Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Clin Biochem ; 125: 110735, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38401771

RESUMEN

BACKGROUND: Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), also known as Glutaric Aciduria Type II, is an exceptionally rare autosomal recessive genetic disorder that disrupts the metabolism of fatty acids, amino acids, and choline. It presents with a wide range of clinical manifestations, from severe neonatal-onset forms to milder late-onset cases, with symptoms including metabolic disturbances and muscle weakness. Jordan's anomaly is a distinctive morphological feature found in peripheral blood white cells and is typically associated with Neutral Lipid Storage Disease (NLSD). CASE REPORT: In our case report, the patient initially presented with symptoms of vomiting, abdominal pain, and altered consciousness. The presence of white cell Jordan's anomaly was detected in the blood smear. Subsequent serum tests revealed elevated levels of transaminases, creatine kinase, uric acid, and multiple acylcarnitines, while blood glucose and free carnitine levels were notably reduced. High-throughput sequencing confirmed heterozygous pathogenic variants in the electron-transferring flavoprotein dehydrogenase (ETFDH) gene, leading to the conclusive diagnosis of MADD. Following a three-month treatment regimen involving high-dose vitamin B2, coenzyme Q10, and other supportive interventions, the patient exhibited significant clinical improvement, ultimately resulting in discharge. CONCLUSION: The identification of Jordan's anomaly in a pediatric patient with late-onset MADD sheds light on its broader implications within the realm of lipid storage myopathies. The significance of this finding extends beyond its conventional association with NLSD, challenging the notion of its exclusivity. This novel observation serves as a compelling reminder of the diagnostic significance this morphological abnormality holds, potentially revolutionizing diagnostic practices within the field.


Asunto(s)
Eritrodermia Ictiosiforme Congénita , Errores Innatos del Metabolismo Lipídico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa , Enfermedades Musculares , Recién Nacido , Humanos , Niño , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/diagnóstico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/tratamiento farmacológico , Jordania , Aminoácidos , Lípidos , Mutación , Acil-CoA Deshidrogenasa/genética
2.
Front Neurol ; 14: 1087421, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36779069

RESUMEN

Glutaric aciduria type II (GA II) is an autosomal recessive metabolic disorder of fatty acid, amino acid, and choline metabolism. The late-onset form of this disorder is caused by a defect in the mitochondrial electron transfer flavoprotein dehydrogenase or the electron transfer flavoprotein dehydrogenase (ETFDH) gene. Thus far, the high clinical heterogeneity of late-onset GA II has brought a great challenge for its diagnosis. In this study, we reported a 21-year-old Chinese man with muscle weakness, vomiting, and severe pain. Muscle biopsy revealed myopathological patterns of lipid storage myopathy, and urine organic acid analyses showed a slight increase in glycolic acid. All the aforementioned results were consistent with GA II. Whole-exome sequencing (WES), followed by bioinformatics and structural analyses, revealed two compound heterozygous missense mutations: c.1034A > G (p.H345R) on exon 9 and c.1448C>A (p.P483Q) on exon 11, which were classified as "likely pathogenic" according to American College of Medical Genetics and Genomics (ACMG). In conclusion, this study described the phenotype and genotype of a patient with late-onset GA II. The two novel mutations in ETFDH were found in this case, which further expands the list of mutations found in patients with GA II. Because of the treatability of this disease, GA II should be considered in all patients with muscular symptoms and acute metabolism decompensation such as hypoglycemia and acidosis.

3.
JIMD Rep ; 63(4): 276-291, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35822092

RESUMEN

In this report, we describe the case of an 11-year-old boy, who came to our attention for myalgia and muscle weakness, associated with inappetence and vomiting. Hypertransaminasemia was also noted, with ultrasound evidence of hepatomegaly. Biochemical investigations revealed acylcarnitine and organic acid profiles resembling those seen in MADD, that is, multiple acyl-CoA dehydrogenase deficiencies (OMIM #231680) a rare inherited disorder of fatty acids, amino acids, and choline metabolism. The patient carried a single pathogenetic variant in the ETFDH gene (c.524G>A, p.Arg175His) and no pathogenetic variant in the riboflavin (Rf) homeostasis related genes (SLC52A1, SLC52A2, SLC52A3, SLC25A32, FLAD1). Instead, compound heterozygosity was found in the ACAD8 gene (c.512C>G, p.Ser171Cys; c.822C>A, p.Asn274Lys), coding for isobutyryl-CoA dehydrogenase (IBD), whose pathogenic variants are associated to IBD deficiency (OMIM #611283), a rare autosomal recessive disorder of valine catabolism. The c.822C>A was never previously described in a patient. Subsequent further analyses of Rf homeostasis showed reduced levels of flavins in plasma and altered FAD-dependent enzymatic activities in erythrocytes, as well as a significant reduction in the level of the plasma membrane Rf transporter 2 in erythrocytes. The observed Rf/flavin scarcity in this patient, possibly associated with a decreased ETF:QO efficiency might be responsible for the observed MADD-like phenotype. The patient's clinical picture improved after supplementation of Rf, l-carnitine, Coenzyme Q10, and also 3OH-butyrate. This report demonstrates that, even in the absence of genetic defects in genes involved in Rf homeostasis, further targeted molecular analysis may reveal secondary and possibly treatable biochemical alterations in this pattern.

4.
Front Neurol ; 13: 815523, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309592

RESUMEN

Background: Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid oxidation due to deficiency of the mitochondrial electron transfer chain. The late-onset form is characterized by exercise intolerance, muscle weakness, and lipid storage in myofibers. Most MADD patients greatly benefit from riboflavin supplementation. Patients and methods: A retrospective study was conducted on patients with a diagnosis of vacuolar myopathy with lipid storage followed in our neuromuscular unit in the last 20 years. We selected 10 unrelated patients with the diagnosis of MADD according to clinical, morphological, and biochemical aspects. Clinical features, blood tests including serum acylcarnitines, EMG, and ENG were revised. Muscle biopsy was performed in all, and one individual underwent also a sural nerve biopsy. Gene sequencing of ETFA, ETFB, and ETFDH was performed as a first-tier genetic analysis followed by next-generation sequencing of an hyperCKemia gene panel in patients with undefined genotypes. Results: Clinical evaluation at onset in all our patients showed fatigue and muscle weakness; four patients showed difficulties in chewing, three patients complained of dysphagia, two patients had a dropped head, and a patient had an unexpected ataxia with numbness and dysesthesia. Laboratory blood tests revealed a variable increase in serum CK (266-6,500) and LDH levels (500-2,000). Plasma acylcarnitine profile evidenced increased levels of different chains intermediates. EMG was either normal or showed myogenic or neurogenic patterns. NCS demonstrated sensory neuropathy in two patients. Muscle biopsies showed a vacuolar myopathy with a variable increase in lipid content. Nerve biopsy evidenced an axonal degeneration with the loss of myelinated fibers. ETFDH genetic analysis identifies 14 pathogenic variants. Patients were treated with high doses of riboflavin (400 mg/die). All of them showed a rapid muscle strength improvement and normalization of abnormal values in laboratory tests. Neuropathic symptoms did not improve. Conclusion: Our data confirmed that clinical features in MADD patients are extremely variable in terms of disease onset and symptoms making diagnosis difficult. Laboratory investigations, such as serum acylcarnitine profile and muscle biopsy evaluation, may strongly address to a correct diagnosis. The favorable response to riboflavin supplementation strengthens the importance of an early diagnosis of these disorders among the spectrum of metabolic myopathies.

5.
IUBMB Life ; 74(7): 672-683, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34558787

RESUMEN

Riboflavin (Rf), or vitamin B2, is the precursor of FMN and FAD, redox cofactors of several dehydrogenases involved in energy metabolism, redox balance and other cell regulatory processes. FAD synthase, coded by FLAD1 gene in humans, is the last enzyme in the pathway converting Rf into FAD. Mutations in FLAD1 gene are responsible for neuromuscular disorders, in some cases treatable with Rf. In order to mimic these disorders, the Caenorhabditis elegans (C. elegans) gene orthologue of FLAD1 (flad-1) was silenced in a model strain hypersensitive to RNA interference in nervous system. Silencing flad-1 resulted in a significant decrease in total flavin content, paralleled by a decrease in the level of the FAD-dependent ETFDH protein and by a secondary transcriptional down-regulation of the Rf transporter 1 (rft-1) possibly responsible for the total flavin content decrease. Conversely an increased ETFDH mRNA content was found. These biochemical changes were accompanied by significant phenotypical changes, including impairments of fertility and locomotion due to altered cholinergic transmission, as indicated by the increased sensitivity to aldicarb. A proposal is made that neuronal acetylcholine production/release is affected by alteration of Rf homeostasis. Rf supplementation restored flavin content, increased rft-1 transcript levels and eliminated locomotion defects. In this aspect, C. elegans could provide a low-cost animal model to elucidate the molecular rationale for Rf therapy in human Rf responsive neuromuscular disorders and to screen other molecules with therapeutic potential.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Nucleotidiltransferasas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Flavina-Adenina Dinucleótido/metabolismo , Humanos , Enfermedades Neuromusculares/genética , Nucleotidiltransferasas/genética , Riboflavina/metabolismo , Vitaminas/metabolismo
6.
Eur J Transl Myol ; 30(1): 8826, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32499887

RESUMEN

More than half a century of skeletal muscle research is continuing at Padua University (Italy) under the auspices of the Interdepartmental Research Centre of Myology (CIR-Myo), the European Journal of Translational Myology (EJTM) and recently also with the support of the A&CM-C Foundation for Translational Myology, Padova, Italy. The Volume 30(1), 2020 of the EJTM opens with the collection of abstracts for the conference "2020 Padua Muscle Days: Mobility Medicine 30 years of Translational Research". This is an international conference that will be held between March 18-21, 2020 in Euganei Hills and Padova in Italy. The abstracts are excellent examples of translational research and of the multidimensional approaches that are needed to classify and manage (in both the acute and chronic phases) diseases of Mobility that span from neurologic, metabolic and traumatic syndromes to the biological process of aging. One of the typical aim of Physical Medicine and Rehabilitation is indeed to reduce pain and increase mobility enough to enable impaired persons to walk freely, garden, and drive again. The excellent contents of this Collection of Abstracts reflect the high scientific caliber of researchers and clinicians who are eager to present their results at the PaduaMuscleDays. A series of EJTM Communications will also add to this preliminary evidence.

7.
Front Pediatr ; 8: 118, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292771

RESUMEN

Background: Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder characterized by a wide range of clinical features, including muscle weakness, hypoglycemia, metabolic acidosis, and multisystem dysfunctions. Loss-of-function mutations in the electron transfer flavoprotein dehydrogenase (ETFDH) gene are associated with MADD. Disease-causing synonymous variants in the ETFDH gene have not been reported so far. Methods: We reported the clinical course of a Chinese girl who was diagnosed with late-onset MADD by the whole exome sequencing. The effects of variants on mRNA splicing were analyzed through transcript analysis in vivo and minigene splice assay in vitro. Results: The 6-month-old girl initially showed muscle weakness, muscular hypotonia, mild myogenic damage, and fatty liver. The blood and urine metabolic screening by tandem mass spectrometry suggested MADD. Molecular analysis of ETFDH gene revealed two novel heterozygous variants, a frameshift mutation c.1812delG (p.V605Yfs*34) in exon 13 and a synonymous variant c.579A>G (p.E193E) in exon 5. The transcript analysis in vivo exhibited that the synonymous variant c.579A>G caused exon 5 skipping. The minigene splice assay in vitro confirmed the alteration of ETFDH mRNA splicing which could lead to the production of a truncated protein. Supplementation of riboflavin, carnitine and low-fat diet improved the clinical symptoms. Conclusion: We firstly report a rare case of MADD with a pathogenic synonymous variant in the ETFDH gene which highlights the importance and necessity of bioinformatic analysis and functional testing for synonymous variants when searching for causative gene mutations. The results expand the spectrum of pathogenic variants in MADD.

8.
World J Clin Cases ; 8(5): 995-1001, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32190638

RESUMEN

BACKGROUND: Multiple acyl-CoA dehydrogenase deficiency (MADD) is an uncommon autosomal recessive disorder of mitochondrial fatty acid beta-oxidation. Syncope is a transient loss of consciousness due to acute global cerebral hypoperfusion. Late-onset MADD with syncope has not been reported previously. CASE SUMMARY: We report a 17-year-old girl with exercise intolerance and muscle weakness. She felt palpitation and shortness of breath after short bouts of exercise. She also suffered from a transient loss of consciousness many times. Muscle biopsy showed lipid storage. Genetic mutation analysis indicated a compound heterozygous mutation c.250G > A (p.A84T) and c.872T > G (p.V291G) in the ETFDH gene. The results of Holter electrocardiogram monitoring showed supraventricular tachycardia when the patient experienced a loss of consciousness. After treatment with riboflavin and carnitine, muscle weakness and palpitation symptoms improved rapidly. No loss of consciousness occurred, and the Holter electrocardiogram monitoring was normal. CONCLUSION: Late-onset MADD with supraventricular tachycardia can cause cardiac syncope. Carnitine and riboflavin supplement were beneficial for treating the late-onset MADD with cardiac syncope. Attention should be paid to the prevention of cardiac syncope when diagnosing late-onset MADD.

9.
BMC Neurol ; 18(1): 219, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30587156

RESUMEN

BACKGROUND: Multiple acyl-CoA dehydrogenase deficiency (MADD) showed great clinical heterogeneity and poses a challenge to diagnosis. Guillain-Barré syndrome (GBS) is an acute-onset autoimmune-mediated peripheral neuropathy. However, no patients of acute-onset MADD mimicking the GBS phenotype are reported previously. CASE PRESENTATION: Two patients displayed acute-onset limb weakness, areflexia, and length-dependent sensory disturbances, which clinically indicate the diagnosis of GBS, but electrophysiological and cerebrospinal fluid results threw doubtful points to the initial diagnosis. The muscle biopsy showed lipid storage disorder; and compound heterozygous mutations in the electron transfer flavoprotein dehydrogenase (ETFDH) gene were found in the two patients through targeted next generation sequencing, which provided the definite diagnostic evidences of late-onset MADD. Muscle weakness was quickly improved by riboflavin supplementation, but sensory disturbances required a long-term treatment. DISCUSSION: The present two cases have demonstrated that MADD can mimic GBS. Taking into consideration the significant differences of therapeutic regimen and prognosis, MADD should be included in the differential diagnosis of GBS.


Asunto(s)
Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/diagnóstico , Biopsia , Diagnóstico Diferencial , Flavoproteínas Transportadoras de Electrones/genética , Síndrome de Guillain-Barré/diagnóstico , Humanos , Proteínas Hierro-Azufre/genética , Masculino , Persona de Mediana Edad , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Debilidad Muscular/etiología , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Fenotipo , Adulto Joven
10.
Lipids Health Dis ; 17(1): 254, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30424791

RESUMEN

BACKGROUND: Deficiency of electron transfer flavoprotein dehydrogenase (ETFDH) is associated with multiple acyl-CoA dehydrogenase deficiency (MADD). This disorder is an autosomal recessive lipid storage myopathy (LSM) that exhibits a wide range of clinical features, including myopathy, weakness and multisystem dysfunctions. Many patients with late onset of MADD improve when treated with riboflavin and are also referred to as RR-MADD (riboflavin-responsive multiple Acyl-CoA dehydrogenase disorder). METHODS: In this study, we report the clinical and genetic characterization of a novel RR-MADD patient. Biochemical data were obtained from analysis of muscle and plasma samples. DNA and RNA were extracted from peripheral blood, and sequence analysis and expression study of ETFDH gene were performed. Finally, the impact of mutations on ETFDH folding was evaluated using bioinformatic tools. RESULTS: Patient initially presented with vomiting, muscle weakness, and acidosis. Muscle biopsy revealed typical myopathological patterns of lipid storage myopathy and blood acylcarnitine profiles showed a combined elevation of long and medium chain acylcarnitines, supporting the diagnosis of RR-MADD. Molecular analysis of ETFDH gene revealed two heterozygous mutations, a novel splice variation in intron 10, c.1285 + 1G > A, and the previously reported c.560C > T missense mutation. RT-PCR analysis showed an alteration of ETFDH RNA splicing which in turn should lead to the production of a truncated protein. The in silico prediction analysis of ETFDH tridimensional structure demonstrated that the missense mutation resulted in instability and loss of protein activation, while the splice site variation induced a dramatic conformational change of the truncated protein. After MCT diet supplemented with carnitine and riboflavin, the patient showed significant biochemical and clinical improvement, in spite of severe molecular defect. CONCLUSION: This case report extends the spectrum of ETFDH mutations in MADD, providing further evidence that patients presenting at least one missense mutation in the FAD-binding domain may respond to either carnitine or riboflavin treatment, due to the recovery of some enzymatic activity.


Asunto(s)
Flavoproteínas Transportadoras de Electrones/genética , Proteínas Hierro-Azufre/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Carnitina/uso terapéutico , Simulación por Computador , Análisis Mutacional de ADN , Quimioterapia Combinada , Flavoproteínas Transportadoras de Electrones/metabolismo , Femenino , Humanos , Proteínas Hierro-Azufre/metabolismo , Persona de Mediana Edad , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/tratamiento farmacológico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/enzimología , Músculo Esquelético/enzimología , Mutación Missense , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Conformación Proteica , Riboflavina/uso terapéutico
11.
Muscle Nerve ; 56(3): 479-485, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27935074

RESUMEN

INTRODUCTION: c.250G>A (p.Ala84Thr) in ETFDH is the most common mutation that causes later-onset multiple acyl-coenzyme A dehydrogenase deficiency (MADD) in the southern Chinese population. No functional study has targeted this mutation. METHODS: Using cells expressing ETFDH-wild-type (WT) or ETFDH-mutant (p.Ala84Thr), reactive oxygen species (ROS) production and neurite length were analyzed, followed by pathomechanism exploration and drug screening. RESULTS: Increased ROS production and marked neurite shortening were observed in the cells expressing the ETFDH-mutant, compared with WT. Further studies demonstrated that suberic acid, an accumulated intermediate metabolite in MADD, could significantly impair neurite outgrowth of NSC34 cells, but neurite shortening could be restored by supplementation with carnitine, riboflavin, or Coenzyme Q10. CONCLUSIONS: Neurite shortening caused by the c.250G>A mutation in ETFDH suggests that neural defects could be underdiagnosed in human patients with MADD. This impairment might be treatable with mitochondrial cofactor supplementation. Muscle Nerve 56: 479-485, 2017.


Asunto(s)
Flavoproteínas Transportadoras de Electrones/biosíntesis , Flavoproteínas Transportadoras de Electrones/genética , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación/fisiología , Proyección Neuronal/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/biosíntesis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Línea Celular , Humanos , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/metabolismo , Neuritas/metabolismo , Proyección Neuronal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA