Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
2.
Int J Nanomedicine ; 18: 3897-3912, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483316

RESUMEN

Background: A nanoscale drug carrier could have a variety of therapeutic and diagnostic uses provided that the carrier is biocompatible in vivo. Carbon nano-onions (CNOs) have shown promising results as a nanocarrier for drug delivery. However, the systemic effect of CNOs in rodents is unknown. Therefore, we investigated the toxicity of CNOs following intravenous administration in female BALB/c mice. Results: Single or repeated administration of oxi-CNOs (125, 250 or 500 µg) did not affect mouse behavior or organ weight and there was also no evidence of hepatotoxicity or nephrotoxicity. Histological examination of organ slices revealed a significant dose-dependent accumulation of CNO aggregates in the spleen, liver and lungs (p<0.05, ANOVA), with a trace amount of aggregates appearing in the kidneys. However, CNO aggregates in the liver did not affect CYP450 enzymes, as total hepatic CYP450 as well as CYP3A catalytic activity, as meased by erythromycin N-demethylation, and protein levels showed no significant changes between the treatment groups compared to vehicle control. CNOs also failed to act as competitive inhibitors of CYP3A in vitro in both mouse and human liver microsomes. Furthermore, CNOs did not cause oxidative stress, as indicated by the unchanged malondialdehyde levels and superoxide dismutase activity in liver microsomes and organ homogenates. Conclusion: This study provides the first evidence that short-term intravenous administration of oxi-CNOs is non-toxic to female mice and thus could be a promising novel and safe drug carrier.


Asunto(s)
Carbono , Citocromo P-450 CYP3A , Ratones , Femenino , Humanos , Animales , Cebollas , Sistema Enzimático del Citocromo P-450 , Administración Intravenosa
4.
Biomed Pharmacother ; 161: 114468, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36868015

RESUMEN

Probiotics are frequently consumed as functional food and widely used as dietary supplements, but are also recommended in treating or preventing various gastrointestinal diseases. Therefore, their co-administration with other drugs is sometimes unavoidable or even compulsory. Recent technological developments in the pharmaceutical industry permitted the development of novel drug-delivery systems for probiotics, allowing their addition to the therapy of severely ill patients. Literature data regarding the changes that probiotics could impose on the efficacy or safety of chronic medication is scarce. In this context, the present paper aims to review probiotics currently recommended by the international medical community, to evaluate the relationship between gut microbiota and various pathologies with high impact worldwide and, most importantly, to assess the literature reports concerning the ability of probiotics to influence the pharmacokinetics/pharmacodynamics of some widely used drugs, especially for those with narrow therapeutic indexes. A better understanding of the potential influence of probiotics on drug metabolism, efficacy and safety could contribute to improving therapy management, facilitating individualized therapy and updating treatment guidelines.


Asunto(s)
Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Probióticos , Humanos , Probióticos/uso terapéutico , Suplementos Dietéticos , Alimentos Funcionales
5.
J Biol Rhythms ; 38(2): 171-184, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36762608

RESUMEN

The circadian timing system controls absorption, distribution, metabolism, and elimination processes of drug pharmacokinetics over a 24-h period. Exposure of target tissues to the active form of the drug and cytotoxicity display variations depending on the chronopharmacokinetics. For anticancer drugs with narrow therapeutic ranges and dose-limiting side effects, it is particularly important to know the temporal changes in pharmacokinetics. A previous study indicated that pharmacokinetic profile of capecitabine was different depending on dosing time in rat. However, it is not known how such difference is attributed with respect to diurnal rhythm. Therefore, in this study, we evaluated capecitabine-metabolizing enzymes in a diurnal rhythm-dependent manner. To this end, C57BL/6J male mice were orally treated with 500 mg/kg capecitabine at ZT1, ZT7, ZT13, or ZT19. We then determined pharmacokinetics of capecitabine and its metabolites, 5'-deoxy-5-fluorocytidine (5'DFCR), 5'-deoxy-5-fluorouridine (5'DFUR), 5-fluorouracil (5-FU), in plasma and liver. Results revealed that plasma Cmax and AUC0-6h (area under the plasma concentration-time curve from 0 to 6 h) values of capecitabine, 5'DFUR, and 5-FU were higher during the rest phase (ZT1 and ZT7) than the activity phase (ZT13 and ZT19) (p < 0.05). Similarly, Cmax and AUC0-6h values of 5'DFUR and 5-FU in liver were higher during the rest phase than activity phase (p < 0.05), while there was no significant difference in liver concentrations of capecitabine and 5'DFCR. We determined the level of the enzymes responsible for the conversion of capecitabine and its metabolites at each ZT. Results indicated the levels of carboxylesterase 1 and 2, cytidine deaminase, uridine phosphorylase 2, and dihydropyrimidine dehydrogenase (p < 0.05) are being rhythmically regulated and, in turn, attributed different pharmacokinetics profiles of capecitabine and its metabolism. This study highlights the importance of capecitabine administration time to increase the efficacy with minimum adverse effects.


Asunto(s)
Antimetabolitos Antineoplásicos , Ritmo Circadiano , Masculino , Ratones , Ratas , Animales , Capecitabina/farmacocinética , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/uso terapéutico , Ratones Endogámicos C57BL , Fluorouracilo/metabolismo , Fluorouracilo/uso terapéutico
6.
Front Pharmacol ; 13: 826395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278236

RESUMEN

Many medicinal plants species from European -such as Artemisia absinthium, Equisetum arvense, Lamium album, Malva sylvestris, Morus nigra, Passiflora incarnata, Frangula purshiana, and Salix alba- as well as Latin American traditions -such as Libidibia ferrea, Bidens pilosa, Casearia sylvestris, Costus spicatus, Monteverdia ilicifolia, Persea americana, Schinus terebinthifolia, Solidago chilensis, Syzygium cumini, Handroanthus impetiginosus, and Vernonanthura phosphorica- are shortlisted by the Brazilian National Health System for future clinical use. However, they lack many data on their action upon some key ADME targets. In this study, we assess non-toxic concentrations (up to100 µg/ml) of their infusions for in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). We further investigated the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of Gamma-glutamyl transferase (GGT) in HepG2 cells. Our results demonstrate L. ferrea, C. sylvestris , M. ilicifolia, P. americana, S. terebinthifolia, S. cumini, V. phosphorica, E. arvense, P. incarnata, F. purshiana, and S. alba can significantly increase CYP3A4 mRNA gene expression in HepG2 cells. Only F. purshiana shown to do so likely via hPXR activation. P-gp activity was affected by L. ferrea, F. purshiana, S. terebinthifolia, and S. cumini. Total intracellular glutathione levels were significantly depleted by exposure to all extracts except S. alba and S. cumini This was accompanied by a lower GGT activity in the case of C. spicatus, P. americana, S. alba, and S. terebinthifolia, whilst L. ferrea, P. incarnata and F. purshiana increased it. Surprisingly, S. cumini aqueous extract drastically decreased GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines causes in vitro disturbances to key drug metabolism mechanisms. We recommend active pharmacovigilance for Libidibia ferrea (Mart.) L. P. Queiroz, Frangula purshiana Cooper, Schinus terebinthifolia Raddi, and Salix alba L. which were able to alter all targets in our preclinical study.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36293657

RESUMEN

Resembling a concealed "organ" in a holobiont, trillions of gut microbes play complex roles in the maintenance of homeostasis, including participating in drug metabolism. The conventional opinion is that most of any drug is metabolized by the host and that individual differences are principally due to host genetic factors. However, current evidence indicates that only about 60% of the individual differences in drug metabolism are attributable to host genetics. Although most common chemical drugs regulate the gut microbiota, the gut microbiota is also known to be involved in drug metabolism, like the host. Interestingly, many traditional herbal medicines and derived compounds are biotransformed by gut microbiota, manipulating the compounds' effects. Accordingly, the gut microbiota and its specified metabolic pathways can be deemed a promising target for promoting drug efficacy and safety. However, the evidence regarding causality and the corresponding mechanisms concerning gut microbiota and drug metabolism remains insufficient, especially regarding drugs used to treat metabolic disorders. Therefore, the present review aims to comprehensively summarize the bidirectional roles of gut microbiota in the effects of herbal medicine in metabolic diseases to provide vital clues for guiding the clinical application of precision medicine and personalized drug development.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Metabólicas , Plantas Medicinales , Humanos , Medicina de Hierbas , Fitoterapia , Enfermedad Crónica , Enfermedades Metabólicas/tratamiento farmacológico
8.
Seizure ; 102: 14-21, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36156390

RESUMEN

In recent years, there has been growing interest in the influences of food-drug interactions on the metabolism of antiseizure medications (ASM) and the management of epilepsy. Studies have proven the effectiveness of the ketogenic diet (KD) in controlling refractory epilepsy. However, dietary interventions such as the KD or its variants may induce significant changes in serum drug concentrations which counteracts the anticonvulsive effects of ASMs, leading to an increased risk of developing seizures. Interactions with enzymes within the cytochrome P450 system may also explain the dietary influences on serum concentrations of antiseizure drugs. The bioavailability of ASMs is also affected by several foods and nutritional supplements. Nevertheless, more studies are warranted to explore the mechanisms underlying food-drug interactions and the risks and benefits of combined drug-diet therapy.


Asunto(s)
Dieta Cetogénica , Epilepsia Refractaria , Epilepsia , Humanos , Convulsiones , Dieta , Suplementos Dietéticos , Epilepsia Refractaria/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico
9.
Curr Drug Metab ; 23(5): 374-393, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35440304

RESUMEN

BACKGROUND: The representative anti-COVID-19 herbs, i.e., Poriacocos, Pogostemon, Prunus, and Glycyrrhiza plants, are commonly used in the prevention and treatment of COVID-19, a pandemic caused by SARSCoV- 2. Diverse medicinal compounds with favorable anti-COVID-19 activities are abundant in these plants, and their unique pharmacological/pharmacokinetic properties have been revealed. However, the current trends in Drug Metabolism/Pharmacokinetic (DMPK) investigations of anti-COVID-19 herbs have not been systematically summarized. METHODS: In this study, the latest awareness, as well as the perception gaps regarding DMPK attributes, in the anti- COVID-19 drug development and clinical usage was critically examined and discussed. RESULTS: The extracts and compounds of P.cocos, Pogostemon, Prunus, and Glycyrrhiza plants show distinct and diverse absorption, distribution, metabolism, excretion, and toxicity (ADME/T) properties. The complicated herbherb interactions (HHIs) and herb-drug interactions (HDIs) of anti-COVID-19 Traditional Chinese Medicine (TCM) herb pair/formula dramatically influence the PK/pharmacodynamic (PD) performance of compounds thereof, which may inspire researchers to design innovative herbal/compound formulas for optimizing the therapeutic outcome of COVID-19 and related epidemic diseases. The ADME/T of some abundant compounds in anti-COVID-19 plants have been elucidated, but DMPK studies should be extended to more compounds of different medicinal parts, species, and formulations and would be facilitated by various omics platforms and computational analyses. CONCLUSION: In the framework of pharmacology and pharmacophylogeny, the DMPK knowledge base would promote the translation of bench findings into the clinical practice of anti-COVID-19 and speed up the anti-COVID-19 drug discovery and development.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos , Glycyrrhiza , Medicamentos Herbarios Chinos/uso terapéutico , Interacciones de Hierba-Droga , Humanos , Medicina Tradicional China , Tasa de Depuración Metabólica , Extractos Vegetales/uso terapéutico
10.
Clin Pharmacol Drug Dev ; 11(4): 475-485, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35172045

RESUMEN

Vadadustat is a hypoxia-inducible factor prolyl-hydroxylase inhibitor being developed for the treatment of anemia in patients with chronic kidney disease. Sequelae of chronic kidney disease include hyperphosphatemia and anemia, which are frequently treated with phosphate binders and iron supplements, respectively. Two studies evaluating the pharmacokinetics, safety, and tolerability of a single oral dose of vadadustat coadministered with a phosphate binder or iron supplement were conducted in healthy adult participants. In study 1, 54 healthy women and men were administered vadadustat (300 mg) alone and 1 hour before, concurrently with, or 2 hours after a phosphate binder (sevelamer carbonate 1600 mg, calcium acetate 1334 mg, or ferric citrate 2000 mg). In study 2, 10 healthy men were administered vadadustat (450 mg) alone and concomitantly with the oral iron supplement ferrous sulfate (325 mg [equivalent to 65 mg of elemental iron]). Vadadustat exposure was reduced by coadministration with sevelamer carbonate, calcium acetate, ferric citrate, or ferrous sulfate. Geometric least squares mean ratios for area under the concentration-time curve from time 0 to infinity were reduced 37% to 55% by phosphate binders and 46% by ferrous sulfate. However, when vadadustat was administered 1 hour before phosphate binders, 90% confidence intervals for vadadustat exposure were within the no-effect boundaries of +50% to -33%, indicating that drug-drug interactions can be reduced by administering vadadustat 1 hour before phosphate binders. Vadadustat was well tolerated when administered in conjunction with phosphate binders or an iron supplement.


Asunto(s)
Hierro de la Dieta , Hierro , Adulto , Femenino , Glicina/análogos & derivados , Humanos , Masculino , Fosfatos , Ácidos Picolínicos
11.
Curr Drug Metab ; 22(13): 998-1008, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34802402

RESUMEN

BACKGROUND: Intrinsic rhythms in host and cancer cells play an imperative role in tumorigenesis and anticancer therapy. Circadian medicine in cancer is principally reliant on the control of growth and development of cancer cells or tissues by targeting the molecular clock and implementing time-of-day-based anticancer treatments for therapeutic improvements. In recent years, based on extensive high-throughput studies, we witnessed the arrival of several drugs and drug-like compounds that can modulate circadian timekeeping for therapeutic gain in cancer management. OBJECTIVE: This perspective article intends to illustrate the current trends in circadian medicine in cancer, focusing on clock-modulating pharmacological compounds and circadian regulation of anticancer drug metabolism and efficacy. Scope and Approach: Considering the critical roles of the circadian clock in metabolism, cell signaling, and apoptosis, chronopharmacology research is exceedingly enlightening for understanding cancer biology and improving anticancer therapeutics. In addition to reviewing the relevant literature, we investigated the rhythmic expression of molecular targets for many anticancer drugs frequently used to treat different cancer types. Key Findings and Conclusion: There are adequate empirical pieces of evidence supporting circadian regulation of drug metabolism, transport, and detoxification. Administration of anticancer drugs at specific dosing times can improve their effectiveness and reduce the toxic effects. Moreover, pharmacological modulators of the circadian clock could be used for targeted anticancer therapeutics such as boosting circadian rhythms in the host can markedly reduce the growth and viability of tumors. All in all, precision chronomedicine can offer multiple advantages over conventional anticancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Carcinogénesis , Relojes Circadianos , Cronoterapia de Medicamentos , Neoplasias , Administración Metronómica , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Cronofarmacocinética , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/fisiología , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Humanos , Quimioterapia de Mantención/métodos , Quimioterapia de Mantención/tendencias , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
12.
Nutrients ; 13(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34684572

RESUMEN

To date, vitamin D seems to have a significant role in affecting the prevention and immunomodulation in COVID-19 disease. Nevertheless, it is important to highlight that this pro-hormone has other several activities, such as affecting drug concentrations, since it regulates the expression of cytochrome P450 (CYP) genes. Efavirenz (EFV) pharmacokinetics is influenced by CYPs, but no data are available in the literature concerning the association among vitamin D levels, seasonality (which affects vitamin D concentrations) and EFV plasma levels. For this reason, the aim of this study was to evaluate the effect of 25-hydroxy vitamin D (25(OH)D3) levels on EFV plasma concentrations in different seasons. We quantified 25(OH)D3 by using chemiluminescence immunoassay, whereas EFV plasma concentrations were quantified with the HPLC-PDA method. A total of 316 patients were enrolled in Turin and Rome. Overall, 25(OH)D3levels resulted in being inversely correlated with EFV concentrations. Some patients with EFV levels higher than 4000 ng/mL showed a deficient 25(OH)D3 concentration in Turin and Rome cohorts and together. EFV concentrations were different in patients without vitamin D supplementation, whereas, for vitamin D-administered individuals, no difference in EFV exposure was present. Concerning seasonality, EFV concentrations were associated with 25(OH)D3 deficiency only in winter and in spring, whereas a significant influence was highlighted for 25(OH)D3 stratification for deficient, insufficient and sufficient values in winter, spring and summer. A strong and inverse association between 25(OH)D3and EFV plasma concentrations was suggested. These data suggest that vitamin D is able to affect drug exposure in different seasons; thus, the achievement of the clinical outcome could be improved by also considering this pro-hormone.


Asunto(s)
Alquinos/sangre , Alquinos/uso terapéutico , Benzoxazinas/sangre , Benzoxazinas/uso terapéutico , Ciclopropanos/sangre , Ciclopropanos/uso terapéutico , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Vitamina D/farmacología , Vitaminas/farmacología , Adulto , Estudios de Cohortes , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Inhibidores de la Transcriptasa Inversa/sangre , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Estaciones del Año , Resultado del Tratamiento , Vitamina D/sangre , Vitaminas/sangre
13.
Molecules ; 26(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209338

RESUMEN

Flavonoids comprise a large group of structurally diverse polyphenolic compounds of plant origin and are abundantly found in human diet such as fruits, vegetables, grains, tea, dairy products, red wine, etc. Major classes of flavonoids include flavonols, flavones, flavanones, flavanols, anthocyanidins, isoflavones, and chalcones. Owing to their potential health benefits and medicinal significance, flavonoids are now considered as an indispensable component in a variety of medicinal, pharmaceutical, nutraceutical, and cosmetic preparations. Moreover, flavonoids play a significant role in preventing cardiovascular diseases (CVDs), which could be mainly due to their antioxidant, antiatherogenic, and antithrombotic effects. Epidemiological and in vitro/in vivo evidence of antioxidant effects supports the cardioprotective function of dietary flavonoids. Further, the inhibition of LDL oxidation and platelet aggregation following regular consumption of food containing flavonoids and moderate consumption of red wine might protect against atherosclerosis and thrombosis. One study suggests that daily intake of 100 mg of flavonoids through the diet may reduce the risk of developing morbidity and mortality due to coronary heart disease (CHD) by approximately 10%. This review summarizes dietary flavonoids with their sources and potential health implications in CVDs including various redox-active cardioprotective (molecular) mechanisms with antioxidant effects. Pharmacokinetic (oral bioavailability, drug metabolism), toxicological, and therapeutic aspects of dietary flavonoids are also addressed herein with future directions for the discovery and development of useful drug candidates/therapeutic molecules.


Asunto(s)
Antioxidantes , Cardiotónicos , Enfermedades Cardiovasculares , Flavonoides , Frutas/química , Verduras/química , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/uso terapéutico , Disponibilidad Biológica , Cardiotónicos/química , Cardiotónicos/farmacocinética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/prevención & control , Flavonoides/química , Flavonoides/farmacocinética , Flavonoides/uso terapéutico , Humanos
14.
Cell Prolif ; 54(9): e13099, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34291515

RESUMEN

Drug development is a costly and lengthy process with low success rates. To improve the efficiency of drug development, there has been an increasing need in developing alternative methods able to eliminate toxic compounds early in the drug development pipeline. Drug metabolism plays a key role in determining the efficacy of a drug and its potential side effects. Since drug metabolism occurs mainly in the liver, liver cell-based alternative engineering platforms have been growing in the last decade. Microphysiological liver cell-based systems called liver-on-a-chip platforms can better recapitulate the environment for human liver cells in laboratory settings and have the potential to reduce the number of animal models used in drug development by predicting the response of the liver to a drug in vitro. In this review, we discuss the liver microphysiological platforms from the perspective of drug metabolism studies. We highlight the stand-alone liver-on-a-chip platforms and multi-organ systems integrating liver-on-a-chip devices used for drug metabolism mimicry in vitro and review the state-of-the-art platforms reported in the last few years. With the development of more robust and reproducible liver cell-based microphysiological platforms, the drug development field has the potential of reducing the costs and lengths associated with currently existing drug testing methods.


Asunto(s)
Inactivación Metabólica/fisiología , Hígado/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos/metabolismo , Humanos
15.
Front Pharmacol ; 12: 619339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643050

RESUMEN

Warfarin is a widely prescribed anticoagulant but the doses required to attain the optimum therapeutic effect exhibit dramatic inter-individual variability. Pharmacogenomics-guided warfarin dosing has been recommended to improve safety and effectiveness. We analyzed the cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genes among 120 patients taking warfarin. A new coding variant was identified by sequencing CYP2C9. The novel A > G mutation at nucleotide position 14,277 led to an amino acid substitution of isoleucine with valine at position 213 (I213V). The functional consequence of the variant was subsequently evaluated in vitro. cDNA of the novel variant was constructed by site-directed mutagenesis and the recombinant protein was expressed in vitro using a baculovirus-insect cell expression system. The recombinant protein expression was quantified at apoprotein and holoprotein levels. Its enzymatic activities toward tolbutamide, warfarin and losartan were then assessed. It exhibited changed apparent Km values and increases of 148%, 84% and 67% in the intrinsic clearance of tolbutamide, warfarin and losartan, respectively, compared to wild-type CYP2C9*1, indicating dramatically enhanced in vitro enzymatic activity. Our study suggests that the amino acid at position 213 in wild-type CYP2C9*1 may be important for the enzymatic activity of CYP2C9 toward tolbutamide, warfarin and losartan. In summary, a patient taking high-dose warfarin (6.0 mg/day) in order to achieve the target international normalized ratio was found to have a mutation in the CYP2C9 gene.

16.
J Ethnopharmacol ; 270: 113835, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33465445

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Danggui Buxue Tang (DBT) is a traditional Chinese medicine, which has the function of supporting Qi and enriching blood. Antibiotics can cause Gut microbiota disorder and affect efficacy of DBT. AIM OF THE STUDY: Explore the manner in which Gut microbiota affects the efficacy of Danggui Buxue Tang. MATERIALS AND METHODS: In this study, antibiotics were used to destroy gut microbiota. The changes of DBT efficacy were detected to verify the effect of gut microbiota on DBT efficacy. The changes of gut microbiota was detected using 16S rRNA sequencing, and UPLC-MS/MS was used to analyze the plasma concentration of active ingredients. Correlation analysis was used to establish the relationship between gut microbiota, blood components and drug efficacy, and to explore the role of gut microbiota in the efficacy of DBT. RESULTS: The results showed that the efficacy in the DBT group was significantly improved compared with the control group (p<0.05). Compared with DBT group, the efficacy in antibiotic DBT treatment (ABXDBT) group was significantly reduced, 194 plasma metabolites and 18 DBT blood components were significantly altered in ABXDBT group, and 11 DBT blood components such as caffeic acid and formononetin were significantly decreased. Correlation analysis showed that 6 DBT blood components were related with the decrease of efficacy. Network pharmacology analysis showed that the above 6 DBT blood components participated in the hematopoietic regulation through PI3K-Akt and HIF-1 signaling pathways. Correlation analysis showed that Bacteroides and other intestinal bacteria were related to the absorption of DBT active ingredients. The drug metabolic pathway of gut microbiota was significantly decreased after antibiotic treatment (p = 0.033). CONCLUSIONS: Gut microbiota such as Bacteroides affects the efficacy of DBT by affecting the metabolism and absorption of DBT active ingredients such as caffeic acid and formononetin.


Asunto(s)
Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/farmacología , Microbioma Gastrointestinal/fisiología , Plasma/metabolismo , Animales , Antibacterianos/toxicidad , Correlación de Datos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Plasma/química , ARN Ribosómico 16S , Transducción de Señal/efectos de los fármacos
17.
J Clin Pharmacol ; 61(6): 763-768, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33336359

RESUMEN

Fosphenytoin (FOS) and its active form, phenytoin (PHT), levetiracetam (LEV), and valproic acid (VPA) are commonly used second-line treatments of status epilepticus. However, limited information is available regarding LEV and VPA concentrations following high intravenous doses, particularly in young children. The Established Status Epilepticus Treatment Trial, a blinded, comparative effectiveness study of FOS, LEV, and VPA for benzodiazepine-refractory status epilepticus provided an opportunity to investigate early drug concentrations. Patients aged ≥2 years who continued to seizure despite receiving adequate doses of benzodiazepines were randomly assigned to FOS, LEV, or VPA infused over 10 minutes. A sparse blood-sampling approach was used, with up to 2 samples collected per patient within 2 hours following drug administration. The objective of this work was to report early drug exposure of PHT, LEV, and VPA and plasma protein binding of PHT and VPA. Twenty-seven children with median (interquartile range) age of 4 (2.5-6.5) years were enrolled. The total plasma concentrations ranged from 69 to 151.3 µg/mL for LEV, 11.3 to 26.7 µg/mL for PHT and 126 to 223 µg/mL for VPA. Free fraction ranged from 4% to 19% for PHT and 17% to 51% for VPA. This is the first report in young children of LEV concentrations with convulsive status epilepticus as well as VPA concentrations after a 40 mg/kg dose. Several challenges limited patient enrollment and blood sampling. Additional studies with a larger sample size are required to evaluate the exposure-response relationships in this emergent condition.


Asunto(s)
Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapéutico , Estado Epiléptico/tratamiento farmacológico , Anticonvulsivantes/administración & dosificación , Benzodiazepinas/uso terapéutico , Niño , Preescolar , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Infusiones Intravenosas , Levetiracetam/administración & dosificación , Levetiracetam/farmacocinética , Masculino , Fenitoína/administración & dosificación , Fenitoína/análogos & derivados , Fenitoína/farmacocinética , Unión Proteica , Ácido Valproico/administración & dosificación , Ácido Valproico/farmacocinética
18.
Artículo en Inglés | MEDLINE | ID: mdl-33257443

RESUMEN

Bisbenzylisoquinoline (BBIQ) alkaloids are a diverse group of natural products that demonstrate a range of biological activities. In this study, the in vitro antiplasmodial activity of three BBIQ alkaloids (cycleanine [compound 1], isochondodendrine [compound 2], and 2'-norcocsuline [compound 3]) isolated from the Triclisia subcordata Oliv. medicinal plant traditionally used for the treatment of malaria in Nigeria are studied alongside two semisynthetic analogues (compounds 4 and 5) of cycleanine. The antiproliferative effects against a chloroquine-resistant Plasmodium falciparum strain were determined using a SYBR green 1 fluorescence assay. The in vivo antimalarial activity of cycleanine is then investigated in suppressive, prophylactic, and curative murine malaria models after infection with a chloroquine-sensitive Plasmodium berghei strain. BBIQ alkaloids (compounds 1 to 5) exerted in vitro antiplasmodial activities with 50% inhibitory concentration (IC50) at low micromolar concentrations and the two semisynthetic cycleanine analogues showed an improved potency and selectivity compared to those of cycleanine. At oral doses of 25 and 50 mg/kg body weight of infected mice, cycleanine suppressed the levels of parasitemia and increased mean survival times significantly compared to those of the control groups. The metabolites and metabolic pathways of cycleanine were also studied using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Twelve novel metabolites were detected in rats after intragastric administration of cycleanine. The metabolic pathways of cycleanine were demonstrated to involve hydroxylation, dehydrogenation, and demethylation. Overall, these in vitro and in vivo results provide a basis for the future evaluation of cycleanine and its analogues as leads for further development.


Asunto(s)
Alcaloides , Antimaláricos , Alcaloides/farmacología , Animales , Antimaláricos/farmacología , Isoquinolinas , Ratones , Nigeria , Extractos Vegetales , Plasmodium berghei , Plasmodium falciparum , Ratas
19.
Molecules ; 25(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708236

RESUMEN

Starting from isoniazid and carboxylic acids as precursors, thirteen new hydrazides and 1,3,4-oxadiazoles of 2-(4-substituted-phenoxymethyl)-benzoic acids were synthesized and characterized by appropriate means. Their biological properties were evaluated in terms of apoptosis, cell cycle blocking, and drug metabolism gene expression on HCT-8 and HT-29 cell lines. In vitro antimicrobial tests were performed by the microplate Alamar Blue assay for the anti-mycobacterial activities and an adapted agar disk diffusion technique for other non-tubercular bacterial strains. The best antibacterial activity (anti-Mycobacterium tuberculosis effects) was proved by 9. Compounds 7, 8, and 9 determined blocking of G1 phase. Compound 7 proved to be toxic, inducing apoptosis in 54% of cells after 72 h, an effect that can be predicted by the increased expression of mRNA caspases 3 and 7 after 24 h. The influence of compounds on gene expression of enzymes implicated in drug metabolism indicates that synthesized compounds could be metabolized via other pathways than NAT2, spanning adverse effects of isoniazid. Compound 9 had the best antibacterial activity, being used as a disinfectant agent. Compounds 7, 8, and 9, seemed to have antitumor potential. Further studies on the action mechanism of these compounds on the cell cycle may bring new information regarding their biological activity.


Asunto(s)
Antiinfecciosos/química , Antineoplásicos/síntesis química , Antituberculosos/química , Hidrazinas/síntesis química , Oxadiazoles/síntesis química , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Antituberculosos/farmacología , Arilamina N-Acetiltransferasa/metabolismo , Benzoatos/química , Ácidos Carboxílicos/química , Evaluación Preclínica de Medicamentos , Fase G1/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidrazinas/farmacología , Isoniazida/química , Isoniazida/farmacología , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Oxadiazoles/química , Oxadiazoles/farmacología , ARN Mensajero/efectos de los fármacos
20.
Artículo en Inglés | MEDLINE | ID: mdl-32582021

RESUMEN

Bisphenols, and in particular bisphenol A (BPA), have been widely used for the production of plastic manufacts in the last 50 years. Currently, BPA is present in a variety of daily use polycarbonate plastics and epoxy resins, and dietary ingestion is considered the main route of human exposure. Accordingly, BPA is the chemical pollutant with the widest exposure in humans, involving nearly 90% of general population, according to recent studies. Concerns about BPA effects on human health date back to 1930s, when severe impact on male sexual development was suggested. Now, the acknowledged biological effects of BPA are various. In regard to human fertility, BPA has been shown to disrupt hormone signaling even at low concentrations. Results from human epidemiological studies have reported BPA interference with follicle stimulating hormone, inhibin B, estradiol, testosterone levels, and sexual function in male subjects. Moreover, recent studies have reported an association between BPA levels and reduced sperm concentration, motility, normal morphology, sperm DNA damage, and altered epigenetic pattern, resulting in trans-generational legacy of BPA effects. In this review, the recognized effects of BPA on male reproductive health are described, from the most recent issues on experimental models to epidemiological data. In addition, the very recent interest about the use of nutraceutical remedies to counteract BPA effects are discussed.


Asunto(s)
Contaminantes Ocupacionales del Aire/efectos adversos , Compuestos de Bencidrilo/efectos adversos , Suplementos Dietéticos , Infertilidad Masculina/tratamiento farmacológico , Fenoles/efectos adversos , Salud Reproductiva , Humanos , Infertilidad Masculina/inducido químicamente , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA