Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin. transl. oncol. (Print) ; 26(4): 951-965, Abr. 2024. graf
Artículo en Inglés | IBECS | ID: ibc-VR-58

RESUMEN

Background: Patients with pancreatic cancer have a dismal prognosis due to tumor cell infiltration and metastasis. Many reports have documented that EMT and PI3K–AKT–mTOR axis control pancreatic cancer cell infiltration and metastasis. Chloroxine is an artificially synthesized antibacterial compound that demonstrated anti-pancreatic cancer effects in our previous drug-screening trial. We have explored the impact of chloroxine on pancreatic cancer growth, infiltration, migration, and apoptosis. Methods: The proliferation of pancreatic cancer cell lines (PCCs) treated with chloroxine was assessed through real-time cell analysis (RTCA), colony formation assay, CCK-8 assay, as well as immunofluorescence. Chloroxine effects on the infiltrative and migratory capacities of PCCs were assessed via Transwell invasion and scratch experiments. To assess the contents of EMT- and apoptosis-associated proteins in tumor cells, we adopted Western immunoblotting as well as immunofluorescence assays, and flow cytometry to determine chloroxine effects on PCCs apoptosis. The in vivo chloroxine antineoplastic effects were explored in nude mice xenografts. Results: Chloroxine repressed pancreatic cancer cell growth, migration, and infiltration in vitro, as well as in vivo, and stimulated apoptosis of the PCCs. Chloroxine appeared to inhibit PCC growth by Ki67 downregulation; this targeted and inhibited aberrant stimulation of the PI3K–AKT–mTOR signaling cascade, triggered apoptosis in PCC via mitochondria-dependent apoptosis, and modulated the EMT to inhibit PCC infiltration and migration. Conclusions: Chloroxine targeted and inhibited the PI3K–AKT–mTOR cascade to repress PCCs growth, migration, as well as invasion, and triggered cellular apoptosis. Therefore, chloroxine may constitute a potential antineoplastic drug for the treatment of pancreatic cancer.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático , Antineoplásicos , Cloroquinolinoles/farmacocinética , Cloroquinolinoles/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Phytomedicine ; 129: 155615, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38615493

RESUMEN

BACKGROUND: Metastasis driven by epithelial-mesenchymal transition (EMT) remains a significant contributor to the poor prognosis of colorectal cancer (CRC), and requires more effective interventions. GPR81 signaling has been linked to tumor metastasis, while lacks an efficient specific inhibitor. PURPOSE: Our study aimed to investigate the effect and mechanism of Gentisic acid on colorectal cancer (CRC) metastasis. STUDY DESIGN: A lung metastasis mouse model induced by tail vein injection and a subcutaneous graft tumor model were used. Gentisic acid (GA) was administered by an intraperitoneal injection. HCT116 was treated with lactate to establish an in vitro model. METHODS: MC38 cells with mCherry fluorescent protein were injected into tail vein to investigate lung metastasis ability in vivo. GA was administered by intraperitoneal injection for 3 weeks. The therapeutic effect was evaluated by survival rates, histochemical analysis, RT-qPCR and live imaging. The mechanism was explored using small interfering RNA (siRNA), Western blotting, RT-qPCR and immunofluorescence. RESULTS: GA had a therapeutic effect on CRC metastasis and improved survival rates and pathological changes in dose-dependent manner. GA emerged as an GPR81 inhibitor, effectively suppressed EMT and mTOR signaling in CRC induced by lactate both in vivo and in vitro. Mechanistically, GA halted lactate-induce degradation of DEPDC5 through impeding the activation of Chaperone-mediated autophagy (CMA). CONCLUSION: CMA-mediated DEPDC5 degradation is crucial for lactate/GPR81-induced CRC metastasis, and GA may be a promising candidate for metastasis by inhibiting GPR81 signaling.


Asunto(s)
Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Ratones , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/tratamiento farmacológico , Células HCT116 , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Masculino , Serina-Treonina Quinasas TOR/metabolismo
3.
Food Nutr Res ; 682024.
Artículo en Inglés | MEDLINE | ID: mdl-38571915

RESUMEN

Background: Nimbolide, a bioactive compound derived from the neem tree, has garnered attention as a potential breakthrough in the prevention and treatment of chronic diseases. Recent updates in research highlight its multifaceted pharmacological properties, demonstrating anti-inflammatory, antioxidant, and anticancer effects. With a rich history in traditional medicine, nimbolide efficacy in addressing the molecular complexities of conditions such as cardiovascular diseases, diabetes, and cancer positions it as a promising candidate for further exploration. As studies progress, the recent update underscores the growing optimism surrounding nimbolide as a valuable tool in the ongoing pursuit of innovative therapeutic strategies for chronic diseases. Methods: The comprehensive search of the literature was done until September 2020 on the MEDLINE, Embase, Scopus and Web of Knowledge databases. Results: Most studies have shown the Nimbolide is one of the most potent limonoids derived from the flowers and leaves of neem (Azadirachta indica), which is widely used to treat a variety of human diseases. In chronic diseases, nimbolide reported to modulate the key signaling pathways, such as Mitogen-activated protein kinases (MAPKs), Wingless-related integration site-ß (Wnt-ß)/catenin, NF-κB, PI3K/AKT, and signaling molecules, such as transforming growth factor (TGF-ß), Matrix metalloproteinases (MMPs), Vascular Endothelial Growth Factor (VEGF), inflammatory cytokines, and epithelial-mesenchymal transition (EMT) proteins. Nimbolide has anti-inflammatory, anti-microbial, and anti-cancer properties, which make it an intriguing compound for research. Nimbolide demonstrated therapeutic potential for osteoarthritis, rheumatoid arthritis, cardiovascular, inflammation and cancer. Conclusion: The current review mainly focused on understanding the molecular mechanisms underlying the therapecutic effects of nimbolide in chronic diseases.

4.
Hum Vaccin Immunother ; 20(1): 2328403, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38502119

RESUMEN

Immunotherapy has recently attracted considerable attention. However, currently, a thorough analysis of the trends associated with the epithelial-mesenchymal transition (EMT) and immunotherapy is lacking. In this study, we used bibliometric tools to provide a comprehensive overview of the progress in EMT-immunotherapy research. A total of 1,302 articles related to EMT and immunotherapy were retrieved from the Web of Science Core Collection (WOSCC). The analysis indicated that in terms of the volume of research, China was the most productive country (49.07%, 639), followed by the United States (16.89%, 220) and Italy (3.6%, 47). The United States was the most influential country according to the frequency of citations and citation burstiness. The results also suggested that Frontiers in Immunotherapy can be considered as the most influential journal with respect to the number of articles and impact factors. "Immune infiltration," "bioinformatics analysis," "traditional Chinese medicine," "gene signature," and "ferroptosis" were found to be emerging keywords in EMT-immunotherapy research. These findings point to potential new directions that can deepen our understanding of the mechanisms underlying the combined effects of immunotherapy and EMT and help develop strategies for improving immunotherapy.


Asunto(s)
Bibliometría , Biología Computacional , China , Transición Epitelial-Mesenquimal , Inmunoterapia
5.
Ann Med Surg (Lond) ; 86(3): 1376-1385, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463106

RESUMEN

Background: Some studies have found that the application of traditional Chinese medicine in the treatment of lung cancer has achieved satisfying results. Polyphyllin Ⅲ (PP Ⅲ) is a natural steroid saponin from P. polyphylla var. yunnanensis, and its analogs have played a wide role in anticancer research. This study aimed to investigate the effect of PP Ⅲ on the development of lung cancer and its molecular mechanism. Methods: A549 and NCI-H1299 cell lines were treated with PP Ⅲ in gradient concentration to detect the IC50 of the cells, and the optimal concentration was selected for subsequent experiments. The effects of PP III treatment on lung cancer were investigated in vitro and in vivo. Results: In vitro experiments, it was found that the proliferation, invasion, migration, and colony formation ability of cancer cells were significantly reduced after PP III treatment, while accompanied by a large number of cell apoptosis. Further detection showed that N-cadherin was significantly decreased, E-cadherin was increased, and Snail and Twist were decreased in A549 cells and NCI-H1299 cells, respectively. In addition, GSK-3ß expression was increased, while ß-catenin expression was reduced with PP III treatment. In the mouse model, it was demonstrated that the volume of transplanted tumors was significantly reduced after PP Ⅲ treatment. Conclusions: PP Ⅲ has the capacity to inhibit the progression of lung cancer and regulate epithelial-mesenchymal transition through the GSK-3ß/ß-catenin pathway to suppress the malignant behavior of cancer cells. The application of PP Ⅲ is expected to be an effective method for the treatment of lung cancer.

6.
Phytomedicine ; 127: 155461, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452697

RESUMEN

BACKGROUND: The active ingredients of the Chinese medical herb Paris polyphylla, P. polyphylla ethanol extract (PPE) and polyphyllin I (PPI), potentially inhibit epithelial-mesenchymal transition (EMT) in tumors. However, the roles of these ingredients in inhibiting EMT in adenomyosis (AM) remain to be explored. PURPOSE: The primary goal of the study was to uncover the underlying molecular processes through which PPE and PPI suppress EMT in AM, alongside assessing the safety profiles of these substances. METHODS: To assess the suppressive impact of PPE on adenomyosis-derived cells (AMDCs), we employed Transwell and wound healing assays. The polyphyllins (PPI, PPII, PPVII) contained in PPE were characterized using high-performance liquid chromatography (HPLC). Then, bioinformatics techniques were performed to pinpoint potential PPI targets that could be effective in treating AM. Immunoblotting was used to verify the key proteins and pathways identified via bioinformatics. Furthermore, we examined the efficacy of PPE and PPI in treating Institute of Cancer Research (ICR) mice with AM by observing the morphological and pathological features of the uterus and performing immunohistochemistry. In addition, we assessed safety by evaluating liver, kidney and spleen pathologic features and serum test results. RESULTS: Three major polyphyllins of PPE were revealed by HPLC, and PPI had the highest concentration. In vitro experiments indicated that PPE and PPI effectively prevent AMDCs invasion and migration. Bioinformatics revealed that the primary targets E-cadherin, N-cadherin and TGFß1, as well as the EMT biological process, were enriched in PPI-treated AM. Immunoblotting assays corroborated the hypothesis that PPE and PPI suppress the TGFß1/Smad2/3 pathway in AMDCs to prevent EMT from progressing. Additionally, in vivo studies showed that PPE (3 mg/kg and 6 mg/kg) and PPI (3 mg/kg and 6 mg/kg), successfully suppressed the EMT process through targeting the TGFß1/Smad2/3 signaling pathway. Besides, it was observed that lower doses of PPE (3 mg/kg) and PPI (3 mg/kg) exerted minimal effects on the liver, kidneys, and spleen. CONCLUSIONS: PPE and PPI efficiently impede the development of EMT by inhibiting the TGFß1/Smad2/3 pathway, revealing an alternative pathway for the pharmacological treatment of AM.


Asunto(s)
Adenomiosis , Antineoplásicos , Diosgenina/análogos & derivados , Liliaceae , Humanos , Femenino , Animales , Ratones , Adenomiosis/tratamiento farmacológico , Línea Celular Tumoral , Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal
7.
Cancers (Basel) ; 16(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473317

RESUMEN

The epithelial-to-mesenchymal transition (EMT) is a cell-biological program that occurs during the progression of several physiological processes and that can also take place during pathological situations such as carcinogenesis. The EMT program consists of the sequential activation of a number of intracellular signaling pathways aimed at driving epithelial cells toward the acquisition of a series of intermediate phenotypic states arrayed along the epithelial-mesenchymal axis. These phenotypic features include changes in the motility, conformation, polarity and functionality of cancer cells, ultimately leading cells to stemness, increased invasiveness, chemo- and radioresistance and the formation of cancer metastasis. Amongst the different existing types of the EMT, type 3 is directly involved in carcinogenesis. A type 3 EMT occurs in neoplastic cells that have previously acquired genetic and epigenetic alterations, specifically affecting genes involved in promoting clonal outgrowth and invasion. Markers such as E-cadherin; N-cadherin; vimentin; and transcription factors (TFs) like Twist, Snail and ZEB are considered key molecules in the transition. The EMT process is also regulated by microRNA expression. Many miRNAs have been reported to repress EMT-TFs. Thus, Snail 1 is repressed by miR-29, miR-30a and miR-34a; miR-200b downregulates Slug; and ZEB1 and ZEB2 are repressed by miR-200 and miR-205, respectively. Occasionally, some microRNA target genes act downstream of the EMT master TFs; thus, Twist1 upregulates the levels of miR-10b. Melatonin is an endogenously produced hormone released mainly by the pineal gland. It is widely accepted that melatonin exerts oncostatic actions in a large variety of tumors, inhibiting the initiation, progression and invasion phases of tumorigenesis. The molecular mechanisms underlying these inhibitory actions are complex and involve a great number of processes. In this review, we will focus our attention on the ability of melatonin to regulate some key EMT-related markers, transcription factors and micro-RNAs, summarizing the multiple ways by which this hormone can regulate the EMT. Since melatonin has no known toxic side effects and is also known to help overcome drug resistance, it is a good candidate to be considered as an adjuvant drug to conventional cancer therapies.

8.
Phytomedicine ; 128: 155420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547619

RESUMEN

BACKGROUND: Within the pro-metastatic hemato-microenvironment, interaction between platelets and tumor cells provides essential support for tumor cells by inducing Epithelial-Mesenchymal Transition (EMT), which greatly increases the stemness of colon cancer cells. Pharmacologically, although platelet deactivation has proved to be benefit against metastasis, its wide application is severely restricted due to the bleeding risk. Spatholobi Caulis, a traditional Chinese herb with circulatory promotion and blood stasis removal activity, has been proved to be clinically effective in malignant medication, leaving its mechanistic relevance to tumor-platelet interaction largely unknown. METHODS: Firstly, MC38-Luc cells were injected into tail-vein in C57BL/6 mice to establish hematogenous metastasis model and the anti-metastasis effects of SEA were evaluated by using a small-animal imaging system. Then, we evaluated the anti-tumor-platelet interaction efficacy of SEA using a tumor-specific induced platelet aggregation model. Platelet aggregation was specifically induced by tumor cells in vitro. Furthermore, to clarify the anti-metastatic effects of SEA is mainly attributed to its blockage on tumor-platelet interaction, after co-culture with tumor cells and platelets (with or without SEA), MC38-Luc cells were injected into the tail-vein and finally count the total of photons quantitatively. Besides, to clarify the blocking pattern of SEA within the tumor-platelet complex, the dependence of SEA on different fractions from activated platelets was tested. Lastly, molecular docking screening were performed to screen potential effective compounds and we used ß-catenin blockers to verify the pathways involved in SEA blocking tumor-platelet interaction. RESULTS: Our study showed that SEA was effective in blocking tumor-platelet specific interaction: (1) Through CCK-8 and LDH assays, SEA showed no cytotoxic effects on tumor cells and platelets. On this basis, by the tail vein injection model, the photon counts in the SEA group was significantly lower than model group, indicating that SEA effectively reduced metastasis. (2) In the "tumor-platelet" co-culture model, SEA effectively inhibited the progression of EMT and cancer stemness signatures of MC38 cells in the model group. (3) In mechanism study, by using the specific inhibitors for galectin-3 (GB1107) andWNT (IWR) respectively, we proved that SEA inhibits the activation of the galectin-3-mediated ß-catenin activation. CONCLUSION: By highlighting the pro-metastatic effects of galectin-3-mediated tumor-platelet adhesion, our study provided indicative evidence for Spatholobi Caulis as the representative candidate for anti-metastatic therapy.


Asunto(s)
Neoplasias del Colon , Ratones Endogámicos C57BL , Microambiente Tumoral , Animales , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Plaquetas/efectos de los fármacos , Ratones , Agregación Plaquetaria/efectos de los fármacos , Adhesividad Plaquetaria/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Extractos Vegetales/farmacología , Metástasis de la Neoplasia
9.
Phytomedicine ; 128: 155338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520835

RESUMEN

BACKGROUND: Liver cancer, one of the most common types of cancer worldwide, accounts for millions of cases annually. With its multi-target and wide-ranging therapeutic effects, traditional Chinese medicine has emerged as a potential approach for treating various tumors. Codonopsis pilosula, a traditional herb, is known for its anti-inflammatory and antioxidant properties. In this study, we investigated the potential molecular mechanisms of Codonopsis pilosula in regulating the inhibition of CDK1 and the modulation of PDK1/ß-catenin, which are involved in hepatocellular carcinoma growth and metastasis. STUDY DESIGN/METHODS: Firstly, we screened the active chemical constituents of Codonopsis pilosula and identified their respective target proteins using the Herb database. Then, we applied the GeneCards database and transcriptome sequencing analysis to screen for critical genes associated with the occurrence and development of liver cancer. The intersection of the target proteins and disease-related genes was used to determine the potential targets of Codonopsis pilosula in hepatocellular carcinoma. Protein-protein interaction analysis and GO/KEGG analysis were subsequently performed to uncover the pathways through which Codonopsis pilosula acts on liver cancer. The Huh-7 cell line, exhibiting the highest sensitivity to Codonopsis pilosula polysaccharide solution (CPP) intervention, was chosen for subsequent studies. Cell viability was evaluated using the CCK-8 assay, colony formation assay was conducted to determine cell proliferation capacity, flow cytometry was used to analyze cell cycle, TUNEL staining was performed to assess cell apoptosis, scratch assay was carried out to evaluate cell migration ability, the expression of EMT-related proteins was detected and analyzed, and cell sphere formation assay was conducted to investigate cell stemness. Finally, a liver cancer animal model was established, and different doses of CPP were administered via gavage the next day. The expression levels of CDK1, PDK1, and ß-catenin in mouse liver tissues were detected and analyzed, immunohistochemistry staining was performed to assess the expression of tumor cell proliferation-related proteins Ki67 and PCNA in mouse xenografts, and TUNEL staining was carried out to evaluate cell apoptosis in mouse liver tissues. After intervention with CDK1 expression, the expression levels of CDK1, PDK1, and ß-catenin proteins and mRNA in each group of cells were detected using Western blot and RT-qPCR. RESULTS: Through network pharmacology analysis, transcriptome sequencing, and bioinformatics analysis, 35 target genes through which Codonopsis pilosula acts on liver cancer were identified. Among them, CDK1, with the highest degree in the PPI network, was considered an essential target protein for Codonopsis pilosula in treating liver cancer. In vitro cell experiments revealed that CPP could inhibit the expression of CDK1/PDK1/ß-catenin signaling axis factors, suppress cell proliferation, decrease cell migration ability, influence the EMT process, and reduce cell stemness by inhibiting CDK1 and affecting the PDK1/ß-catenin signaling axis. Similarly, in vivo experiments demonstrated that CPP could regulate the CDK1/PDK1/ß-catenin signaling axis, inhibit tumor growth, and induce cell apoptosis. CONCLUSION: Codonopsis pilosula may inhibit hepatocellular carcinoma growth by suppressing CDK1 and affecting the PDK1/ß-catenin signaling axis, limiting cell EMT and reducing cell stemness. These findings provide insights into the potential therapeutic role of Codonopsis pilosula in liver cancer.


Asunto(s)
Proteína Quinasa CDC2 , Carcinoma Hepatocelular , Codonopsis , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Humanos , Codonopsis/química , Línea Celular Tumoral , Proteína Quinasa CDC2/metabolismo , Ratones , Proliferación Celular/efectos de los fármacos , beta Catenina/metabolismo , Antineoplásicos Fitogénicos/farmacología , Ratones Desnudos , Ratones Endogámicos BALB C , Masculino , Movimiento Celular/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ensayos Antitumor por Modelo de Xenoinjerto , Medicamentos Herbarios Chinos/farmacología
10.
Chin J Nat Med ; 22(2): 112-126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38342564

RESUMEN

The tumor suppressor protein p53 is central to cancer biology, with its pathway reactivation emerging as a promising therapeutic strategy in oncology. This study introduced LZ22, a novel compound that selectively inhibits the growth, migration, and metastasis of tumor cells expressing wild-type p53, demonstrating ineffectiveness in cells devoid of p53 or those expressing mutant p53. LZ22's mechanism of action involves a high-affinity interaction with the histidine-96 pocket of the MDM2 protein. This interaction disrupted the MDM2-p53 binding, consequently stabilizing p53 by shielding it from proteasomal degradation. LZ22 impeded cell cycle progression and diminished cell proliferation by reinstating the p53-dependent suppression of the CDK2/Rb signaling pathway. Moreover, LZ22 alleviated the p53-dependent repression of Snail transcription factor expression and its consequent EMT, effectively reducing tumor cell migration and distal metastasis. Importantly, LZ22 administration in tumor-bearing mice did not manifest notable side effects. The findings position LZ22 as a structurally unique reactivator of p53, offering therapeutic promise for the management of human cancers with wild-type TP53.


Asunto(s)
Factores de Transcripción , Proteína p53 Supresora de Tumor , Ratones , Humanos , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción de Señal , Quinasa 2 Dependiente de la Ciclina/metabolismo
11.
Am J Chin Med ; 52(1): 57-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38353634

RESUMEN

Chronic respiratory diseases are long-term conditions affecting the airways and other lung components that are characterized by a high prevalence, disability rate, and mortality rate. Further optimization of their treatment is required. Natural products, primarily extracted from organisms, possess specific molecular and structural formulas as well as distinct chemical and physical properties. These characteristics grant them the advantages of safety, gentleness, accessibility, and minimal side effects. The numerous advances in the use of natural products for treating chronic respiratory diseases have provided a steady source of motivation for new drug research and development. In this paper, we introduced the pathogenesis of chronic respiratory diseases and natural products. Furthermore, we classified natural products according to their mechanism for treating chronic respiratory diseases and describe the ways in which these products can alleviate the pathological symptoms. Simultaneously, we elaborate on the signal transduction pathways and biological impacts of natural products' targeting. Additionally, we present future prospects for natural products, considering their combination treatment approaches and administration methods. The significance of this review extends to both the research on preventing and treating chronic respiratory diseases, as well as the advancement of novel drug development in this field.


Asunto(s)
Productos Biológicos , Enfermedades Respiratorias , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/química , Desarrollo de Medicamentos , Enfermedades Respiratorias/tratamiento farmacológico
12.
Transl Cancer Res ; 13(1): 348-362, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38410229

RESUMEN

Background: Although there are many treatments for breast cancer, such as surgery, radiotherapy, chemotherapy, estrogen receptor antagonists, immune checkpoint inhibitors and so on. However, safer and more effective therapeutic drugs for breast cancer are needed. Sinensetin, a safer therapeutic drugs, come from citrus species and medicinal plants used in traditional medicine, while its role and underlying mechanism in breast cancer remain unclear. Our study aimed to investigate the role and mechanism of sinensetin in breast cancer. Methods: Cell Counting Kit-8 (CCK-8) was used to determine the safe concentration of sinensetin in MCF-10A, MCF7 and MDA-MB-231 cells; 120 µM sinensetin was used in subsequent experiments. Real time polymerase chain reaction (RT-PCR), Western blotting, Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling (TUNEL) apoptosis assay, Transwell invasion assay and Clone formation assay were used in this study to determine cell viability, mRNA expression, protein levels, apoptosis, proliferation, invasion and so on. Results: Herein, our results showed that 120 µM sinensetin suppressed the cell viability and promoted apoptosis of MCF7 and MDA-MB-231 cells. Treatment with 120 µM sinensetin for 24 h showed no significant toxicity to normal mammary cells; 120 µM sinensetin decreased cell proliferation, invasion, and epithelial-mesenchymal transition (EMT), and downregulated ß-catenin, lymphatic enhancing factor 1 (LEF1), T-cell factor (TCF) 1/TCF7, and TCF3/TCF7L1 expression in MCF7 and MDA-MB-231 cells. The Wnt agonist SKL2001 reversed the inhibitory effect of sinensetin on cell survival, metastasis, and EMT. Sinensetin-induced downregulation of ß-catenin, LEF1, and TCF1/TCF7 expression were upregulated by SKL2001 in MCF7 and MDA-MB-231 cells. Conclusions: In summary, sinensetin suppressed the metastasis of breast cancer cell via inhibition of Wnt/ß-catenin pathway and there were no adverse effects on normal breast cells. Our study confirmed the role of sinensetin in breast cancer cells and provided a better understanding of the underlying mechanism.

13.
Biol Pharm Bull ; 47(2): 399-410, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38220208

RESUMEN

Metastases and drug resistance are the major risk factors associated with breast cancer (BC), which is the most common type of tumor affecting females. Icariin (ICA) is a traditional Chinese medicine compound that possesses significant anticancer properties. Long non-coding RNAs (lncRNAs) are involved in a wide variety of biological and pathological processes and have been shown to modulate the effectiveness of certain drugs in cancer. The purpose of this study was to examine the potential effect of ICA on epithelial mesenchymal transition (EMT) and stemness articulation in BC cells, as well as the possible relationship between its inhibitory action on EMT and stemness with the NEAT1/transforming growth factor ß (TGFß)/SMAD2 pathway. The effect of ICA on the proliferation (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony assays), EMT (Western blotting, immunofluorescence, and wound healing), and stemness (mammosphere formation assays, Western blotting) of BC cells were examined. According to the findings, ICA suppressed the proliferation, EMT, and stem cell-like in MDA-MB-231 cells, and exerted its inhibitory impact by downregulating the TGFß/SMAD2 signaling pathway. ICA could significantly downregulate the expression of lncRNA NEAT1, and silencing NEAT1 enhanced the effect of ICA in suppressing EMT and expression of different stem cell markers. In addition, silencing NEAT1 was found to attenuate the TGFß/SMAD2 signaling pathway, thereby improving the inhibitory impact of ICA on stemness and EMT in BC cells. In conclusion, ICA can potentially inhibit the metastasis of BC via affecting the NEAT1/TGFß/SMAD2 pathway, which provides a theoretical foundation for understanding the mechanisms involved in potential application of ICA for BC therapy.


Asunto(s)
Neoplasias de la Mama , Flavonoides , ARN Largo no Codificante , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
14.
Methods Mol Biol ; 2745: 45-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38060179

RESUMEN

The thermodynamic formalism of nonequilibrium systems together with the theory of complex systems and systems biology offer an appropriate theoretical framework to explain the complexity observed at the macroscopic level in physiological phenomena. In turn, they allow the establishment of an appropriate conceptual and operational framework to address the study of phenomena such as the emergence and evolution of cancer.This chapter is organized as follows: In Subheading 1, an integrated vision of these disciplines is offered for the characterization of the emergence and evolution of cancer, seen as a nonlinear dynamic system, temporally and spatially self-organized out of thermodynamic equilibrium. The development of the various mathematical models and different techniques and approaches used in the characterization of cancer metastasis is presented in Subheading 2. Subheading 3 is devoted to the time course of cancer metastasis, with particular emphasis on the epithelial-mesenchymal transition (EMT henceforth) as well as chronotherapeutic treatments. In Subheading 4, models of the spatial evolution of cancer metastasis are presented. Finally, in Subheading 5, some conclusions and remarks are presented.


Asunto(s)
Modelos Teóricos , Neoplasias , Humanos , Termodinámica , Neoplasias/patología , Dinámicas no Lineales , Transición Epitelial-Mesenquimal
15.
Biomed Pharmacother ; 170: 116016, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128180

RESUMEN

BACKGROUND: Ovarian cancer (OC) is the most lethal gynecological malignancy. Frequent peritoneal dissemination is the main cause of low survival rate. Guizhi-Fuling Wan (GZFL) is a classical traditional Chinese herbal formula that has been clinically used for treating ovarian cancer with good outcome. However, its therapeutic mechanism for treating OC has not been clearly elucidated. PURPOSE: We aim to elucidate the potential mechanisms of GZFL in treating OC with a focus on STAT3 signaling pathway. METHODS: In vivo efficacy of GZFL was assessed using an OC xenograft mouse model. Proteomics analysis in OC cells and RNA-seq analysis in mice tumors were performed to fully capture the translational and transcriptional signature of GZFL. Effects of GZFL on proliferation, spheroid formation and reactive oxygen species (ROS) were assessed using wildtype and STAT3 knockout OC cells in vitro. STAT3 activation and transcription activity, hypoxia and EMT-related protein expression were assessed to validate the biological activity of GZFL. RESULTS: GZFL suppresses tumor growth with a safety profile in mice, while prevents cell growth, spheroid formation and accumulates ROS in a STAT3-dependent manner in vitro. GZFL transcriptionally and translationally affects genes involved in inflammatory signaling, EMT, cell migration, and cellular hypoxic stress response. In depth molecular study confirmed that GZFL-induced cytotoxicity and EMT suppression in OC cells are directly corelated to inhibition of STAT3 activation and transcription activity. CONCLUSION: Our study provides the first evidence that GZFL inhibits OC progression through suppressing STAT3-EMT signaling. These results will further support its potential clinical use in OC.


Asunto(s)
Neoplasias Ováricas , Proteómica , Humanos , Ratones , Femenino , Animales , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Línea Celular Tumoral , Factor de Transcripción STAT3/metabolismo
16.
Integr Cancer Ther ; 22: 15347354231213613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38059303

RESUMEN

BACKGROUND: Fucus vesiculosus-derived fucoidan, a multifunctional bioactive polysaccharide sourced from marine organisms, exhibits a wide range of therapeutic properties, including its anti-tumor effects. While previous research has reported on its anti-cancer potential, limited studies have explored its synergistic capabilities when combined with other natural bioactive ingredients. In this current study, we present the development of an integrative functional beverage, denoted as VMW-FC, which is composed of a fucoidan complex (FC) along with a blend of various herbal components, including vegetables (V), mulberries and fruits (M), and spelt wheat (W). OBJECTIVE: Colorectal cancer (CRC) remains a significant cause of mortality, particularly in metastatic cases. Therefore, the urgent need for novel alternative medicines that comprehensively inhibit CRC persists. In this investigation, we assess the impact of VMW-FC on CRC cell proliferation, cell cycle dynamics, metastasis, in vivo tumorigenesis, and potential side effects. METHODS: Cell growth was assessed using MTT and colony formation assays, while metastatic potential was evaluated through wound healing and transwell migration assays. The underlying signaling mechanisms were elucidated through qPCR and western blot analysis. In vivo tumor formation and potential side effects were evaluated using a subcutaneous tumor-bearing NOD/SCID mouse model. RESULTS: Our findings demonstrate that VMW-FC significantly impedes CRC proliferation and migration in a dose- and time-dependent manner. Furthermore, it induces sub-G1 cell cycle arrest and an increase in apoptotic cell populations, as confirmed through flow-cytometric analysis. Notably, VMW-FC also suppresses xenograft tumor growth in NOD/SCID mice without causing renal or hepatic toxicity. CONCLUSION: The integrative herbal concoction VMW-FC presents a promising approach for inhibiting CRC by slowing proliferation and migration, inducing cell cycle arrest and apoptosis, and suppressing markers associated with proliferation (Ki-67, PCNA, and CDKs) and epithelial-mesenchymal transition (EMT) (Vimentin, N-cadherin, and ß-catenin).


Asunto(s)
Neoplasias Colorrectales , Animales , Ratones , Humanos , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Ratones Endogámicos NOD , Ratones SCID , Transducción de Señal , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Proliferación Celular , Transición Epitelial-Mesenquimal , Movimiento Celular
17.
Cells ; 12(21)2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37947651

RESUMEN

Capsaicinoids are a unique chemical species resulting from a particular biosynthesis pathway of hot chilies (Capsicum spp.) that gives rise to 22 analogous compounds, all of which are TRPV1 agonists and, therefore, responsible for the pungency of Capsicum fruits. In addition to their human consumption, numerous ethnopharmacological uses of chili have emerged throughout history. Today, more than 25 years of basic research accredit a multifaceted bioactivity mainly to capsaicin, highlighting its antitumor properties mediated by cytotoxicity and immunological adjuvancy against at least 74 varieties of cancer, while non-cancer cells tend to have greater tolerance. However, despite the progress regarding the understanding of its mechanisms of action, the benefit and safety of capsaicinoids' pharmacological use remain subjects of discussion, since CAP also promotes epithelial-mesenchymal transition, in an ambivalence that has been referred to as "the double-edge sword". Here, we update the comparative discussion of relevant reports about capsaicinoids' bioactivity in a plethora of experimental models of cancer in terms of selectivity, efficacy, and safety. Through an integration of the underlying mechanisms, as well as inherent aspects of cancer biology, we propose mechanistic models regarding the dichotomy of their effects. Finally, we discuss a selection of in vivo evidence concerning capsaicinoids' immunomodulatory properties against cancer.


Asunto(s)
Capsicum , Neoplasias , Humanos , Capsaicina/farmacología , Frutas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Biología
18.
Clin Transl Med ; 13(10): e1422, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37771187

RESUMEN

BACKGROUND: A growing number of studies have shown that Yin Yang 1 (YY1) promotes the development of multiple tumours. The purpose of the current study was to determine the mechanism by which YY1 mediates neuroendocrine differentiation of prostate cancer (NEPC) cells undergoing cellular plasticity. METHODS: Using the Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, we bioinformatically analyzed YY1 expression in prostate cancer (PCa). Aberrant YY1 expression was validated in different PCa tissues and cell lines via quantitative reverse transcription polymerase chain reaction, western blotting, and immunohistochemistry. In vivo and in vitro functional assays verified the oncogenicity of YY1 in PCa. Further functional assays showed that ectopic expression of YY1 promoted cellular plasticity in PCa cells via epithelial-mesenchymal transition induction and neuroendocrine differentiation. RESULTS: Androgen deprivation therapy induced a decrease in YY1 protein ubiquitination, enhanced its stability, and thus enhanced the transcriptional activity of FZD8. Castration enhanced FZD8 binding to Wnt9A and mediated cellular plasticity by activating the non-canonical Wnt (FZD8/FYN/STAT3) pathway. CONCLUSIONS: We identified YY1 as a novel dysregulated transcription factor that plays an important role in NEPC progression in this study. We believe that an in-depth investigation of the mechanism underlying YY1-mediated disease may lead to improved NEPC therapies.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Vía de Señalización Wnt/genética , Antagonistas de Andrógenos , Yin-Yang , Diferenciación Celular/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
19.
Drug Des Devel Ther ; 17: 2787-2804, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719361

RESUMEN

Purpose: Matrine (Mat), the main active ingredient of traditional Chinese herbal plant Sophora flavescens Ait, has significant antitumor effects, but its pharmacological mechanism on colon cancer (CC) remains unclear. This study aimed to investigate the therapeutic effect of Mat on CC as well as the potential mechanism. Methods: The vasculogenic mimicry (VM) of CC cells was observed by three-dimensional (3D) Matrigel cell culture. Cell proliferation, apoptosis, migration, invasion, and actin filament integrity were detected by CCK8, flow cytometry, wound healing, Transwell and Phalloidin staining assays. qRT-PCR and Western blotting were applied to detect the expression of EMT factors. RNA-sequencing was conducted to screen differentially expressed genes (DEGs), and the GO and KEGG pathway enrichment analyses were performed. Then, the expression of the key MAPK pathway genes and the target gene Claudin-9 (Cldn9) were analyzed. RNA interference was used to silence Cldn9 expression, and the effects of Cldn9 silencing and simultaneous treatment with Mat on VM formation, proliferation, apoptosis, invasion, and migration were investigated. Finally, the expression of EMT factors and MAPK pathway key genes was detected. Results: CT26 cells formed the most typical VM structure. Mat disrupted the VM of CT26 cells, significantly suppressed their proliferation, migration, invasion, actin filament integrity, induced apoptosis, and inhibited EMT process. RNA-sequencing revealed 163 upregulated genes and 333 downregulated genes in Mat-treated CT26 cells, and the DEGs were significantly enriched in cell adhesion molecules and MAPK signaling pathways. Further confirmed that Mat significantly inhibited the phosphorylation levels of JNK and ERK, and the target gene Cldn9 was significantly upregulated in human CC tissues. Silencing Cldn9 markedly inhibited the VM, proliferative activity, invasiveness, and actin filament integrity of CT26 cells, blocked the EMT process, and downregulated the phosphorylation of JNK and ERK, whereas Mat intervention further strengthened the above trends. Conclusion: This study indicated that Mat may synergistically inhibit the EMT process and MAPK signaling pathway through downregulation Cldn9, thereby exerting pharmacological effects on inhibiting VM formation, proliferation, and invasion of CC cells.


Asunto(s)
Claudinas , Neoplasias del Colon , Transición Epitelial-Mesenquimal , Matrinas , Humanos , Proliferación Celular , Claudinas/genética , Neoplasias del Colon/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas
20.
Cell Biosci ; 13(1): 132, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480151

RESUMEN

BACKGROUND: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-ß levels and EMT signaling. Given that many drugs targeting TGF-ß have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-ß/EMT axis. RESULTS: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-ß and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-ß levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-ß/SMAD2&3) and non-canonical (TGF-ß/PI3K/AKT, TGF-ß/RAS/RAF/MEK/ERK, and TGF-ß/WNT/ß-catenin) TGF-ß signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, ß-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-ß and inhibiting EMT in a diverse range of cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA