system (CNS) microglia over-activation of CMS mice. The combination therapy had greater effect on neuroprotection and inflammation attenuation of CMS mice than monotherapy. CONCLUSION: Our results indicates MOs combined escitalopram might produce antidepressant activity through protecting neuron activity, relieving inflammation and modulating microglia polarization process.


Asunto(s)
Escitalopram , Morinda , Ratones , Animales , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Inflamación/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad
2.
J Ethnopharmacol ; 326: 117988, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38428657

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Perioperative or postoperative adjuvant chemotherapy based on 5-fluorouracil (5-FU) is a common first-line adjuvant therapy for gastric cancer (GC). However, drug resistance and the side effects of 5-FU have reduced its efficacy. Among these side effects, gastrointestinal (GI) toxicity is one of the most common. Xianglian Pill (XLP) is a Chinese patent medicine that is commonly used for the treatment of diarrhoea. It can reduce inflammation and has a protective effect on the intestinal mucosa. Recent studies have shown that many components of XLP can inhibite tumor cell growth. However, the therapeutic effect of XLP in combination with 5-FU on GC is unclear. AIM OF THE STUDY: To investigate whether the combination of XLP and 5-FU can enhance anti-GC activity while reducing GI toxicity. MATERIALS AND METHODS: XLP was administered orally during intraperitoneal injection of 5-FU in GC mice model. Mice were continuously monitored for diarrhea and xenograft tumor growth. After 2 weeks, the mice were sacrificed and serum was collected to determine interleukin-6 levels. Pathological changes, the expression of pro-inflammatory factors and p38 mitogen-activated protein kinase (MAPK) in GI tissue were determined by Western blot analysis. Pathological changes, apoptosis levels and p38 MAPK expression levels in xenograft tissues were also determined. RESULTS: The results showed that XLP could alleviate GI mucosal injury caused by 5-FU, alleviated diarrhea, and inhibited the expression of nuclear factor (NF)-κB and myeloid differentiation primary response-88. Besides, XLP could promote the 5-FU-induced apoptosis of GC cells and enhance the inhibitory effect of 5-FU on tumor xenografts. Further study showed that XLP administration could regulate the expression of p38 MAPK. CONCLUSIONS: XLP in combination with 5-FU could alleviate its GI side effects and enhance its inhibitory effect on xenograft tumor. Moreover, these effects were found to be related to the regulation of the p38 MAPK/NF-κB pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Fluorouracilo , Neoplasias Gástricas , Humanos , Ratones , Animales , Fluorouracilo/toxicidad , Neoplasias Gástricas/tratamiento farmacológico , FN-kappa B/metabolismo , Sistema de Señalización de MAP Quinasas , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 222, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372782

RESUMEN

Pseudomonas aeruginosa is a common opportunistic pathogen with growing resistance and presents heightened treatment challenges. Quorum sensing (QS) is a cell-to-cell communication system that contributes to the production of a variety of virulence factors and is also related to biofilm formation of P. aeruginosa. Compared to traditional antibiotics which kill bacteria directly, the anti-virulence strategy by targeting QS is a promising strategy for combating pseudomonal infections. In this study, the QS inhibition potential of the compounds derived from the Traditional Chinese Medicines was evaluated by using in silico, in vitro, and in vivo analyses. The results showed that psoralen, a natural furocoumarin compound derived from Psoralea corylifolia L., was capable of simultaneously inhibiting the three main QS regulators, LasR, RhlR, and PqsR of P. aeruginosa. Psoralen had no bactericidal activity but could widely inhibit the production of extracellular proteases, pyocyanin, and biofilm, and the cell motilities of the model and clinical P. aeruginosa strains. RNA-sequencing and quantitative PCR analyses further demonstrated that a majority of QS-activated genes in P. aeruginosa were suppressed by psoralen. The supplementation of psoralen could protect Caenorhabditis elegans from P. aeruginosa challenge, especially for the hypervirulent strain PA14. Moreover, psoralen showed synergistic antibacterial effects with polymyxin B, levofloxacin, and kanamycin. In conclusions, this study identifies the anti-QS and antibiofilm effects of psoralen against P. aeruginosa strains and sheds light on the discovery of anti-pseudomonal drugs among Traditional Chinese Medicines. KEY POINTS: • Psoralen derived from Psoralea corylifolia L. inhibits the virulence-related phenotypes of P. aeruginosa. • Psoralen simultaneously targets the three core regulators of P. aeruginosa QS system and inhibits the expression of a large part of downstream genes. • Psoralen protects C. elegans from P. aeruginosa challenge and enhances the susceptibility of P. aeruginosa to antibiotics.


Asunto(s)
Fabaceae , Furocumarinas , Infecciones por Pseudomonas , Animales , Pseudomonas aeruginosa/genética , Ficusina/farmacología , Percepción de Quorum , Virulencia , Caenorhabditis elegans , Infecciones por Pseudomonas/tratamiento farmacológico , Furocumarinas/farmacología , Antibacterianos/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38204247

RESUMEN

BACKGROUND: Silybin, a major flavonoid extracted from the seeds of milk thistle, has a strong hepatoprotective but weak anti-hepatoma activity. Screening another natural ingredient and combining it with silybin is expected to improve the anti-hepatoma efficacy of silybin. OBJECTIVE: The objective of this study was to investigate the synergistic anti-hepatoma effect of resveratrol and silybin on HepG2 cells and H22 tumor-bearing mice in hepatocellular carcinoma (HCC) in vitro and in vivo, respectively. METHODS: Cell viability, scratch wound, clone formation, cell apoptosis, cell cycle, and western blot analysis of HepG2 cells were used to investigate the synergistic effects in vitro of the combination resveratrol with silybin. Growth rates, tumor weights, organ indexes, and histological pathological examination in H22 tumor-bearing mice were used to investigate the synergistic effects in vivo. RESULTS: The combination of resveratrol (50 µg/mL) and silybin (100 µg/mL) significantly suppressed cell viability, whose combination index (CI) was 1.63 (>1.15), indicating the best synergism. The combination exhibited the synergistic effect in blocking the migration and proliferative capacity of HepG2 cells in the measurement in vitro. In particular, resveratrol enhanced the upregulation of Bcl-2 expression and the downregulation of Bax expression with a concurrent increase in the Bax/Bcl-2 ratio. The combination of resveratrol (50 mg/kg) and silybin (100 mg/kg) reduced the tumor weight, inhibited the growth rate, increased the organ indexes, and destroyed the tumor tissue morphology in H22 tumor-bearing mice. CONCLUSION: Resveratrol was found to exhibit synergistic anti-cancer effects with silybin on HepG2 cells and H22 tumor-bearing mice.

5.
J Ethnopharmacol ; 323: 117609, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38142875

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In elderly people, Alzheimer's disease (AD) is the most common form of dementia. It has been shown that traditional Chinese medicine (TCM) based on phytomedicines enhances the therapeutic effects of modern medicine when taken in conjunction with them. Modern medicine N-methyl-D-aspartate receptor (NMDA) antagonist memantine (Mm) are mainly used in the clinical treatment of AD. TCM Cerebralcare Granule® (CG) has long been an effective treatment for headaches, dizziness, and other symptoms. In this study, we employ a blend of CG and Mm to address Alzheimer's disease-like symptoms and explore their impacts and underlying mechanisms. AIM OF THE STUDY: The objective of our study was to observe the effects of CG combined with Memantine (Mm) on learning and memory impairment of AD mice induced by D-galactose and to explore the mechanism at work. MATERIALS AND METHODS: CG and Mm were combined to target multiple pathological processes involved in AD. For a thorough analysis, we performed various experiments such as behavioral detection, pathological detection, proteomic detection, and other experimental methods of detection. RESULTS: It was found that the combination of CG and Mm was significantly effective for improving learning and memory in AD mice as well as brain pathology. The serum and hippocampal tissue of AD mice were significantly enhanced with catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA) levels were decreased with this treatment. In AD mice, a combination of Mm and CG (CG + Mm) significantly increased the levels of the anti-inflammatory factors IL-4 and IL-10, decreased the levels of pro-inflammatory factors (IL-6, IL-1ß) and tumor necrosis factor-alpha (TNF-α), improved synaptic plasticity by restoring synaptophysin (SYP) and postsynaptic density protein-95 (PSD-95) expression in the hippocampus, enhanced Aß phagocytosis of microglia in AD mice, and increased mitochondrial respiratory chain enzyme complexes I, II, III, and IV, lead to an increase in the number of functionally active NMDA receptors in the hippocampus. Proteomic analysis GO analysis showed that the positive regulation gene H3BIV5 of G protein coupled receptor signal pathway and synaptic transmission was up-regulated, while the transsynaptic signal of postsynaptic membrane potential and regulation-related gene Q5NCT9 were down-regulated. Most proteins showed significant enriched signal transduction pathway profiles after CG + Mm treatment, based on the KEGG pathway database. CONCLUSION: The data supported the idea that CG and Mm could be more effective in treating AD mice induced by D-galactose than Mm alone. We provided a basis for the clinical use of CG with Mm.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Anciano , Enfermedad de Alzheimer/metabolismo , Memantina/efectos adversos , Galactosa , Proteómica , Hipocampo , Antioxidantes/farmacología
6.
Ther Adv Neurol Disord ; 16: 17562864231207755, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915501

RESUMEN

Background: Epilepsy is one of the most common chronic brain diseases. Almost one-third of patients have drug-resistant epilepsy (DRE). Cannabidiol is being considered as a potential novel drug for treating DRE. Objectives: To investigate long-term efficacy and safety of cannabidiol in treatment of DRE and the differences in cannabidiol treatment among patients with different characteristics. Design: Systematic review and meta-analysis. Data sources and methods: Medline, Embase, and CENTRAL were searched for literature. RevMan5.4 was used for meta-analysis. The Intention-to-treat set and the random effect were used as the main analysis. Subgroup analyses were performed according to age, dose, concomitant antiseizure medications (ASMs), epilepsy syndromes, and study designs. Results: Fifty studies were included in this systematic review. A total of 4791 participants were collected. The responder rates (seizure frequency reduced at least 50%) at 12-, 24-, 48-, 72-, 96-, and 144-week were 0.40 [0.36, 0.45], 0.39 [0.34, 0.44], 0.37 [0.30, 0.44], 0.27 [0.17, 0.37], 0.22 [0.14, 0.30], and 0.38 [0.23, 0.53]. Seizure-free rates were 0.04 [0.03, 0.06], 0.04 [0.03, 0.05], 0.03 [0.02, 0.05], 0.03 [0.02, 0.03], 0.02 [0.01, 0.03], and 0.04 [0.01, 0.06]. Proportion of adverse events were 0.72 [0.61, 0.83], 0.62 [0.42, 0.81], 0.60 [0.41, 0.79], 0.35 [0.14, 0.56], 0.83 [0.75, 0.90], and 0.96 [0.94, 0.99]. The pooled 12-, 24-, 48-, 96-, and 144-week proportion of serious adverse events were 0.15 [0.09, 0.21], 0.23 [0.14, 0.31], 0.10 [0.06, 0.15], 0.31 [0.24, 0.38], and 0.40 [0.35, 0.45]. Subgroup analyses showed that there was no significant difference on efficacy and safety among age subgroups and epilepsy syndromes subgroups. For most periods, there were no significant difference on efficacy among subgroups of dose and concomitant ASMs. However, higher doses and more concomitant ASMs were associated with higher proportion of adverse events. Conclusion: Cannabidiol treatment of DRE has stable efficacy and fewer adverse events in early period. Long-term use may have decreased efficacy and increased adverse events. Dose escalation may not increase efficacy, but may increase adverse events. Furthermore, cannabidiol use may reduce dosage of other ASMs without reducing efficacy, thereby reducing adverse effects. Cannabidiol may have similar effects in various epilepsy syndromes. Trial registration: PROSPERO (CRD42022351250).

7.
Biomed Pharmacother ; 166: 115417, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666179

RESUMEN

BACKGROUND AND AIMS: Drug-induced liver injury remains a critical issue to hinder clinical application of Tripterygium Glycosides Tablets (TGTs) for rheumatoid arthritis (RA) therapy. Combination of TGTs with Total Glucosides of Peony (TGP) may be the most common therapeutic strategy for enhancing TGTs' efficacy and reducing its toxicity. Herein, we aimed to investigate the efficacy-enhancing and toxicity-reducing properties and mechanisms of TGT-TGP combination. METHODS: Both TGT-induced acute and chronic liver injury animal models were established. ELISA, transmission electron microscopy, immunohistochemistry, western blot and quantitative PCR were performed to determine the efficacy, toxicity and regulatory mechanisms of TGT-TGP combination. RESULTS: The compatibility of TGP significantly reduced the abnormal serum ALT and AST levels, and improved liver histopathological changes in both acute and chronic DILI animal models induced by TGTs, with the most effective dosage of TGP-M (medium-dose TGP, 450 mg/kg). Additionally, TGP and TGT synergistically alleviated joint swelling and improved the elevation of serum inflammatory factors, in line with the positive changes in joint histopathological features of collagen induced arthritis mice, with the same effective dosage of TGP-M following 5 weeks' drug combination treatment. Mechanically, TGT significantly increased the number of autophagosomes and the expression of LC3II protein while reducing p62 protein expression in the liver tissues, which were significantly reversed by the compatibility with TGP, similar to the findings based on the inflamed joint tissues. CONCLUSIONS: These findings suggest an enhanced efficacy with reduced toxicity of TGT by the compatibility with TGP for RA therapy, possibly through regulating various autophagy-related proteins.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Glicósidos Cardíacos , Paeonia , Animales , Ratones , Glicósidos/farmacología , Glicósidos/uso terapéutico , Glucósidos/farmacología , Glucósidos/uso terapéutico , Tripterygium , Artritis Reumatoide/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico
8.
Biomedicines ; 11(8)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37626713

RESUMEN

Antimicrobial resistance (AMR) has become a topic of great concern in recent years, with much effort being committed to developing alternative treatments for resistant bacterial pathogens. Drug combinational therapies have been a major area of research for several years, with modern iterations using combining well-established antibiotics and other antimicrobials with the aim of discovering complementary mechanisms. Previously, we characterised four GRAS antimicrobials that can withstand thermal polymer extrusion processes for novel medical device-based and therapeutic applications. In the present study, four antimicrobial bioactive-silver nitrate, nisin, chitosan and zinc oxide-were assessed for their potential combined use as an alternative synergistic treatment for AMR bacteria via a broth microdilution assay based on a checkerboard format. The bioactives were tested in arrangements of two-, three- and four-drug combinations, and their interactions were determined and expressed in terms of a synergy score. Results have revealed interesting interactions based on treatments against recognised test bacterial strains that cause human and animal infections, namely E. coli, S. aureus and S. epidermidis. Silver nitrate was seen to greatly enhance the efficacy of its paired treatment. Combinations with nisin, which is a lantibiotic, exhibited the most interesting results, as nisin has no effect against Gram-negative bacteria when used alone; however, it demonstrated antimicrobial effects when combined with silver nitrate or chitosan. This study constitutes the first study to both report on practical three- and four-drug combinational assays and utilise these methods for the assessment of established and emerging antimicrobials. The novel methods and results presented in this study show the potential to explore previously unknown drug combination compatibility measures in an ease-of-use- and high-throughput-based format, which can greatly help future research that aims to identify appropriate alternative treatments for AMR, including the screening of potential new bioactives biorefined from various sources.

9.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37541956

RESUMEN

AIMS: Various epidemiology studies have reported the emergence of Staphylococcus aureus and its methicillin resistance strain causing global health concerns, especially during and post-COVID-19 pandemic. This pathogen presents as a co-infection in patients with COVID-19. In addition, certain virulence factors and resistance to ß-lactam antibiotics, including cefotaxime, have been identified. We aimed to investigate the antibacterial activity of Lagerstreomia speciosa, a medicinal plant with antidiabetic activity, against S. aureus, including the strain resistant to methicillin. Furthermore, we examined whether the extract and one of its bioactive compounds, corosolic acid, can enhance the therapeutic effect of cefotaxime on antibiotic-resistant S. aureus. METHODS AND RESULTS: The minimum inhibitory concentration of each substance was determined using the standard broth microdilution test following the checkerboard dilution. The type of interactions, synergistic, additivity, indifference, or antagonism, were determined using isobolograms analysis and the dose reduction index (DRI). The evaluation of synergy and bactericidal activity of the natural products in combination with cefotaxime was performed using the time-kill kinetic assay. Corosolic acid, L. speciosa leaves extract, and bark extract alone showed antibacterial activity against all tested S. aureus ATCC 33591, S. aureus ATCC 29213, S. aureus ATCC 25923, and clinical isolated S. aureus. Corosolic acid enhanced the antibacterial activity of cefotaxime, showing a synergistic effect and greater DRI of cefotaxime against all tested S. aureus strains. Time-kill kinetic assay showed that corosolic acid has a more profound effect than L. speciosa extracts to potentiate the bactericidal activity of cefotaxime. Whereas L. speciosa leaves and bark extract showed some inhibitory effect on the growth of S. aureus after a single administration. CONCLUSIONS: Lagerstreomia speciosa leaves and bark extract and its active compound, corosolic acid, could be used as a potential anti-Staphylococcus aureus treatment to enhance the therapeutic use of cefotaxime.


Asunto(s)
COVID-19 , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Cefotaxima/farmacología , Pandemias , Antibacterianos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Extractos Vegetales/farmacología , Pruebas de Sensibilidad Microbiana , Sinergismo Farmacológico
10.
Pharmacol Res ; 195: 106876, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536638

RESUMEN

There is a lack of FDA-approved tocolytics for the management of preterm labor (PL). In prior drug discovery efforts, we identified mundulone and mundulone acetate (MA) as inhibitors of in vitro intracellular Ca2+-regulated myometrial contractility. In this study, we probed the tocolytic potential of these compounds using human myometrial samples and a mouse model of preterm birth. In a phenotypic assay, mundulone displayed greater efficacy, while MA showed greater potency and uterine-selectivity in the inhibition of intracellular-Ca2+ mobilization. Cell viability assays revealed that MA was significantly less cytotoxic. Organ bath and vessel myography studies showed that only mundulone exerted inhibition of myometrial contractions and that neither compounds affected vasoreactivity of ductus arteriosus. A high-throughput combination screen identified that mundulone exhibits synergism with two clinical-tocolytics (atosiban and nifedipine), and MA displayed synergistic efficacy with nifedipine. Of these combinations, mundulone+atosiban demonstrated a significant improvement in the in vitro therapeutic index compared to mundulone alone. The ex vivo and in vivo synergism of mundulone+atosiban was substantiated, yielding greater tocolytic efficacy and potency on myometrial tissue and reduced preterm birth rates in a mouse model of PL compared to each single agent. Treatment with mundulone after mifepristone administration dose-dependently delayed the timing of delivery. Importantly, mundulone+atosiban permitted long-term management of PL, allowing 71% dams to deliver viable pups at term (>day 19, 4-5 days post-mifepristone exposure) without visible maternal and fetal consequences. Collectively, these studies provide a strong foundation for the development of mundulone as a single or combination tocolytic for management of PL.


Asunto(s)
Productos Biológicos , Trabajo de Parto Prematuro , Nacimiento Prematuro , Tocolíticos , Femenino , Recién Nacido , Ratones , Animales , Humanos , Tocolíticos/farmacología , Tocolíticos/uso terapéutico , Nacimiento Prematuro/tratamiento farmacológico , Nifedipino/farmacología , Nifedipino/uso terapéutico , Mifepristona/uso terapéutico , Productos Biológicos/uso terapéutico , Trabajo de Parto Prematuro/tratamiento farmacológico
11.
Drug Des Devel Ther ; 17: 2401-2420, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609432

RESUMEN

Introduction: Neuroinflammation is one of the major pathogeneses in Alzheimer's disease (AD) and mainly involves abnormal inflammatory activation of microglia by multiple pathological stimuli. The treatment of AD remains a major challenge due to the multifactorial characterization of AD and the inefficient ability of therapeutic drugs to permeate through the blood‒brain barrier (BBB). Accordingly, drug combination treatment and drug carrier delivery have become important therapeutic tools for the treatment of multifactorial diseases, especially AD. Methods: Inflammatory cytokine levels in microglia, including NO, TNF-α, IL-1ß, IL-4, and IL-10, were detected. The Morris water maze and object location task were used to investigate the learning and memory functions of APP/PS1 mice in different treatment groups. The number of neurons and plasticity of synapses were evaluated by immunofluorescence double labelling. Additionally, the ratio of ß-amyloid plaques and the number of activated microglia were evaluated by immunofluorescence staining. The concentrations of ß-amyloid plaques and inflammatory factors in the hippocampus were determined by ELISA. Microglia-derived exosomes (Exos) were extracted and purified by size exclusion chromatography. The distribution of exosomes and drugs was investigated in vitro and in vivo. Results: Compared to single drug interventions, the combination of Ber and Pal (Ber/Pal) modulated microglial inflammatory cytokine levels. Ber/Pal promoted the recovery of learning and memory impairment in APP/PS1 mice. Immunofluorescence staining indicated that Ber/Pal restored neurons, inhibited Aß plaque formation and microglial activation, and regulated the secretion of inflammatory factors. Exos promoted the accumulation of drugs in cells and tissues and improved the targeting of drugs across the BBB. Conclusion: Ber/Pal could offer a synergistic and more comprehensive therapeutic effect in AD. Additionally, the microglia-derived Exos-Ber/Pal delivery system promoted the targeting and permeation of drugs into the brain, suggesting a creative strategy for targeting AD therapy by regulating neuroinflammation in microglial cells.


Asunto(s)
Enfermedad de Alzheimer , Berberina , Exosomas , Animales , Ratones , Berberina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Placa Amiloide , Péptidos beta-Amiloides , Citocinas
12.
Biomed Pharmacother ; 165: 114972, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37481931

RESUMEN

The rising incidence of breast cancer has been a significant source of concern in the medical community. Regarding the adverse effects and consequences of current treatments, cancers' health, and socio-economical aspects have become more complicated, leaving research aimed at improved or new treatments on top priority. Medicinal herbs contain multitarget compounds that can control cancer development and advancement. Owing to Nigella Sativa's elements, it can treat many disorders. Thymoquinone (TQ) is a natural chemical derived from the black seeds of Nigella sativa Linn proved to have anti-cancer and anti-inflammatory properties. TQ interferes in a broad spectrum of tumorigenic procedures and inhibits carcinogenesis, malignant development, invasion, migration, and angiogenesis owing to its multitargeting ability. It effectively facilitates miR-34a up-regulation, regulates the p53-dependent pathway, and suppresses Rac1 expression. TQ promotes apoptosis and controls the expression of pro- and anti-apoptotic genes. It has also been shown to diminish the phosphorylation of NF-B and IKK and decrease the metastasis and ERK1/2 and PI3K activity. We discuss TQ's cytotoxic effects for breast cancer treatment with a deep look at the relevant stimulatory or inhibitory signaling pathways. This review discusses the various forms of polymeric and non-polymeric nanocarriers (NC) and the encapsulation of TQ for increasing oral bioavailability and enhanced in vitro and in vivo efficacy of TQ-combined treatment with different chemotherapeutic agents against various breast cancer cell lines. This study can be useful to a broad scientific community, comprising pharmaceutical and biological scientists, as well as clinical investigators.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nigella sativa , Humanos , Femenino , Neoplasias de la Mama/patología , Apoptosis , Antineoplásicos/farmacología , Benzoquinonas/uso terapéutico , Nigella sativa/química
13.
Tuberculosis (Edinb) ; 141: 102363, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37311289

RESUMEN

Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis complex, still presents significant numbers of incidence and mortality, in addition to several cases of drug resistance. Resistance, especially to isoniazid, which is one of the main drugs used in the treatment, has increased. In this context, N-acylhydrazones derived from isoniazid have shown important anti-Mycobacterium tuberculosis activity. Hence, this work aimed to determine the anti-TB potential of 11 isoniazid-N-acylhydrazones (INH-acylhydrazones). For this purpose, the determination of minimum inhibitory concentration (MIC) against M. tuberculosis H37Rv and clinical isolates was carried out. Drug combination, minimum bactericidal concentration, cytotoxicity, and in silico parameters were also performed. INH-acylhydrazones (2), (8), and (9) had MIC for M. tuberculosis H37Rv similar to or lower than isoniazid, and bactericidal activity was observed. In addition, these compounds showed low cytotoxicity, with a selectivity index greater than 3,000. Interesting results were also obtained in the drug combination assay, with synergistic combinations with isoniazid, ethambutol, and rifampicin. In the in silico study, INH-acylhydrazones behaved similarly to INH, but with improvements in some aspects. Based on these findings, it is concluded that compounds (2), (8), and (9) are considered promising scaffolds and warrant further investigation for designing future antimicrobial drugs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Isoniazida/farmacología , Isoniazida/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Pruebas de Sensibilidad Microbiana , Combinación de Medicamentos
14.
In Vivo ; 37(3): 1156-1163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37103074

RESUMEN

BACKGROUND/AIM: Liver cancer is one of the malignancies with the highest mortality-to-incidence ratio worldwide. Therefore, novel therapeutic approaches are urgently needed. Combination therapy and drug repurposing can improve the response of the patients to therapy in several cancers. The aim of the present study was to merge these two strategies and evaluate whether the two-drug- or three-drug- combination of sorafenib, raloxifene, and loratadine improves the antineoplastic effect on human liver cancer cells in comparison to the single-drug effect. MATERIALS AND METHODS: The human liver cancer cell lines HepG2 and HuH7 were studied. The effect of sorafenib, raloxifene, and loratadine on the metabolic activity was determined using the MTT assay. The inhibitory concentrations (IC20 and IC50) were calculated from these results and used in the drug-combination experiments. Apoptosis and cell survival were studied by flow cytometry and using the colony formation assay, respectively. RESULTS: In both cell lines, sorafenib, raloxifene, and loratadine in two-drug and three-drug combinations significantly reduced metabolic activity and significantly increased the percentage of apoptotic cells compared to the single-drug effect. In addition, all the combinations significantly reduced the colony-forming capacity in the HepG2 cell line. Surprisingly, the effect of raloxifene on apoptosis was similar to that observed using the combinations. CONCLUSION: The triple combination sorafenib-raloxifene-loratadine may be a novel promising approach in the treatment of liver cancer patients.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenib/farmacología , Loratadina/farmacología , Loratadina/uso terapéutico , Clorhidrato de Raloxifeno/farmacología , Carcinoma Hepatocelular/patología , Proliferación Celular , Neoplasias Hepáticas/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral
15.
Elife ; 122023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36917037

RESUMEN

Background: Plasma cell mastitis (PCM) is a nonbacterial breast inflammation with severe and intense clinical manifestation, yet treatment methods for PCM are still rather limited. Although the mechanism of PCM remains unclear, mounting evidence suggests that the dysregulation of immune system is closely associated with the pathogenesis of PCM. Drug combinations or combination therapy could exert improved efficacy and reduced toxicity by hitting multiple discrete cellular targets. Methods: We have developed a knowledge graph architecture toward immunotherapy and systematic immunity that consists of herbal drug-target interactions with a novel scoring system to select drug combinations based on target-hitting rates and phenotype relativeness. To this end, we employed this knowledge graph to identify an herbal drug combination for PCM and we subsequently evaluated the efficacy of the herbal drug combination in clinical trial. Results: Our clinical data suggests that the herbal drug combination could significantly reduce the serum level of various inflammatory cytokines, downregulate serum IgA and IgG level, reduce the recurrence rate, and reverse the clinical symptoms of PCM patients with improvements in general health status. Conclusions: In summary, we reported that an herbal drug combination identified by knowledge graph can alleviate the clinical symptoms of PCM patients. We demonstrated that the herbal drug combination holds great promise as an effective remedy for PCM, acting through the regulation of immunoinflammatory pathways and improvement of systematic immune level. In particular, the herbal drug combination could significantly reduce the recurrence rate of PCM, a major obstacle to PCM treatment. Our data suggests that the herbal drug combination is expected to feature prominently in future PCM treatment. Funding: C. Liu's lab was supported by grants from the Public Health Science and Technology Project of Shenyang (grant: 22-321-32-18); Y. Yang's laboratory was supported by the National Natural Science Foundation of China (grant: 81874301), the Fundamental Research Funds for Central University (grant: DUT22YG122), and the Key Research project of 'be Recruited and be in Command' in Liaoning Province (2021JH1/10400050). Clinical trial number: NCT05530226.


Asunto(s)
Mastitis , Células Plasmáticas , Humanos , Femenino , Reconocimiento de Normas Patrones Automatizadas , Mastitis/tratamiento farmacológico , Mastitis/metabolismo , Mastitis/patología , Citocinas/metabolismo , Combinación de Medicamentos
16.
Heliyon ; 9(3): e14023, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36873530

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) has severely harmed human society and health. Because there is currently no specific drug for the treatment and prevention of COVID-19, we used a collaborative filtering algorithm to predict which traditional Chinese medicines (TCMs) would be effective in combination for the prevention and treatment of COVID-19. First, we performed drug screening based on the receptor structure prediction method, molecular docking using q-vina to measure the binding ability of TCMs, TCM formulas, and neo-coronavirus proteins, and then performed synergistic filtering based on Laplace matrix calculations to predict potentially effective TCM formulas. Combining the results of molecular docking and synergistic filtering, the new recommended formulas were analyzed by reviewing data platforms or tools such as PubMed, Herbnet, the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, the Guide to the Dispensing of Medicines for Clinical Evidence, and the Dictionary of Chinese Medicine Formulas, as well as medical experts' treatment consensus in terms of herbal efficacy, modern pharmacological studies, and clinical identification and typing of COVID-19 pneumonia, to determine the recommended solutions. We found that the therapeutic effect of a combination of six TCM formulas on the COVID-19 virus is the result of the overall effect of the formula rather than that of specific components of the formula. Based on this, we recommend a formula similar to that of Jinhua Qinggan Granules for the treatment of COVID-19 pneumonia. This study may provide new ideas and new methods for future clinical research. Classification: Biological Science.

17.
Life Sci ; 315: 121368, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36623766

RESUMEN

AIMS: Weikangling capsules (WKLCs) have been widely used in the treatment of chronic gastritis. Whether used alone or combined with omeprazole (OME), it shows a significant effect. However, the mechanisms haven't been established. The study aimed to explore the mechanisms of WKLCs and its combination with OME on chronic gastritis. MAIN METHODS: The components of WKLCs and EA (the ethyl acetate extraction extracted from WKLCs) fraction were analyzed. Then chronic gastritis model rats were induced by 56 % ethanol and treated with OME, low dose of WKLCs (WKL), high dose of WKLCs (WKH), WKLCs combined with OME (WO), and EA fraction (EA) to evaluate the mechanisms of WKLCs, drug combination and EA fraction. KEY FINDINGS: A total of 22 components of WKLCs were quantified, among them 18 were enriched in EA fraction. WKLCs alleviated the morphology and inflammation of gastric mucosa and downregulated the levels of inflammatory factors (IL-1ß, TNF-α, IL-6) and epidermal growth factor (EGF) in serum by inhibiting the EGF-EGFR-ERK pathway, regulating gut microbiota composition and SCFAs contents in feces. WKLCs plus OME was better than OME. EA fraction improved digestive function by increasing pepsin activity and decreasing gastrointestinal hormones (GAS and VIP) compared with WKLCs. SIGNIFICANCE: This study elucidated that the effect of WKLCs and its combination with OME in the treatment of chronic gastritis was attributed to regulating the composition of the gut microbiota and inhibiting the EGF-EGFR-ERK pathway. The EA fraction is an inseparable effective substance of WKLCs. This study provides scientific evidence for clinical application.


Asunto(s)
Gastritis Atrófica , Microbioma Gastrointestinal , Ratas , Animales , Omeprazol/farmacología , Factor de Crecimiento Epidérmico , Sistema de Señalización de MAP Quinasas , Etanol/toxicidad , Cápsulas , Receptores ErbB
18.
Phytomedicine ; 111: 154619, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36706697

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is associated with extremely high morbidity and mortality rates worldwide. Citrullus colocynthis (L.) Schrad, widely distributed in Asian and African countries, is used to treat cancers in traditional Uyghur medicine. HYPOTHESIS/PURPOSE: The combination of Cucurbitacin E (CuE) and Myricetin (Myr) of C. colocynthis could treat NSCLC by targeting autophagy. STUDY DESIGN: The potential anti-cancer components (CuE and Myr) of C. colocynthis were identified using in-silico methods and further in vitro explored the anti-NSCLC properties of the combination of CuE and Myr. METHODS: Network pharmacology and molecular docking were used to identify potential therapeutic compounds of C. colocynthis for the treatment of NSCLC. In A549 cells, the anti-cancer activities and synergy of CuE and Myr were studied using CompuSyn, their mechanism behind autophagy regulation was determined by western blotting and immunofluorescence staining. RESULTS: CuMy-12 (CuE: 0.5 µM, Myr: 20 µM), a combination of CuE and Myr from C. colocynthis, inhibited A549 cell proliferation and colony formation, and induced apoptosis and cell cycle arrest in the G0/G1 phase, exhibiting a synergistic effect. Furthermore, CuMy-12 inhibited autophagy and activation of the PI3K/AKT/mTOR signaling pathway, which was characterized by a decrease in Beclin 1, AKT, and phospho-AKT proteins. CONCLUSION: CuMy-12 can be considered a natural candidate with anticancer activity for autophagy-based regulation, but mechanistic and clinical studies are required to validate its potential.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas , Simulación del Acoplamiento Molecular , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proliferación Celular , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Apoptosis , Línea Celular Tumoral , Autofagia
20.
World J Clin Cases ; 10(34): 12500-12514, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36579091

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) is the most important infectious agent and plays an important role in the progression of chronic gastritis and the development of gastric cancer. AIM: To identify efficient therapeutic agents or strategies that can treat H. pylori infection. METHODS: We performed literature analysis, experimental validation, and network pharmacology. First, traditional Chinese medicine (TCM) prescriptions for the treatment of H. pylori infection were obtained from the China National Knowledge Infrastructure, China Biology Medicine, China Science and Technology Journal Database, and WanFang databases. In addition, we conducted a relevant search by Reference Citation Analysis (RCA) (https://www.referencecitationanalysis.com). Next, we used TCM Inheritance Support System V2.5 to identify core drug combinations in the TCM prescriptions. Then, an H. pylori-associated chronic mouse model of gastritis was established. The antibacterial properties and anti-inflammatory potential of the core drug combination were evaluated by the rapid urease test, modified Warthin-Starry silver staining, histopathological analysis, and enzyme linked immunosorbent assay. Finally, the active compounds, hub targets, and potential signaling pathways associated with the core drug combination were analyzed by network pharmacology. RESULTS: The TCM treatment of H. pylori was mainly based on reinforcing the healthy Qi and eliminating pathogenic factors by simultaneously applying pungent dispersing, bitter descending, cold and warm drugs. The combination of Coptis, Pinellia, and Scutellaria (CPS) was identified as the core drug combination from 207 prescriptions and 168 herbs. This drug combination eradicated H. pylori, alleviated the gastric pathology induced by H. pylori infection, and reduced the expression levels of tumor necrosis factor-α (P = 0.024) and interleukin-1ß (P = 0.001). Moreover, a total of 35 compounds and 2807 targets of CPS were identified using online databases. Nine key compounds (tenaxin I, neobaicalein, norwogonin, skullcapflavone II, baicalein, 5,8,2'-trihydroxy-7-methoxyflavone, acacetin, panicolin, and wogonin) and nine hub target proteins (EGFR, PTGS2, STAT3, MAPK3, MAPK8, HSP90AA1, MAPK1, MMP9, and MTOR) were further explored. Seventy-seven signaling pathways were correlated with H. pylori-induced inflammation and carcinogenesis. CONCLUSION: In summary, we showed that CPS is the core drug combination for treating H. pylori infection. Animal experiments demonstrated that CPS has bacteriostatic properties and can reduce the release of inflammatory cytokines in the gastric mucosa. Network pharmacology predictions further revealed that CPS showed complex chemical compositions with multi-target and multi-pathway regulatory mechanisms. Although the results derived from network pharmacology are not necessarily comprehensive, they still expand our understanding of CPS for treating H. pylori infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA