Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Ocul Pharmacol Ther ; 40(5): 309-324, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38603587

RESUMEN

Purpose: Glaucoma is a complex degenerative optic neuropathy characterized by loss of retinal ganglion cells (RGCs) leading to irreversible vision loss and blindness. Solanum nigrum has been used for decades in traditional medicine system. However, no extensive studies were reported on its antiglaucoma properties. Therefore, this study was designed to investigate the neuroprotective effects of S. nigrum extract on RGC against glaucoma rat model. Methods: High performance liquid chromatography and liquid chromatography tandem mass spectrometry was used to analyze the phytochemical profile of aqueous extract of S. nigrum (AESN). In vitro, {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} (MTT) and H2DCFDA assays were used to determine cell viability and reactive oxygen species (ROS) production in Statens Seruminstitut Rabbit Cornea cells. In vivo, AESN was orally administered to carbomer-induced rats for 4 weeks. Intraocular pressure, antioxidant levels, and electrolytes were determined. Histopathological and immunohistochemical analysis was carried out to evaluate the neurodegeneration of RGC. Results: MTT assay showed AESN exhibited greater cell viability and minimal ROS production at 10 µg/mL. Slit lamp and funduscopy confirmed glaucomatous changes in carbomer-induced rats. Administration of AESN showed minimal peripheral corneal vascularization and restored histopathological alterations such as minimal loss of corneal epithelium and moderate narrowing of the iridocorneal angle. Immunohistochemistry analysis showed increased expression of positive BRN3A cells and decreased matrix metalloproteinase (MMP)-9 activation in retina and cornea, whereas western blot analysis revealed downregulation of extracellular matrix proteins (COL-1 and MMP-9) in AESN-treated rats compared with the diseased group rats. Conclusions: AESN protects RGC loss through remodeling of MMPs and, therefore, can be used for the development of novel neurotherapeutics for the treatment of glaucoma.


Asunto(s)
Supervivencia Celular , Modelos Animales de Enfermedad , Matriz Extracelular , Glaucoma , Fármacos Neuroprotectores , Extractos Vegetales , Especies Reactivas de Oxígeno , Células Ganglionares de la Retina , Solanum nigrum , Animales , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Glaucoma/tratamiento farmacológico , Glaucoma/patología , Glaucoma/metabolismo , Ratas , Solanum nigrum/química , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Supervivencia Celular/efectos de los fármacos , Masculino , Conejos , Presión Intraocular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Ratas Sprague-Dawley
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1602-1610, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621945

RESUMEN

This study explored the mechanism of the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix in ameliorating renal fibrosis in the rat model of diabetic kidney disease(DKD) based on the expression of hypoxia-inducible factor-1α(HIF-1α)/vascular endothelial growth factor(VEGF) and HIF-1α/platelet-derived growth factor(PDGF)/platelet-derived growth factor receptor(PDGFR) signaling pathways in the DKD rats. After 1 week of adaptive feeding, 50 male SPF-grade Wistar rats were randomized into a blank group(n=7) and a modeling group. After 24 h of fasting, the rats in the modeling group were subjected to intraperitoneal injection of streptozocin and fed with a high-sugar and high-fat diet to establish a DKD model. After modeling, the rats were randomly assigned into model(n=7), low-dose ultrafiltration extract(n=7), medium-dose ultrafiltration extract(n=7), irbesartan(n=8), and high-dose ultrafiltration extract(n=8) groups. After intervention by corresponding drugs for 12 weeks, the general conditions of the rats were observed. The body weights and blood glucose levels of the rats were measured weekly, and the 24 h urinary protein(24hUP) was measured at the 6th and 12th weeks of drug administration. After the last drug administration, the renal function indicators were determined. Masson staining was employed to observe the pathological changes of the renal tissue. The expression of prolyl hydroxylase domain 2(PHD2) and HIF-1α in the renal tissue was detected by immunohistochemistry(IHC). Real-time qPCR was employed to determine the mRNA levels of PHD2, VEGF, PDGF, and PDGFR in the renal tissue. Western blot was employed to determine the protein levels of HIF-1α, VEGF, PDGF, and PDGFR in the renal tissue. The results showed that compared with the model group, drug administration lowered the levels of glycosylated serum protein(GSP), aerum creatinine(Scr), and blood urea nitrogen(BUN) in a dose-dependent manner(P<0.05 or P<0.01) and mitigated the pathological changes in the renal tissue. Furthermore, drug administration up-regulated mRNA level of PHD2(P<0.05 or P<0.01), down-regulated the mRNA levels of VEGF, PDGF, and PDGFR(P<0.05 or P<0.01) and the protein levels of HIF-1α, VEGF, PDGF, and PDGFR(P<0.01) in the renal tissue, and increased the rate of PHD2-positive cells(P<0.01). In conclusion, the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix effectively alleviated the renal fibrosis in DKD rats by inhibiting the expression of key proteins in the HIF-1α signaling pathway mediated by renal hypoxia and reducing extracellular matrix(ECM) deposition.


Asunto(s)
Nefropatías Diabéticas , Factor A de Crecimiento Endotelial Vascular , Ratas , Masculino , Animales , Ratas Wistar , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ultrafiltración , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isquemia , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Fibrosis , Hipoxia , Transducción de Señal , ARN Mensajero/metabolismo
3.
Am J Chin Med ; 52(1): 57-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38353634

RESUMEN

Chronic respiratory diseases are long-term conditions affecting the airways and other lung components that are characterized by a high prevalence, disability rate, and mortality rate. Further optimization of their treatment is required. Natural products, primarily extracted from organisms, possess specific molecular and structural formulas as well as distinct chemical and physical properties. These characteristics grant them the advantages of safety, gentleness, accessibility, and minimal side effects. The numerous advances in the use of natural products for treating chronic respiratory diseases have provided a steady source of motivation for new drug research and development. In this paper, we introduced the pathogenesis of chronic respiratory diseases and natural products. Furthermore, we classified natural products according to their mechanism for treating chronic respiratory diseases and describe the ways in which these products can alleviate the pathological symptoms. Simultaneously, we elaborate on the signal transduction pathways and biological impacts of natural products' targeting. Additionally, we present future prospects for natural products, considering their combination treatment approaches and administration methods. The significance of this review extends to both the research on preventing and treating chronic respiratory diseases, as well as the advancement of novel drug development in this field.


Asunto(s)
Productos Biológicos , Enfermedades Respiratorias , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/química , Desarrollo de Medicamentos , Enfermedades Respiratorias/tratamiento farmacológico
4.
Chin J Nat Med ; 22(1): 31-46, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38278557

RESUMEN

Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.


Asunto(s)
Medicamentos Herbarios Chinos , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Hígado/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Matriz Extracelular/metabolismo
5.
Front Cell Dev Biol ; 11: 1272667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033861

RESUMEN

Introduction: Detachment from the extracellular matrix (ECM) is the first step of the metastatic cascade. It is a regulated process involving interaction between tumor cells and tumor microenvironment (TME). Iron is a key micronutrient within the TME. Here, we explored the role of iron in the ability of ovarian cancer cells to successfully detach from the ECM. Methods: HEY and PEO1 ovarian cancer cells were grown in 3D conditions. To mimic an iron rich TME, culture media were supplemented with 100 µM Fe3+. Cell mortality was evaluated by cytofluorimetric assay. The invasive potential of tumor spheroids was performed in Matrigel and documented with images and time-lapses. Iron metabolism was assessed by analyzing the expression of CD71 and FtH1, and by quantifying the intracellular labile iron pool (LIP) through Calcein-AM cytofluorimetric assay. Ferroptosis was assessed by quantifying mitochondrial reactive oxygen species (ROS) and lipid peroxidation through MitoSOX and BODIPY-C11 cytofluorimetric assays, respectively. Ferroptosis markers GPX4 and VDAC2 were measured by Western blot. FtH1 knockdown was performed by using siRNA. Results: To generate spheroids, HEY and PEO1 cells prevent LIP accumulation by upregulating FtH1. 3D HEY moderately increases FtH1, and LIP is only slightly reduced. 3D PEO1upregulate FtH1 and LIP results significantly diminished. HEY tumor spheroids prevent iron import downregulating CD71, while PEO1 cells strongly enhance it. Intracellular ROS drop down during the 2D to 3D transition in both cell lines, but more significantly in PEO1 cells. Upon iron supplementation, PEO1 cells continue to enhance CD71 and FtH1 without accumulating the LIP and ROS and do not undergo ferroptosis. HEY, instead, accumulate LIP, undergo ferroptosis and attenuate their sphere-forming ability and invasiveness. FtH1 knockdown significantly reduces the generation of PEO1 tumor spheroids, although without sensitizing them to ferroptosis. Discussion: Iron metabolism reprogramming is a key event in the tumor spheroid generation of ovarian cancer cells. An iron-rich environment impairs the sphere-forming ability and causes cell death only in ferroptosis sensitive cells. A better understanding of ferroptosis sensitivity could be useful to develop effective treatments to kill ECM-detached ovarian cancer cells.

6.
Med Oncol ; 40(9): 261, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37544940

RESUMEN

Our previous laboratory findings suggested the beneficial effects of epigallocatechin gallate (EGCG) against cervical cancer (CC) cells survival. The present study is aimed at identifying the effects of EGCG in preventing the actions of epidermal growth factor (EGF) in human papilloma virus (HPV) 68 positive ME180 and HPV negative C33A CC cells. An elevated level of EGF in tumor micro-environment (TME) is linked to the metastasis of several cancers including CC. We hypothesized that EGCG has the ability to block the actions of EGF. To test this, survival assay was performed in cells treated with or without EGF and EGCG. The mitochondrial activity of cells was ascertained using MTT assay and mitored staining. Protein and non-protein components in the extracellular matrix such as collagen and sulphated glycosaminoglycans (GAGs) were evaluated using sirius red and alcian blue staining, respectively. Matrix metalloproteinase-2 (MMP-2) gene expression and enzymatic activity were assessed using real time-reverse transcriptase-polymerase chain reaction (RT-PCR) and gelatin zymography. Wound healing assay was performed to assess the EGF induced migratory ability and its inhibition by EGCG pre-treatment. Clonogenic assay showed that EGCG pre-treatment blocked the EGF driven colony formation. In silico analysis performed identified the efficacy of EGCG in binding with different domains of EGF receptor (EGFR). EGCG pre-treatment prevented the epithelial-mesenchymal transition (EMT) and metabolic activity induced by EGF, this is associated with concomitant reduction in the gene expression and enzyme activity of MMP-2. Further, reduced migration and ability to form colonies were observed in EGCG pre-treated cells when stimulated with EGF. HPV positive ME180 cells showed increased migratory and clonogenic ability upon EGF stimulation, whose effects were not much significant in HPV negative C33A cells. EGCG effectively blocked the actions of EGF in both HPV positive and HPV negative conditions and can be advocated as supplementary therapy for the management of EGF driven CC. However, further studies using cell line-derived xenograft (CDX)/patient-derived xenograft (PDX) model system is warranted to validate the therapeutic utility of EGCG.


Asunto(s)
Catequina , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Catequina/farmacología , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Infecciones por Papillomavirus/tratamiento farmacológico , Microambiente Tumoral , Neoplasias del Cuello Uterino/tratamiento farmacológico
7.
PeerJ ; 11: e15917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637163

RESUMEN

Icariin (ICA) is a typical flavonoid glycoside derived from epimedium plants. It has both anabolic and anti-catabolic effects to improve bone mineral density and reduce bone microstructural degradation. However, the effect and underlying mechanism of ICA on the proliferation and metabolism of chondrocyte and synthesis of extracellular matrix are still unclear. This study aimed to investigate the role and regulation of far upstream element binding protein 1 (FUBP1) in chondrocytes treated with ICA to maintain homeostasis and suppress inflammatory responses. In the study, the effect of ICA on chondrocytes with overexpressed or silenced FUBP1 was detected by the MTS and single-cell cloning methods. The expression of hypoxia-inducible factor-1/2α (HIF-1/2α), FUBP1, matrix metalloproteinase (MMP)9, SRY-box transcription factor 9 (SOX9), and type II collagen (Col2α) in ATDC5 cells, a mouse chondrogenic cell line, treated with ICA was evaluated by immunoblotting. Western blotting revealed 1 µM ICA to have the most significant effect on chondrocytes. Alcian blue staining and colony formation assays showed that the promoting effect of ICA was insignificant in FUBP1-knockdown cells (P > 0.05) but significantly enhanced in FUBP1-overexpressed cells (P < 0.05). Western blot results from FUBP1-knockdown cells treated with or without ICA showed no significant difference in the expression of FUBP1, HIF-1/2α, MMP9, SOX9, and Col2α proteins, whereas the same proteins showed increased expression in FUBP1-overexpressed chondrocytes; moreover, HIF-2α and MMP9 expression was significantly inhibited in FUBP1-knockdown chondrocytes (P < 0.05). In conclusion, as a bioactive monomer of traditional Chinese medicine, ICA is beneficial to chondrocytes.


Asunto(s)
Condrocitos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Animales , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Metaloproteinasa 9 de la Matriz , Hipoxia
8.
New Phytol ; 239(5): 1651-1664, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37322611

RESUMEN

The continuous imbalance between nitrogen (N) and phosphorus (P) deposition is expected to shift many ecosystems from N- to P limitation. Extraradical hyphae of ectomycorrhizal (ECM) fungi play important roles in plant nutrient acquisition under nutrient deficiency. However, whether and how ECM hyphae enhance soil P availability to alleviate N-induced P deficiency remains unclear. We investigated the impacts of ECM hyphae on transformations among different soil P fractions and underlying mechanisms under N deposition in two ECM-dominated forests. Ectomycorrhizal hyphae enhanced soil P availability under N addition by stimulating mineralization of organic P (Po) and desorption and solubilization of secondary mineral P, as indicated by N-induced increase in positive hyphal effect on plant-available P pool and negative hyphal effects on Po and secondary mineral P pools. Moreover, ECM hyphae increased soil phosphatase activity and abundance of microbial genes associated with Po mineralization and inorganic P solubilization, while decreasing concentrations of Fe/Al oxides. Our results suggest that ECM hyphae can alleviate N-induced P deficiency in ECM-dominated forests by regulating interactions between microbial and abiotic factors involved in soil P transformations. This advances our understanding of plant acclimation strategies via mediating plant-mycorrhiza interactions to sustain forest production and functional stability under changing environments.


Asunto(s)
Micorrizas , Fósforo , Ecosistema , Hifa , Nitrógeno , Bosques , Micorrizas/fisiología , Minerales , Plantas , Suelo , Microbiología del Suelo
9.
Osteoarthritis Cartilage ; 31(11): 1425-1436, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37230460

RESUMEN

Osteoarthritis (OA) is the most common age-related joint disease, affecting articular cartilage and other joint structures, causing severe pain and disability. Due to a limited understanding of the underlying disease pathogenesis, there are currently no disease-modifying drugs for OA. Circadian rhythms are generated by cell-intrinsic timekeeping mechanisms which are known to dampen during ageing, increasing disease risks. In this review, we focus on one emerging area of chondrocyte biology, the circadian clocks. We first provide a historical perspective of circadian clock discoveries and the molecular underpinnings. We will then focus on the expression and functions of circadian clocks in articular cartilage, including their rhythmic target genes and pathways, links to ageing, tissue degeneration, and OA, as well as tissue niche-specific entrainment pathways. Further research into cartilage clocks and ageing may have broader implications in the understanding of OA pathogenesis, the standardization of biomarker detection, and the development of novel therapeutic routes for the prevention and management of OA and other musculoskeletal diseases.


Asunto(s)
Cartílago Articular , Relojes Circadianos , Osteoartritis , Humanos , Osteoartritis/metabolismo , Cartílago Articular/patología , Condrocitos/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética
10.
Biology (Basel) ; 12(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37106738

RESUMEN

There is limited research on the association between the extracellular matrix (ECM) and chronic neuropathic pain. The objective of this study was twofold. Firstly, we aimed to assess changes in expression levels and the phosphorylation of ECM-related proteins due to the spared nerve injury (SNI) model of neuropathic pain. Secondly, two modalities of spinal cord stimulation (SCS) were compared for their ability to reverse the changes induced by the pain model back toward normal, non-injury levels. We identified 186 proteins as ECM-related and as having significant changes in protein expression among at least one of the four experimental groups. Of the two SCS treatments, the differential target multiplexed programming (DTMP) approach reversed expression levels of 83% of proteins affected by the pain model back to levels seen in uninjured animals, whereas a low-rate (LR-SCS) approach reversed 67%. There were 93 ECM-related proteins identified in the phosphoproteomic dataset, having a combined 883 phosphorylated isoforms. DTMP back-regulated 76% of phosphoproteins affected by the pain model back toward levels found in uninjured animals, whereas LR-SCS back-regulated 58%. This study expands our knowledge of ECM-related proteins responding to a neuropathic pain model as well as providing a better perspective on the mechanism of action of SCS therapy.

11.
Chin J Nat Med ; 21(4): 253-262, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37120244

RESUMEN

Diabetic kidney disease (DKD) is the most common complication of diabetes mellitus (DM). Qianjin Wenwu decoction (QWD), a well-known traditional Korean medicine, has been used for the treatment of DKD, with satisfactory therapeutic effects. This study was designed to investigate the active components and mechanisms of action of QWD in the treatment of DKD. The results demonstrated that a total of 13 active components in five types were found in QWD, including flavonoids, flavonoid glycosides, phenylpropionic acids, saponins, coumarins, and lignins. Two key proteins, TGF-ß1 and TIMP-1, were identified as the target proteins through molecular docking. Furthermore, QWD significantly suppressed Scr and BUN levels which increased after unilateral ureteral obstruction (UUO). Hematoxylin & eosin (H&E) and Masson staining results demonstrated that QWD significantly alleviated renal interstitial fibrosis in UUO mice. We also found that QWD promoted ECM degradation by regulating MMP-9/TIMP-1 homeostasis to improve renal tubulointerstitial fibrosis and interfere with the expression and activity of TGF- ß1 in DKD treatment. These findings explain the underlying mechanism of QWD for the treatment of DKD, and also provide methodological reference for investigating the mechanism of traditional medicine in the treatment of DKD.


Asunto(s)
Enfermedades Renales , Obstrucción Ureteral , Ratas , Ratones , Animales , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/metabolismo , Riñón/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Enfermedades Renales/tratamiento farmacológico , Matriz Extracelular/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Fibrosis
12.
J Med Food ; 26(5): 299-306, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37074675

RESUMEN

Collagen-derived dipeptides and tripeptides have various physiological activities. In this study, we compared the plasma kinetics of free Hyp, peptide-derived Hyp, Pro-Hyp, cyclo(Pro-Hyp), Hyp-Gly, Gly-Pro-Hyp, and Gly-Pro-Ala after ingestion of four different collagen samples: AP collagen peptide (APCP), general collagen peptide, collagen, and APCP and γ-aminobutyric acid (GABA) combination. Each peptide was measured by high-performance liquid chromatography and triple quadrupole mass spectrometer. We found that, among all the peptides that were analyzed, only Gly-Pro-Hyp was significantly increased after ingestion of APCP compared with that of general collagen peptides and collagen. In addition, ingestion of the APCP and GABA combination improved the absorption efficiency of Gly-Pro-Ala. Finally, we reveal that Gly-Pro-Hyp was effective for preventing H2O2-induced reduction in extracellular matrix (ECM)-related genes, COL1A, elastin, and fibronectin, in dermal fibroblasts. Taken together, APCP significantly enhances the absorption of Gly-Pro-Hyp, which might act as an ECM-associated signaling factor in dermal fibroblasts, and the APCP and GABA combination promotes Gly-Pro-Ala absorption. Clinical Trial Registration number: UMIN000047972.


Asunto(s)
Colágeno , Fibroblastos , Peróxido de Hidrógeno , Péptidos , Absorción Fisiológica , Colágeno/administración & dosificación , Colágeno/química , Ingestión de Alimentos , Fibroblastos/metabolismo
13.
Phytomedicine ; 110: 154626, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36603342

RESUMEN

BACKGROUND: Ganoderma lucidum polysaccharide (GLP) has many biological properties, however, the anti-fibrosis effect of GLP is unknown at present. PURPOSE: This study aimed to examine the anti-fibrogenic effect of GLP and its underlying molecular mechanisms in vivo and in vitro. STUDY DESIGN: Both CCl4-induced mouse and TGF-ß1-induced HSC-T6 cellular models of fibrosis were established to examine the anti-fibrogenic effect of a water-soluble GLP (25 kDa) extracted from the sporoderm-removed spores of G. lucidum.. METHOD: Serum markers of liver injury, histology and fibrosis of liver tissues, and collagen formation were examined using an automatic biochemical analyzer, H&E staining, Sirius red staining, immunohistochemistry, immunofluorescence, ELISA, Western blotting, and qRT-PCR. RNA-sequencing, enrichment pathway analysis, Western blotting, qRT-PCR, and flow cytometry were employed to identify the potential molecular targets and signaling pathways that are responsible for the anti-fibrotic effect of GLP. RESULTS: We showed that GLP (150 and 300 mg/kg) significantly inhibited hepatic fibrogenesis and inflammation in CCl4-treated mice as mediated by the TLR4/NF-κB/MyD88 signaling pathway. We further demonstrated that GLP significantly inhibited hepatic stellate cell (HSCs) activation in mice and in TGF-ß1-induced HSC-T6 cells as manifested by reduced collagen I and a-SMA expressions. RNA-sequencing uncovered inflammation, apoptosis, cell cycle, ECM-receptor interaction, TLR4/NF-κB, and TGF-ß/Smad signalings as major pathways suppressed by GLP administration. Further studies demonstrated that GLP elicits anti-fibrotic actions that are associated with a novel dual effect on apoptosis in vivo (inhibit) or in vitro (promote), suppression of cell cycle in vivo, induction of S phase arrest in vitro, and attenuation of ECM-receptor interaction-associated molecule expressions including integrins ITGA6 and ITGA8. Furthermore, GLP significantly inhibited the TGF-ß/Smad signaling in mice, and reduced TGF-ß1 or its agonist SRI-011381-induced Smad2 and Smad3 phosphorylations, but increased Samd7 expression in HSC-T6 cells. CONCLUSION: This study provides the first evidence that GLP could be a promising dietary strategy for treating liver fibrosis, which protects against liver fibrosis and HSC activation through targeting inflammation, apoptosis, cell cycle, and ECM-receptor interactions that are mediated by TGF-ß/Smad signaling.


Asunto(s)
Reishi , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Smad/metabolismo , Células Estrelladas Hepáticas , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Colágeno Tipo I/metabolismo , Ciclo Celular , Inflamación/metabolismo , Apoptosis , ARN/metabolismo
14.
Chemosphere ; 315: 137749, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610517

RESUMEN

Epidemiological studies have demonstrated strong associations between exposure to ambient fine particulate matter (PM2.5) and cardiac disease. To investigate the potential mechanism of cardiac fibrosis induced by PM2.5, we established PM2.5 exposure models in vivo and in vitro, and then cardiac fibrosis was evaluated. The ferroptosis and ferritinophagy was detected to characterize the effects of PM2.5 exposure. The results indicated that PM2.5 exposure could induce cardiac fibrosis in mice. YY1 was induced by PM2.5 exposure and then increased NCOA4, a cargo receptor for ferritinophagy, which interacted with FHC and promoted the transport of ferritin to the autophagosome for degradation. The release of large amounts of free iron from ferritinophagy led to lipid peroxidation directly via the Fenton reaction, thereby triggering ferroptosis. Moreover, siNCOA4 could partly restore the FHC protein level in HL-1 cells and inhibit the occurrence of downstream ferroptosis. Functionally, NCOA4 knockdown inhibited ferroptosis and alleviated HL-1 cell death induced by PM2.5. Ferroptosis inhibitor (Ferrostatin-1) could reverse the promoting effect of ferritinophagy mediated ferroptosis on cardiac fibrosis induced by PM2.5 exposure in mice. Our study indicated that PM2.5 induced cardiac fibrosis through YY1 regulating ferritinophagy-dependent ferroptosis.


Asunto(s)
Ferroptosis , Animales , Ratones , Autofagia , Fibrosis , Material Particulado/toxicidad , Especies Reactivas de Oxígeno/metabolismo
15.
Int J Food Sci Nutr ; 74(1): 51-63, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36457282

RESUMEN

Skin photoaging is primarily caused by ultraviolet radiation and can lead to the degradation of skin extracellular matrix components, resulting in hyperpigmentation and skin elasticity loss. In this area, polyphenols have become of great interest because of their antioxidant, anti-inflammatory and antiaging properties. Here, we evaluated the effects of the pomegranate natural extract Pomanox® on skin health-related parameters in normal and UV-induced photoaging conditions in human fibroblast Hs68 cells. Moreover, the inhibitory effects of Pomanox® on tyrosinase activity were assessed. In normal conditions, Pomanox® significantly modulated collagen and hyaluronic acid metabolisms. In UV-exposed cells, both preventive and regenerative treatments with Pomanox® positively modulated hyaluronic acid metabolism and decreased ROS levels. However, only the preventive treatment modulated collagen metabolism. Finally, Pomanox® showed a marked inhibitory capacity of tyrosinase activity (IC50 = 394.7 µg/mL). The modulation of skin health-related parameters exhibited by Pomanox® open a wide range of potential applications of this product.


Asunto(s)
Granada (Fruta) , Envejecimiento de la Piel , Humanos , Colágeno/metabolismo , Colágeno/farmacología , Fibroblastos/metabolismo , Ácido Hialurónico/farmacología , Monofenol Monooxigenasa , Piel/metabolismo , Piel/efectos de la radiación , Rayos Ultravioleta , Extractos Vegetales/farmacología
16.
Artículo en Inglés | WPRIM | ID: wpr-982697

RESUMEN

Diabetic kidney disease (DKD) is the most common complication of diabetes mellitus (DM). Qianjin Wenwu decoction (QWD), a well-known traditional Korean medicine, has been used for the treatment of DKD, with satisfactory therapeutic effects. This study was designed to investigate the active components and mechanisms of action of QWD in the treatment of DKD. The results demonstrated that a total of 13 active components in five types were found in QWD, including flavonoids, flavonoid glycosides, phenylpropionic acids, saponins, coumarins, and lignins. Two key proteins, TGF-β1 and TIMP-1, were identified as the target proteins through molecular docking. Furthermore, QWD significantly suppressed Scr and BUN levels which increased after unilateral ureteral obstruction (UUO). Hematoxylin & eosin (H&E) and Masson staining results demonstrated that QWD significantly alleviated renal interstitial fibrosis in UUO mice. We also found that QWD promoted ECM degradation by regulating MMP-9/TIMP-1 homeostasis to improve renal tubulointerstitial fibrosis and interfere with the expression and activity of TGF- β1 in DKD treatment. These findings explain the underlying mechanism of QWD for the treatment of DKD, and also provide methodological reference for investigating the mechanism of traditional medicine in the treatment of DKD.


Asunto(s)
Ratas , Ratones , Animales , Obstrucción Ureteral/metabolismo , Riñón/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Enfermedades Renales/tratamiento farmacológico , Matriz Extracelular/metabolismo , Flavonoides/metabolismo , Fibrosis
17.
Front Pharmacol ; 13: 919967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105187

RESUMEN

Background: Renal fibrosis is a key pathological change that occurs in the progression of almost all chronic kidney diseases . CKD has the characteristics of high morbidity and mortality. Its prevalence is increasing each year on a global scale, which seriously affects people's health and quality of life. Natural products have been used for new drug development and disease treatment for many years. The abundant natural products in R. ribes L. can intervene in the process of renal fibrosis in different ways and have considerable therapeutic prospects. Purpose: The etiology and pathology of renal fibrosis were analyzed, and the different ways in which the natural components of R. ribes L. can intervene and provide curative effects on the process of renal fibrosis were summarized. Methods: Electronic databases, such as PubMed, Life Science, MEDLINE, and Web of Science, were searched using the keywords 'R. ribes L.', 'kidney fibrosis', 'emodin' and 'rhein', and the various ways in which the natural ingredients protect against renal fibrosis were collected and sorted out. Results: We analyzed several factors that play a leading role in the pathogenesis of renal fibrosis, such as the mechanism of the TGF-ß/Smad and Wnt/ß-catenin signaling pathways. Additionally, we reviewed the progress of the treatment of renal fibrosis with natural components in R. ribes L. and the intervention mechanism of the crucial therapeutic targets. Conclusion: The natural components of R. ribes L. have a wide range of intervention effects on renal fibrosis targets, which provides new ideas for the development of new anti-kidney fibrosis drugs.

18.
Physiol Rep ; 10(17): e15459, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36065883

RESUMEN

Eight Constitution Medicine (ECM), a ramification of traditional Korean medicine, has categorized people into eight constitutions. The main criteria of classification are inherited differences or predominance in the functions of organs, such as the liver or lung, diagnosed through ECM-specific pulse patterns. This study investigated the association between single nucleotide polymorphism (SNP) genotypes and ECM phenotypes and explored candidate genetic makeups responsible for each constitution using a genome-wide association study (GWAS). Sixty-three healthy volunteers, who were either categorized as the Hepatonia (HEP, n = 32) or Pulmotonia (PUL, n = 31) constitution, were enrolled. HEP and PUL are two contrasting ECM types representing the dominant liver and lung phenotypes, respectively. SNPs were analyzed from the oral mucosa DNA using a commercially available microarray chip that can identify 820,000 SNPs. We conducted GWAS using logistic regression analysis and additive mode genotypes and constructed phylogenetic trees using the SNPhylo program with 8 SNPs specific for the liver phenotype and 15 SNPs for the lung phenotype. Although genome-wide significant SNPs were not found, the phylogenetic tree showed a clear difference between the two constitutions. This is the first observation suggesting genetic involvement in the ECM and can be extended to all ECM constitutions.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Genotipo , Humanos , Hígado , Pulmón , Fenotipo , Filogenia , República de Corea
19.
Mater Today Bio ; 16: 100382, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36033373

RESUMEN

Large bone defects remain an unsolved clinical challenge because of the lack of effective vascularization in newly formed bone tissue. 3D bioprinting is a fabrication technology with the potential to create vascularized bone grafts with biological activity for repairing bone defects. In this study, vascular endothelial cells laden with thermosensitive bio-ink were bioprinted in situ on the inner surfaces of interconnected tubular channels of bone mesenchymal stem cell-laden 3D-bioprinted scaffolds. Endothelial cells exhibited a more uniform distribution and greater seeding efficiency throughout the channels. In vitro, the in situ bioprinted endothelial cells can form a vascular network through proliferation and migration. The in situ vascularized tissue-engineered bone also resulted in a coupling effect between angiogenesis and osteogenesis. Moreover, RNA sequencing analysis revealed that the expression of genes related to osteogenesis and angiogenesis is upregulated in biological processes. The in vivo 3D-bioprinted in situ vascularized scaffolds exhibited excellent performance in promoting new bone formation in rat calvarial critical-sized defect models. Consequently, in situ vascularized tissue-engineered bones constructed using 3D bioprinting technology have a potential of being used as bone grafts for repairing large bone defects, with a possible clinical application in the future.

20.
Phytomedicine ; 105: 154382, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35963196

RESUMEN

BACKGROUND: Nutmeg-5, an ancient and classic formula in traditional Mongolian medicine comprising five kinds of traditional Chinese medicine, is widely used in the treatment of myocardial infarction (MI, called heart "Heyi" disease in Mongolian medicine). Cardiac fibrosis plays a critical role in the development and progression of heart failure after MI. However, the material basis and pharmacological mechanisms of the effect of Nutmeg-5 on cardiac fibrosis after MI remain unclear. OBJECTIVE: The aim of this study was to first explore the potential material basis and molecular mechanism of action of Nutmeg-5 in improving cardiac fibrosis after MI via a multiomics approach. METHODS: The constituents in Nutmeg-5 were identified by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). High-performance liquid chromatography (HPLC) and gas chromatography (GC)-based fingerprints of Nutmeg-5 were analysed, and characteristic peaks were identified by comparison to standard samples. A rat MI model was created by permanent ligation of the left anterior descending artery. The protective effect of Nutmeg-5 on cardiac fibrosis after MI was evaluated by tissue histology and measurement of the serum biomarkers of myocardial injury. Cardiac fibrosis levels were evaluated by Sirius red staining. Differentially expressed proteins in the myocardium and metabolites in the serum were explored by proteomic and untargeted metabolome analyses, respectively. Pearson correlation analysis was performed to explore the association between serum metabolites and myocardial proteins. RESULTS: A total of 67 constituents were identified in Nutmeg-5 by UPLC-MS/MS. Sixteen components were identified in the fingerprint of Nutmeg-5 by comparison with a standard sample. Six lactones were isolated from Nutmeg-5 and quantified by HPLC and GC. MI was significantly alleviated in Nutmeg-5-treated rats compared to MI rats, as demonstrated by their decreased mortality, improved cardiac function, and attenuated cardiac fibrosis and myocardial injury. A total of 252 significant differential metabolites were identified in plasma between model and Nutmeg-5-treated rats by untargeted metabolome analysis. Among these, 36 critical metabolites were associated with Nutmeg-5 activity. Proteomic analysis identified 338 differentially expressed proteins in the rat myocardium between MI and Nutmeg-5-treated rats, including 204 upregulated and 134 downregulated proteins. Protein set enrichment analysis revealed that Nutmeg-5 treatment significantly inhibited the extracellular matrix (ECM)-receptor interaction pathway, which was activated in the myocardium of MI rats. A significant decrease in collagen and alpha smooth muscle actin expression levels was found in the myocardium of Nutmeg-5-treated rats compared to MI rats. These results illustrated that Nutmeg-5 had a significant protective effect on cardiac fibrosis after MI. A significant correlation was found between the ECM-receptor interaction pathway in the myocardium and critical metabolites in the serum. In addition, there were positive correlations between the levels of critical metabolites and the expression levels of transforming growth factor (TGF)-ß1 and Smad2 in the rat myocardium. CONCLUSIONS: Nutmeg-5 alleviated cardiac fibrosis after MI in rats by inhibiting the myocardial ECM-receptor interaction pathway and TGF-ß1/Smad2 signalling, which was achieved by regulating plasma metabolites.


Asunto(s)
Infarto del Miocardio , Myristica , Animales , Cromatografía Liquida , Fibrosis , Metabolómica , Miocardio , Proteómica , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Factor de Crecimiento Transformador beta1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA