Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Food Res Int ; 184: 114252, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609230

RESUMEN

Leafy green surface microbiology studies often experience significant variations in results due to the heterogeneous nature of leaf surfaces. To provide a precise and controllable substitute, we microfabricated double-sided artificial leafy green phylloplanes using polydimethylsiloxane (PDMS) with a vinyl-terminated polyethylene glycol chain-based hydrophobicity modifier (PDMS-PEG) to modify PDMS hydrophobicity. We further tested the properties and applications of these artificial leaves, by examining the function of epicuticular wax, growth and survival of E. coli O157:H7 87-23 on the surface, and removal of attached E. coli cells via sanitation. The double-sided PDMS-PDMS-PEG leaves well-replicated their natural counterparts in macroscopic and microscopic structure, hydrophobicity, and E. coli O157:H7 87-23 attachment. After depositing natural epicuticular wax onto artificial leaves, the leaf surface wetting ability decreased, while E. coli O157:H7 87-23 surface retention increased. The artificial leaves supplied with lettuce lysate or bacterial growth media supported E. coli O157:H7 87-23 growth and survival similarly to those on natural leaves. In the sanitation test, the artificial lettuce leaves also displayed patterns similar to those of natural leaves regarding sanitizer efficiency. Overall, this study showcased the microfabrication and applications of double-sided PDMS-PDMS-PEG leaves as a replicable and controllable platform for future leafy green food safety studies.


Asunto(s)
Dimetilpolisiloxanos , Escherichia coli O157 , Medios de Cultivo , Inocuidad de los Alimentos , Lactuca
2.
J Food Prot ; 87(5): 100265, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492643

RESUMEN

Limited data exist on the environmental factors that impact pathogen prevalence in the soil. The prevalence of foodborne pathogens, Salmonella and Listeria monocytogenes, and the prevalence and concentration of generic E. coli in Florida's agricultural soils were evaluated to understand the potential risk of microbial contamination at the preharvest level. For all organisms but L. monocytogenes, a longitudinal field study was performed in three geographically distributed agricultural areas across Florida. At each location, 20 unique 5 by 5 m field sampling sites were selected, and soil was collected and evaluated for Salmonella presence (25 g) and E. coli and coliform concentrations (5 g). Complementary data collected from October 2021 to April 2022 included: weather; adjacent land use; soil properties, including macro- and micro-nutrients; and field management practices. The overall Salmonella and generic E. coli prevalence was 0.418% (1/239) and 11.3% (27/239), respectively; with mean E. coli concentrations in positive samples of 1.56 log CFU/g. Farm A had the highest prevalence of generic E. coli, 22.8% (18/79); followed by Farm B, 10% (8/80); and Farm C 1.25% (1/80). A significant relationship (p < 0.05) was observed between generic E. coli and coliforms, and farm and sampling trip. Variation in the prevalence of generic E. coli and changes in coliform concentrations between farms suggest environmental factors (e.g. soil properties) at the three farms were different. While Salmonella was only detected once, generic E. coli was detected in Florida soils throughout the duration of the growing season meaning activities that limit contact between soil and horticultural crops should continue to be emphasized. Samples collected during an independent sampling trip were evaluated for L. monocytogenes, which was not detected. The influence of local environmental factors on the prevalence of indicator organisms in the soil presents a unique challenge when evaluating the applicability of more global models to predict pathogen prevalence in preharvest produce environments.


Asunto(s)
Agricultura , Escherichia coli , Salmonella , Microbiología del Suelo , Suelo , Salmonella/aislamiento & purificación , Florida , Escherichia coli/aislamiento & purificación , Prevalencia , Recuento de Colonia Microbiana , Humanos , Enterobacteriaceae/aislamiento & purificación
3.
Food Microbiol ; 119: 104432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38225040

RESUMEN

Leafy greens, especially lettuce, are repeatedly linked to foodborne outbreaks. This paper studied the susceptibility of different leafy greens to human pathogens. Five commonly consumed leafy greens, including romaine lettuce, green-leaf lettuce, baby spinach, kale, and collard, were selected by their outbreak frequencies. The behavior of E. coli O157:H7 87-23 on intact leaf surfaces and in their lysates was investigated. Bacterial attachment was positively correlated with leaf surface roughness and affected by the epicuticular wax composition. At room temperature, E. coli O157:H7 had the best growth potentials on romaine and green-leaf lettuce surfaces. The bacterial growth was positively correlated with stomata size and affected by epicuticular wax compositions. At 37 °C, E. coli O157:H7 87-23 was largely inhibited by spinach and collard lysates, and it became undetectable in kale lysate after 24 h of incubation. Kale and collard lysates also delayed or partially inhibited the bacterial growth in TSB and lettuce lysate at 37 °C, and they sharply reduced the E. coli O157:H7 population on green leaf lettuce at 4 °C. In summary, the susceptibility of leafy greens to E. coli O157:H7 is determined by a produce-specific combination of physiochemical properties and temperature.


Asunto(s)
Brassicaceae , Escherichia coli O157 , Humanos , Recuento de Colonia Microbiana , Temperatura , Lactuca , Spinacia oleracea/microbiología , Microbiología de Alimentos , Contaminación de Alimentos/análisis
4.
Elife ; 122024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252473

RESUMEN

Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.


Asunto(s)
Espacio Extracelular , Factor 2 de Crecimiento de Fibroblastos , Dimerización , ATPasa Intercambiadora de Sodio-Potasio , Disulfuros
5.
BMC Microbiol ; 24(1): 35, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262985

RESUMEN

BACKGROUND: Diarrhoea is a public health problem, especially in developing countries where it is the second leading cause of child mortality. In Low Income Countries like in Mali, self-medication and inappropriate use of antibiotics due to the scarcity of complementary diagnostic systems can lead to the development of multidrug-resistant bacteria causing diarrhoea. The objective of this work was to determine the microorganisms responsible for diarrhoea in children under 15 years of age and to characterize their sensitivity to a panel of antibiotics used in a peri-urban community in Mali. The study involved outpatient children visiting the Yirimadio Community Health Centre and diagnosed with diarrhoea. Stool samples from those patients were collected and analysed by conventional stools culture and the susceptibility to antibiotics of detected bacteria was determined by the disc diffusion method in an agar medium. RESULT: Overall, 554 patients were included. Children under the age of 3 years accounted for 88.8% (492 of 554) of our study population. Two bacterial species were isolated in this study, Escherichia coli 31.8% (176 of 554) and Salmonella 2.9% (16 of 554). In the 176, E. coli strains resistance to amoxicillin and to cotrimoxazole was seen in 93.8% (165 of 176) and 92.6% ( 163 of 176), respectively. The ESBL resistance phenotype accounted for 39,8% (70 of 176) of E. coli. Sixteen (16) strains of Salmonella were found, of which one strain (6.3%) was resistant to amoxicillin and to amoxicillin + clavulanic acid. Another one was resistant to chloramphenicol (6.3%). Two strains of Salmonella were resistant to cotrimoxazole (12.5%) and two others were resistant to cefoxitin (12.5%). CONCLUSIONS: The data suggest that E. coli is frequently involved in diarrhoea in children under 3 years of age in this peri-urban setting of Bamako, Mali, with a high rate of resistance to amoxicillin and cotrimoxazole, the most widely used antibiotics in the management of diarrhoea in this setting.


Asunto(s)
Antibacterianos , Salud Pública , Niño , Humanos , Preescolar , Malí , Combinación Trimetoprim y Sulfametoxazol , Escherichia coli , Farmacorresistencia Bacteriana , Amoxicilina , Diarrea , Combinación Amoxicilina-Clavulanato de Potasio , Salmonella
6.
BMC Res Notes ; 17(1): 38, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273327

RESUMEN

OBJECTIVES: Urinary tract infections (UTIs) are very common infections in humans, and Escherichia coli (E. coli) is the commonest pathogen leading to UTIs. The generation of beta-lactamase enzymes in this bacterium results in its resistance against many antibiotics. This study compares three doses of amikacin on alternate days with a daily dose of meropenem in the same period for the treatment of UTIs with E. coli in a double-blind clinical trial. METHODS: The current double-blind clinical trial compares three doses of amikacin on alternate days with a daily dose of meropenem in the same period for the treatment of UTIs with E. coli. The patients were assigned to two groups: Intervention (receiving a single dose of amikacin once a day at 48-h intervals for a week, three doses) and control (receiving meropenem for 1/TDS for a week). RESULTS: The E. coli infection frequency was 61 (21 cases of non-ESBL and 40 cases of ESBL-positive infections) and the frequency of the other infections was 52 (46%). In the patients with ESBL E. coli infection, ciprofloxacin (21; 70%) showed the highest antibiotic resistance, and nitrofurantoin (33; 91.7%) showed the highest sensitivity. The baseline variables between the control and intervention groups indicated no significant difference (p > 0.05). The frequency of signs and symptoms showed no significant difference between the amikacin and meropenem groups in the first 24 h and the first week. In the second week of follow-up, no clinical signs or symptoms were observed in the two groups. CONCLUSION: The results of this study showed that treatment with amikacin, 1 g q48h, for one week (three doses) has the same result as meropenem, 1 g q8h, for one week (21 doses). The results are the same for the treatment of UTIs with ESBL positive and ESBL negative. Amikacin can be used once every 48 h to treat UTIs, is less expensive and can be administered on an outpatient basis. TRIAL REGISTRATION: This study was registered in the Iranian Registry of Clinical Trials (IRCT) with ID number: IRCT20170417033483N2 on the date 2018-02-13.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Humanos , Amicacina/administración & dosificación , Antibacterianos/administración & dosificación , beta-Lactamasas , Método Doble Ciego , Escherichia coli , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Irán , Meropenem/administración & dosificación , Pruebas de Sensibilidad Microbiana , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología
7.
Curr Pharm Biotechnol ; 25(3): 365-383, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37143275

RESUMEN

BACKGROUND: Herbal preparations can be formed by combining several plant classes. One possible explanation for the effectiveness of combined medications is that the various mixtures with different mechanisms may add up to produce a more comprehensive therapeutic effect. OBJECTIVE: This study aims to investigate the synergistic antibiotic potential of a cream containing three natural herbal extracts: Allium sativum, Moringa oleifera, and Thymus vulgaris. The efficacy of combining these plant extracts was compared to that of a standard antibiotic formulation (Polyfax). METHODS: The herbal cream was formulated by using aqueous extracts of garlic (Allium sativum), moringa (Moringa oleifera) and essential oil of thyme (Thymus vulgaris). The study aimed to explore the therapeutic potential of these extracts against bacteria. P. aeruginosa, B. subtilis, E. coli, S. aureus, and S. pneumonia are commonly found in fresh wounds. RESULTS: The results showed that garlic extract (5%) had the highest zone of inhibition, 14.26 ± 0.05 mm, and a combination of garlic (5%) and thyme (2%) exhibited a significant synergistic effect, with a 23.5 ± 0.05 mm zone of inhibition. High-performance liquid chromatography analysis revealed the presence of allicin, quercetin and thymol as potential therapeutic phytoconstituents. The formulated herbal cream had a soft texture, was easily spreadable, and had better stability and absorption than the standard polyfax. The topical application of the cream did not cause any skin reaction or allergy in mice. The in vivo wound healing effect of the herbal cream was investigated on an abrasion model of albino mice, and the results showed that the treatment group (46 ± 16.31%) had significant wound healing potential compared to the standard (64 ± 17.49%) and control groups (18 ± 3.74%). CONCLUSION: The formulated herbal cream was a better alternative to standard therapy, exhibiting promising healing and antimicrobial effects with significant compatibility and safety profile.


Asunto(s)
Antiinfecciosos , Ajo , Moringa oleifera , Aceites de Plantas , Timol , Thymus (Planta) , Ratones , Animales , Ajo/química , Moringa oleifera/química , Staphylococcus aureus , Escherichia coli , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antioxidantes/farmacología
8.
Phytomedicine ; 123: 155232, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006809

RESUMEN

BACKGROUND: In treating depression, the residual anti-depressant in gut interacts with the microbiome, leading to the appearance of multiple drug resistant (MDR) mutants, which poses a challenge for the treatment of infectious complications. Strategy is needed to combat this issue. Acori Tatarinowii Rhizoma (ATR, rhizome of Acorus tatarinowii Schott, Araceae), a traditional Chinese medicine, has been widely used for treatment of neurological disorders and gastrointestinal digestive disease in China. Here, ATR was demonstrated an excellent MDR-preventing effect in fluoxetine-induced Escherichia coli (E. coli). AIM OF THE STUDY: This study aimed to reveal the effective role of ATR and its signaling cascades involved in preventing fluoxetine-induced MDR. MATERIALS AND METHODS: The water extract of ATR was co-applied with sub-minimum inhibitory concentration (100 mg/l) of fluoxetine in E. coli to evaluate its anti-MDR potential. Formation of reactive oxygen species (ROS) and expression of MDR-related genes in bacteria were measured by dichloro-dihydro-fluorescein diacetate assay and real-time PCR, respectively. Two fluorescent dyes, 1-N-phenylnapthylamine and 3,3'-dipropylthiadicarbocyanine were used to analyze the outer membrane permeability and inner membrane depolarization of E. coli. The accumulation of fluoxetine in the treated E. coli was determined via HPLC. The active fraction of ATR was identified. RESULTS: The water extract of ATR significantly decreased the number of MDR mutants induced by fluoxetine and had half effective concentrations (EC50) of 55.5 µg/ml and 16.8 µg/ml for chloramphenicol and tetracycline, respectively. ATR robustly reversed the fluoxetine-induced superoxide response and membrane damage in E. coli. In addition, the inclusion of ATR significantly reduced the accumulation of fluoxetine in E. coli. After further fractionation, the polysaccharide of ATR was demonstrated as the fraction with the most significant anti-MDR activity. CONCLUSIONS: This is the first report to investigate the MDR-preventing effect of ATR. The results of this study proposed ATR as an excellent herbal product to prevent MDR issues, as induced by fluoxetine, with the potential to reduce the side effects during the drug therapy of depression.


Asunto(s)
Fluoxetina , Rizoma , Fluoxetina/farmacología , Escherichia coli , Antibacterianos/farmacología , Agua , Resistencia a Medicamentos
9.
Front Cell Infect Microbiol ; 13: 1295593, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099219

RESUMEN

Introduction: Zinc oxide nanoparticles (ZnO-NPs) have garnered considerable interest in biomedical research primarily owing to their prospective therapeutic implications in combatting pathogenic diseases and microbial infections. The primary objective of this study was to examine the biosynthesis of zinc oxide nanowhiskers (ZnO-NWs) using chicken egg white (albumin) as a bio-template. Furthermore, this study aimed to explore the potential biomedical applications of ZnO NWs in the context of infectious diseases. Methods: The NWs synthesized through biological processes were observed using electron microscopy, which allowed for detailed examination of their characteristics. The results of these investigations indicated that the NWs exhibited a size distribution ranging from approximately 10 to 100 nm. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) mapping analyses successfully corroborated the size, dimensions, and presence of biological constituents during their formation. In this study, XTT assay and confocal imaging were employed to provide evidence of the efficacy of ZnO-NWs in the eradication of bacterial biofilms. The target bacterial strains were Staphylococcus aureus and Escherichia coli. Furthermore, we sought to address pertinent concerns regarding the biocompatibility of the ZnO-NWs. This was achieved through comprehensive evaluation of the absence of cytotoxicity in normal HEK-293T and erythrocytes. Results: The findings of this investigation unequivocally confirmed the biocompatibility of the ZnO-NWs. The biosynthesized ZnO-NWs demonstrated a noteworthy capacity to mitigate the dermatitis-induced consequences induced by Staphylococcus aureus in murine models after a therapeutic intervention lasting for one week. Discussion: This study presents a comprehensive examination of the biosynthesis of zinc oxide nanowhiskers (ZnO-NWs) derived from chicken egg whites. These findings highlight the considerable potential of biosynthesized ZnO-NWs as a viable option for the development of therapeutic agents targeting infectious diseases. The antibacterial efficacy of ZnO-NWs against both susceptible and antibiotic-resistant bacterial strains, as well as their ability to eradicate biofilms, suggests their promising role in combating infectious diseases. Furthermore, the confirmed biocompatibility of ZnO-NWs opens avenues for their safe use in biomedical applications. Overall, this research underscores the therapeutic promise of ZnO-NWs and their potential significance in future biomedical advancements.


Asunto(s)
Enfermedades Transmisibles , Dermatitis , Nanopartículas del Metal , Óxido de Zinc , Animales , Ratones , Óxido de Zinc/farmacología , Óxido de Zinc/química , Pollos , Clara de Huevo , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología
10.
Environ Monit Assess ; 195(12): 1465, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37957404

RESUMEN

Gongji Stream flows into Lake Uiam, a potable water source for the capital region of Chuncheon, South Korea. Algal blooms often occur downstream of the Gongji stream in combination with drastic flow rate variations. Downstream water quality may also be affected by Yaksa stream. Yaksa stream joins Gongji stream before it reaches Uiam Lake, which is a drinking water source for the city. Limited data exists on the Yaksa stream water quality. Therefore, water quality parameters (pH, electrical conductivity (EC), biological oxygen demand (BOD), total nitrogen (T-N), total phosphorous (T-P), chlorophyll-a (Chl-a), total coliforms, and Escherichia coli (E. coli) concentration) were sampled from Gongji (at sites GJ1 and GJ2) and Yaksa (at sites YS1 and YS2) streams from May to September, 2022. The results revealed the overall water quality of both streams was good (BOD = 0.27-3.66 mg/L; TP = 0.003-0.074 mg/L), except on August 3. On August 3, the concentrations of BOD, TP, total coliforms, and E. coli were elevated, with the highest concentrations in samples from GJ2. The recent heavy rainfall potentially caused sewage inflows near GJ2. The correlation analysis revealed positive linear relationships in the 1-day cumulative precipitation with BOD (r = 0.503), total coliforms (r = 0.547), and TP (r = 0.814). The Yaksa stream may be an Anabaena sp. source, which contaminated samples from YS1, YS2, and GJ2, but not at GJ1 (upstream of the tributary).


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Estaciones del Año , Escherichia coli , Clorofila A/análisis , Fósforo/análisis
11.
Animals (Basel) ; 13(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37958171

RESUMEN

Animal feeds contain a substantial number and diversity of microorganisms, and some of them have pathogenic potential. The objectives of this study were to investigate the effects of different doses of gamma (γ)-ray irradiation on the bacteria count in different types of feed and then to test the effect of γ-ray-irradiation-treated fishmeal on the gut health and growth performance of weaning piglets. In trial 1, three fishmeal samples, two feather meal samples, three meat meal samples, three soybean meal samples, and three vitamin complexes were treated with γ-ray irradiation doses of 0, 3, 6, or 9 kGy. The 6 and 9 kGy doses eliminated most of the bacteria in the feed but also resulted in a loss of vitamin C and B1. In trial 2, 96 weaning piglets were fed one of the following three diets with eight replicates (pens) per group over a 14-day period: (1) the control diet-the basal diet supplemented with 6% fishmeal with a low bacteria count (40 CFU/g) and no E. coli; (2) the fishmeal-contaminated diet (FM-contaminated) diet-the basal diet supplemented with 6% fishmeal with a high bacteria count (91,500 CFU/g) and E. coli contamination; and (3) the irradiated fishmeal (irradiated FM) diet-the basal diet supplemented with γ-ray-irradiation-treated E. coli-contaminated fishmeal. The piglets that received the FM-contaminated diet had significantly lower average daily gain and a greater diarrhea index compared to those fed the control diet, whereas γ-ray irradiation treatment abrogated the negative effect of the E. coli-contaminated fishmeal. Collectively, γ-ray irradiation at a dose of 6-9 kGy was sufficient to eliminate the microorganisms in the feed, thereby benefitting the growth performance and gut health of the weaning piglets.

12.
Animal ; 17(12): 101031, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38035660

RESUMEN

Weaning is one of the most critical phases in pig's life, often leading to postweaning diarrhoea (PWD). Zinc oxide (ZnO), at pharmacological doses, has been largely used to prevent PWD; however, due to antimicrobial co-resistant and environmental pollution issues, the EU banned its use in June 2022. Natural or natural identical components of essential oils and their mixture with organic acids are possible alternatives studied for their antimicrobial, anti-inflammatory and antioxidant abilities. This study aimed to evaluate the effect of two blends of natural or natural identical components of essential oils and organic acids compared to ZnO on health, performance, and gut health of weaned pigs. At weaning (d0), 96 piglets (7 058 ± 895 g) were assigned to one of four treatments balanced for BW and litter: CO (control treatment), ZnO (2 400 mg/kg ZnO from d0 to d14); Blend1 (cinnamaldehyde, ajowan and clove essential oils, 1 500 mg/kg feed); Blend2 (cinnamaldehyde, eugenol and short- and medium-chain fatty acids, 2 000 mg/kg feed). Pigs were weighed weekly until d35. Faeces were collected at d13 and d35 for microbiota (v3-v4 regions of the 16 s rRNA gene) and Escherichia coli (E. coli) count analysis. At d14 and d35, eight pigs/treatment were slaughtered; pH was recorded on intestinal contents and jejunal samples were collected for morphological and gene expression analysis. From d7-d14, the Blend2 had a lower average daily gain (ADG) than CO and ZnO (P < 0.05). ZnO and Blend1 never differed in ADG and feed intake. At d14, ZnO had a lower caecum pH than all other treatments. The CO treatment had a higher abundance of haemolytic E. coli than Blend1 (P = 0.01). At d13, the ZnO treatment had a lower alpha diversity (P < 0.01) and a different microbial beta diversity (P < 0.001) compared to the other treatments. At d13, the ZnO treatment was characterised by a higher abundance of Prevotellaceae_NK3B31_group (Linear Discriminant Analysis (LDA) score = 4.5, P = 0.011), Parabacteroides (LDA score = 4.5, P adj. = 0.005), the CO was characterised by Oscillospiraceae UCG-005 (LDA score = 4.3, P adj. = 0.005), Oscillospiraceae NK4A214_group (LDA score = 4.2, P adj. = 0.02), the Blend2 was characterised by Megasphaera (LDA score = 4.1, P adj. = 0.045), and Ruminococcus (LDA score = 3.9, P adj. = 0.015) and the Blend1 was characterised by Christensenellaceae_R-7_group (LDA score = 4.6, P adj. < 0.001) and Treponema (LDA score = 4.5, P adj. < 0.001). In conclusion, Blend1 allowed to maintain the gut health of postweaning piglets through modulation of the gut microbiome, the reduction of haemolytic E. coli while Blend2 did not help piglets.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Óxido de Zinc , Animales , Porcinos , Dieta , Aceites Volátiles/farmacología , Escherichia coli , Óxido de Zinc/farmacología , Destete , Diarrea/veterinaria , Suplementos Dietéticos/análisis , Alimentación Animal/análisis
13.
Microorganisms ; 11(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37894108

RESUMEN

This study focused on the assessment of the antimicrobial resistance of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) isolated from bovine mastitis milk samples and the revealing anti-mastitis potential of phytocompounds of Ziziphus jujube and Acacia nilotica through molecular docking analysis. The mastitis milk samples were collected from various dairy farms for the isolation of the bacteria (S. aureus and E. coli) and their response to antibiotics. Ethanolic extracts of both plants were prepared. Their antibacterial activity was evaluated, and they were processed for phytochemical analysis after which, molecular docking analysis with pathogenic proteins of the bacteria was carried out. Parametric and non-parametric statistical analyses were performed to reach the conclusions of this study. The findings of the study revealed a higher drug resistance (≥40%) of E. coli against ampicillin, amikacin, and vancomycin, while S. aureus exhibited the highest resistance to ampicillin, erythromycin, and ciprofloxacin. The ethanolic extracts of the Ziziphus jujube and Acacia nilotica plants produced a ZOI between 18 and 23 mm against multidrug-resistant S. aureus and E. coli. Gas chromatography-mass spectrophotometry (GC-MS) was used to explore 15 phytocompounds from Ziziphus jujube and 18 phytocompounds from Acacia nilotica. The molecular docking analysis of 2cyclopenten-1-one,3,4,4 trimethyl and Bis (2ethylhexyl) phthalate of Ziziphus jujube showed a binding affinity of -4.8 kcal/mol and -5.3 kcal/mol and -5.9 kcal/mol and -7.1 kcal/mol against the DNA Gyrase and toxic shock syndrome toxin-1 proteins of S. aureus and E. coli, respectively. The suberic acid monomethyl ester of Acacia nilotica showed a binding affinity of -5.9 kcal/mol and -5 kcal/mol against the outer membrane protein A and Topoisomerase IV protein of E. coli and -5.1 kcal/mol and -5.8 kcal/mol against the toxic shock syndrome toxin-1 and Enterotoxin B proteins of S. aureus. Similarly, 2,2,4-trimethyl-1,3-pentanediol di-iso-butyrate showed a binding affinity of -6.5 kcal/mol and -5.3 kcal/mol against the outer membrane protein A and Topoisomerase IV of E. coli and -5.2 kcal/mol and -5.9 kcal/mol against the toxic shock syndrome toxin-1 and Enterotoxin B proteins of S. aureus, respectively. The study concluded that there was an increasing trend for the antimicrobial resistance of S. aureus and E. coli, while the Ziziphus jujube and Acacia nilotica plant extracts expressed significant affinity to tackle this resistance; hence, this calls for the development of novel evidence-based therapeutics.

14.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894807

RESUMEN

Food colorants are commonly used as excipients in pharmaceutical and nutraceutical fields, but they have a wide range of other potential applications, for instance, as cytotoxic drugs or mediators of physical antimicrobial treatments. The photodynamic antibacterial activity of several edible food colorants is reported here, including E127, E129, E124, E122, E133, and E150a, alongside Rhein, a natural lipophilic antibacterial and anticancer compound found in medicinal plants. Minimal inhibitory concentration (MIC) values for S. aureus and E. coli showed that E127 and Rhein were effective against both bacteria, while other colorants exhibited low activity against E. coli. In some cases, dark pre-incubation of the colorants with Gram-positive S. aureus increased their photodynamic activity. Adding Rhein to E127 increased the photodynamic activity of the latter in a supportive mode. Optional sensing mechanism pathways of combined E127/Rhein action were suggested. The antibacterial activity of the studied colorants can be ranged as follows: E127/Rhein >> E127 >> E150a > E122 > E124 >> E129 ≈ E133. E127 was also found to exhibit photodynamic properties. Short ultrasonic treatment before illumination caused intensification of E127 photodynamic activity against E. coli when applied alone and especially in combination with Rhein. Food colorants exhibiting photo- and sonodynamic properties may have good potential in food preservation.


Asunto(s)
Colorantes de Alimentos , Colorantes de Alimentos/farmacología , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología
15.
Cell Host Microbe ; 31(10): 1574-1592, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37827116

RESUMEN

Many systemically administered cancer therapies exhibit dose-limiting toxicities that reduce their effectiveness. To increase efficacy, bacterial delivery platforms have been developed that improve safety and prolong treatment. Bacteria are a unique class of therapy that selectively colonizes most solid tumors. As delivery vehicles, bacteria have been genetically modified to express a range of therapies that match multiple cancer indications. In this review, we describe a modular "build-a-bug" method that focuses on five design characteristics: bacterial strain (chassis), therapeutic compound, delivery method, immune-modulating features, and genetic control circuits. We emphasize how fundamental research into gut microbe pathogenesis has created safe bacterial therapies, some of which have entered clinical trials. The genomes of gut microbes are fertile grounds for discovery of components to improve delivery and modulate host immune responses. Future work coupling these delivery vehicles with insights from gut microbes could lead to the next generation of microbial cancer therapy.


Asunto(s)
Interacciones Microbiota-Huesped , Neoplasias , Humanos , Biología Sintética/métodos , Neoplasias/terapia
16.
Open Vet J ; 13(9): 1082-1090, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37842111

RESUMEN

Background: Camel calf's diarrhea is considered the chief economic loss in the camelid population. There is currently no vaccine licensed to prevent colibacillosis in camel calves. The new era of bacterial antibiotic resistance explains the treatment failure and the high mortality and morbidity associated with the disease. Current protective treatments have thus far limited efficacy and need to be replaced. Due to their antimicrobial properties and safety, natural products are recently finding a capital role in infection management. Aims: The current study explores Escherichia coli F17 susceptibility as a clinical strain isolated from diarrheic camel calves to a wide panel of natural products. Methods: Agar diffusion method, integrity of cell membrane, hydrophobicity of bacterial surface, biofilm assays, and motility were used to evaluate the antibacterial activity of Coffea, Retama raetam, Moringa oleifera, Juniperus phoenicea, Uritica dioica, Camellia sinensis, Lavandula angustifolia, and Cuminum cyminum extracts against isolated bacteria. Results: Interestingly, all eight tested extracts have the damaging ability of E. coli F17's cell membrane and cause the nucleic acid release after 12 hours. Escherichia coli F17 strain has the surface of hydrophobicity which changed after contact with extracts of the plant. Moreover, the motility of the studied bacteria changed after exposure to all plant extracts. Conclusion: This study demonstrated that all extracts, exempt U. dioica, can remove up to 50% biofilm of E. coli biomass as compared with the control. Natural extracts can be used as potential antimicrobial agents to mitigate diarrhea in camel calves.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Animales , Camelus , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Diarrea/tratamiento farmacológico , Diarrea/prevención & control , Diarrea/veterinaria , Extractos Vegetales/farmacología
17.
Int J Biol Macromol ; 253(Pt 4): 127049, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37758110

RESUMEN

Naturally occurring naphthoquinones, shikonin and alkannin, are important ingredients of traditional Chinese medicine Zicao. These constituents are reported to have many therapeutic uses, such as wound healing; scar treatment; and anti-inflammation, anti-acne, anti-ulcer, anti-HIV, anticancer, and antibacterial properties. The primary objective of this investigation was to explore the effect of shikonin and alkannin on Escherichia coli ATP synthase and its cell growth. Shikonin caused complete (100 %) inhibition, and alkannin caused partial (79 %) inhibition of wild-type E. coli ATP synthase. Both caused partial (4 %-27 %) inhibition of ATP synthase with genetically modified phytochemical binding site. The growth inhibition of strains expressing normal, deficient, and mutant ATP synthase by shikonin and alkannin, corroborated the inhibition observed in isolated normal wild-type and mutant ATP synthase. Trivial inhibition of mutant enzymes indicated αR283D, αE284R, ßV265Q, and γT273A are essential for formation of the phytochemical binding site where shikonin and alkannin bind. Further, shikonin was a potent inhibitor of ATP synthase than alkannin. The antimicrobial properties of shikonin and alkannin were tied to the binding at phytochemical site of microbial ATP synthase. Selective targeting of bacterial ATP synthase by shikonin and alkannin may be an advantageous alternative to address the antibiotic resistance issue.


Asunto(s)
Escherichia coli , Naftoquinonas , Naftoquinonas/farmacología , Naftoquinonas/química , Fitoquímicos/farmacología , Adenosina Trifosfato/farmacología
18.
Cell Mol Gastroenterol Hepatol ; 16(6): 1011-1031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37567385

RESUMEN

BACKGROUND & AIMS: D-amino acids, the chiral counterparts of protein L-amino acids, were primarily produced and utilized by microbes, including those in the human gut. However, little was known about how orally administered or microbe-derived D-amino acids affected the gut microbial community or gut disease progression. METHODS: The ratio of D- to L-amino acids was analyzed in feces and blood from patients with ulcerative colitis (UC) and healthy controls. Also, composition of microbe was analyzed from patients with UC. Mice were treated with D-amino acid in dextran sulfate sodium colitis model and liver cholangitis model. RESULTS: The ratio of D- to L-amino acids was lower in the feces of patients with UC than that of healthy controls. Supplementation of D-amino acids ameliorated UC-related experimental colitis and liver cholangitis by inhibiting growth of Proteobacteria. Addition of D-alanine, a major building block for bacterial cell wall formation, to culture medium inhibited expression of the ftsZ gene required for cell fission in the Proteobacteria Escherichia coli and Klebsiella pneumoniae, thereby inhibiting growth. Overexpression of ftsZ restored growth of E. coli even when D-alanine was present. We found that D-alanine not only inhibited invasion of pathological K. pneumoniae into the host via pore formation in intestinal epithelial cells but also inhibited growth of E. coli and generation of antibiotic-resistant strains. CONCLUSIONS: D-amino acids might have potential for use in novel therapeutic approaches targeting Proteobacteria-associated dysbiosis and antibiotic-resistant bacterial diseases by means of their effects on the intestinal microbiota community.


Asunto(s)
Colangitis , Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Aminoácidos , Proteobacteria , Escherichia coli , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Alanina , Colangitis/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
19.
Biotechnol Prog ; 39(6): e3386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37634939

RESUMEN

Costly complex media components such as yeast extract and peptone are still widely used in industrial bioprocesses, despite their ill-defined composition. Side stream products such as corn steep liquor (CSL) present a compelling economical alternative that contains valuable nutrients required for microbial growth, that is, nitrogen and amino acids, but also vitamins, trace elements, and other minerals. However, as a side stream product, CSL may be subject to batch-to-batch variations and compositional heterogeneity. In this study, the Respiration Activity MOnitoring System designed for shake flasks (RAMOS) and 96-well microtiter plates (µTOM) were applied to investigate the potential and constraints of CSL utilization for two model microorganisms: E. coli and B. subtilis. Considering the dry substance content of complex nutrients involved, CSL-based media are more efficient in biomass production than the common lysogeny broth (LB) medium, containing 5 g/L yeast extract, 10 g/L peptone, and 5 g/L NaCl. At a glucose to CSL (glucose/CSL, g/g) ratio of 1/1 (g/g) and 2/1 (g/g), a secondary substrate limitation occurred in E. coli and B. subtilis cultivations, respectively. The study sheds light on differences in the metabolic activity of the two applied model organisms between varying CSL batches, which relate to CSL origin and production process, as well as the effect of targeted nutrient supplementation. Through a targeted nutrient supplementation, the most limiting component of the CSL-glucose medium used for these applied model microorganisms was identified to be ammonium nitrogen. This study proves the suitability of CSL as an alternative nutrient source for E. coli and B. subtilis. The RAMOS and µTOM technique detected differences between CSL batches, allowing easy and early identification of varying batches. A consistent performance of the CSL batches in E. coli and B. subtilis cultivations was demonstrated.


Asunto(s)
Escherichia coli , Zea mays , Fermentación , Zea mays/química , Escherichia coli/metabolismo , Peptonas/metabolismo , Nutrientes , Nitrógeno/metabolismo , Glucosa/metabolismo , Medios de Cultivo/química
20.
J Med Life ; 16(5): 707-711, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37520479

RESUMEN

Urinary tract infections are a public health problem exacerbated by the rising concern of antibiotic resistance. Carbapenem-resistant Enterobacterales (CRE), mostly isolated from urine samples, represent an immediate public health threat, often associated with healthcare settings. This study investigated 27 cases of carbapenemase-producing organisms (CPO) detected in urinalysis over one year. There was a significant association between the presence of chronic indwelling urinary catheters and the temporary use of urinary catheters, with both groups accounting for 66.7% of all cases. We identified two modes of transmission for extended drug-resistant microorganisms: inter-hospital spread, covering wide geographical distances (involving four healthcare units across two other counties), and intra-hospital transmission (12 departments within our institution). Medium-size hospitals should thoroughly investigate their specific carbapenemase-producing strains. Their laboratories must be well-supplied to handle this situation and perform the necessary testing accurately. Treatment options should be available based on presumed susceptibility and antimicrobial susceptibility testing, with a range of antibiotics available, including novel agents such as Ceftazidime-avibactam, as well as established options like Aminoglycosides and Colistin. Adherence to rigorous catheter handling protocols, as emphasized by national and international guidelines, is essential and should be implemented consistently across all hospital departments.


Asunto(s)
Antibacterianos , beta-Lactamasas , Humanos , Rumanía/epidemiología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Hospitales , Klebsiella pneumoniae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA