Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mini Rev Med Chem ; 24(19): 1784-1798, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38639277

RESUMEN

Aloe-emodin (AE) is an anthraquinone derivative and a biologically active component sourced from various plants, including Rheum palmatum L. and Aloe vera. Known chemically as 1,8-dihydroxy-3-hydroxymethyl-anthraquinone, AE has a rich history in traditional medicine and is esteemed for its accessibility, safety, affordability, and effectiveness. AE boasts multiple biochemical and pharmacological properties, such as strong antibacterial, antioxidant, and antitumor effects. Despite its array of benefits, AE's identity as an anthraquinone derivative raises concerns about its potential for liver and kidney toxicity. Nevertheless, AE is considered a promising drug candidate due to its significant bioactivities and cost efficiency. Recent research has highlighted that nanoformulated AE may enhance drug delivery, biocompatibility, and pharmacological benefits, offering a novel approach to drug design. This review delves into AE's pharmacological impacts, mechanisms, pharmacokinetics, and safety profile, incorporating insights from studies on its nanoformulations. The goal is to outline the burgeoning research in this area and to support the ongoing development and utilization of AE-based therapies.


Asunto(s)
Antraquinonas , Antraquinonas/química , Antraquinonas/farmacología , Humanos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/farmacología , Antioxidantes/química , Aloe/química , Composición de Medicamentos
2.
Phytomedicine ; 129: 155578, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38621328

RESUMEN

BACKGROUND: Microglial activation plays a crucial role in injury and repair after cerebral ischemia, and microglial pyroptosis exacerbates ischemic injury. NOD-like receptor protein 3 (NLRP3) inflammasome activation has an important role in microglial polarization and pyroptosis. Aloe-emodin (AE) is a natural anthraquinone compound originated from rhubarb and aloe. It exerts antioxidative and anti-apoptotic effects during cerebral ischemia/reperfusion (I/R) injury. However, whether AE affects microglial polarization, pyroptosis, and NLRP3 inflammasome activation remains unknown. PURPOSE: This study aimed to explore the effects of AE on microglial polarization, pyroptosis, and NLRP3 inflammasome activation in the cerebral infarction area after I/R. METHODS: The transient middle cerebral artery occlusion (tMCAO) and oxygen-glucose deprivation/re-oxygenation (OGD/R) methods were used to create cerebral I/R models in vivo and in vitro, respectively. Neurological scores and triphenyl tetrazolium chloride and Nissl staining were used to assess the neuroprotective effects of AE. Immunofluorescence staining, quantitative polymerase chain reaction and western blot were applied to detect NLRP3 inflammasome activation and microglial polarization and pyroptosis levels after tMCAO or OGD/R. Cell viability and levels of interleukin (IL)-18 and IL-1ß were measured. Finally, MCC950 (an NLRP3-specific inhibitor) was used to evaluate whether AE affected microglial polarization and pyroptosis by regulating the activation of the NLRP3 inflammasome. RESULTS: AE improved neurological function scores and reduced the infarct area, brain edema rate, and Nissl-positive cell rate following I/R injury. It also showed a protective effect on BV-2 cells after OGD/R. AE inhibited microglial pyroptosis and induced M1 to M2 phenotype transformation and suppressed microglial NLRP3 inflammasome activation after tMCAO or OGD/R. The combined administration of AE and MCC950 had a synergistic effect on the inhibition of tMCAO- or OGD/R-induced NLRP3 inflammasome activation, which subsequently suppressed microglial pyroptosis and induced microglial phenotype transformation. CONCLUSION: AE exerts neuroprotective effects by regulating microglial polarization and pyroptosis through the inhibition of NLRP3 inflammasome activation after tMCAO or OGD/R. These findings provide new evidence of the molecular mechanisms underlying the neuroprotective effects of AE and may support the exploration of novel therapeutic strategies for cerebral ischemia.


Asunto(s)
Antraquinonas , Inflamasomas , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Daño por Reperfusión , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Piroptosis/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Microglía/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Antraquinonas/farmacología , Masculino , Ratones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Isquemia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Furanos/farmacología , Línea Celular
3.
Exp Gerontol ; 190: 112413, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570055

RESUMEN

BACKGROUND: Osteoporotic osteoarthritis (OP-OA) is a severe pathological form of OA, urgently requiring precise management strategies and more efficient interventions. Emodin (Emo), an effective ingredient found in the traditional Chinese medicine rhubarb, has been dEmonstrated to promote osteogenesis and inhibit extracellular matrix degradation. In this study, we aimed to investigate the interventional effects of Emo on the subchondral bone and cartilage of the knee joints in OP-OA model rats. METHODS: Thirty-two SD rats were randomly and equally divided into sham, OP-OA, Emo low-dose, and Emo high-dose groups. Micro-CT scanning was conducted to examine the bone microstructure of the rat knee joints. H&E and Safranin O and Fast Green staining (SO&FG) were performed for the pathomorphological evaluation of the rat cartilage tissues. ELISA was used to estimate the rat serum expression levels of inflammatory factors, including interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Additionally, the CCK-8 assay was utilized for determining the viability of Emo-treated BMSCs. Western blot and real-time PCR analyses were also employed to measure the bone formation indexes and cartilage synthesis and decomposition indexes. Lastly, the osteogenic and chondrogenic differentiation efficiency of the BMSCs was investigated via Alizarin Red and Alcian Blue staining. RESULTS: Emo intervention alleviated the bone microstructural disruption of the subchondral bone and articular cartilage in the OP-OA rats and up-regulated the expression of bone and cartilage anabolic metabolism indicators, decreased the expression of cartilage catabolism indicators, and diminished the expression of inflammatory factors in the rat serum (P<0.05). Furthermore, Emo reversed the decline in the osteogenic and chondrogenic differentiation ability of the BMSCs (P<0.05). CONCLUSION: Emo intervention mitigates bone loss and cartilage damage in OP-OA rats and promotes the osteogenic and chondrogenic differentiation of BMSCs.


Asunto(s)
Cartílago Articular , Emodina , Osteoporosis , Ratas Sprague-Dawley , Microtomografía por Rayos X , Animales , Emodina/farmacología , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Cartílago Articular/metabolismo , Ratas , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Femenino , Modelos Animales de Enfermedad , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología
4.
Biophys Chem ; 309: 107233, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579435

RESUMEN

Emodin is a natural anthraquinone derivative found in nature, widely known as an herbal medicine. Here, the partition, location, and interaction of emodin with lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are experimentally investigated with different techniques. Our studies have considered the neutral form of emodin (EMH) and its anionic/deprotonated form (EM-), and their interaction with a more and less packed lipid membrane, DMPC at the gel and fluid phases, respectively. Though DSC results indicate that the two species, EMH and EM-, similarly disrupt the packing of DMPC bilayers, spin labels clearly show that EMH causes a stronger bilayer disruption, both in gel and fluid DMPC. Fluorescence spectroscopy shows that both EMH and EM- have a high affinity for DMPC: the binding of EM- to both gel and fluid DMPC bilayers was found to be quite similar, and similar to that of EMH to gel DMPC, Kp = (1.4 ± 0.3)x103. However, EMH was found to bind twice more strongly to fluid DMPC bilayers, Kp = (3.2 ± 0.3)x103. Spin labels and optical absorption spectroscopy indicate that emodin is located close to the lipid bilayer surface, and suggest that EM- is closer to the lipid/water interface than EMH, as expected. The present studies present a relevant contribution to the current understanding of the effect the two species of emodin, EMH and EM-, present on different microregions of an organism, as local pH values can vary significantly, can cause in a neutral lipid membrane, either more or less packed, liked gel and fluid DMPC, respectively, and could be extended to lipid domains of biological membranes.


Asunto(s)
Emodina , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Marcadores de Spin
5.
Phytomedicine ; 128: 155411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518638

RESUMEN

BACKGROUND: Emodin-8-O-ß-D-glucopyranoside (Em8G) is an active ingredient of traditional Chinese medicine Rhei Radix et Rhizoma and Polygonum multiflorum Thunb.. And it caused hepatotoxicity, while the underlying mechanism was not clear yet. PURPOSE: We aimed to explore the detrimental effects of Em8G on the zebrafish liver through the metabolome and transcriptome integrated analysis. STUDY DESIGN AND METHODS: In this study, zebrafish larvae were used in acute toxicity tests to reveal the hepatotoxicity of Em8G. Adult zebrafish were then used to evaluate the gender differences in hepatotoxicity induced by Em8G. Integration of transcriptomic and metabolomic analysis was used further to explore the molecular mechanisms underlying gender differences in hepatotoxicity. RESULTS: Our results showed that under non-lethal concentration exposure conditions, hepatotoxicity was observed in Em8G-treated zebrafish larvae, including changes in liver transmittance, liver area, hepatocyte apoptosis and hepatocyte vacuolation. Male adult zebrafish displayed a higher Em8G-induced hepatotoxicity than female zebrafish, as demonstrated by the higher mortality and histopathological alterations. The results of transcriptomics combined with metabolomics showed that Em8G mainly affected carbohydrate metabolism (such as TCA cycle) in male zebrafish and amino acid metabolism (such as arginine and proline metabolism) in females, suggesting that the difference of energy metabolism disorder may be the potential mechanism of male and female liver toxicity induced by Em8G. CONCLUSIONS: This study provided the direct evidence for the hepatotoxicity of Em8G to zebrafish models in vivo, and brought a new insight into the molecular mechanisms of Em8G hepatotoxicity, which can guide the rational application of this phytotoxin. In addition, our findings revealed gender differences in the hepatotoxicity of Em8G to zebrafish, which is related to energy metabolism and provided a methodological reference for evaluating hepatotoxic drugs with gender differences.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado , Metabolómica , Pez Cebra , Animales , Masculino , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Transcriptoma/efectos de los fármacos , Glucósidos/toxicidad , Glucósidos/farmacología , Factores Sexuales , Emodina/análogos & derivados , Emodina/toxicidad , Emodina/farmacología , Larva/efectos de los fármacos , Antraquinonas/toxicidad , Pruebas de Toxicidad Aguda , Medicamentos Herbarios Chinos/toxicidad
6.
Clin Exp Hypertens ; 46(1): 2326022, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38507311

RESUMEN

BACKGROUND: Emodin is a traditional medicine that has been shown to exert anti-inflammatory and anti-oxidative effects. Previous research has indicated that emodin can alleviate myocardial remodeling and inhibit myocardial hypertrophy and fibrosis. However, the mechanism by which emodin affects myocardial fibrosis (MF) has not yet been elucidated. METHODS: Fibroblasts were treated with ANGII, and a mouse model of MF was established by ligation of the left anterior descending coronary artery. Cell proliferation was examined by a Cell Counting Kit-8 (CCK8) assay. Dihydroethidium (DHE) was used to measure reactive oxygen species (ROS) levels, and Masson and Sirius red staining were used to examine changes in collagen fiber levels. PI3K was over-expressed by lentiviral transfection to verify the effect of emodin on the PI3K/AKT/mTOR signaling axis. Changes in cardiac function in each group were examined by echocardiography. RESULTS: Emodin significantly inhibited fibroblast proliferation, decreased intracellular ROS levels, significantly upregulated collagen II expression, downregulated α-SMA expression, and inhibited PI3K/AKT/mTOR pathway activation in vitro. Moreover, the in vivo results were consistent with the in vitro. Emodin significantly decreased ROS levels in heart tissue and reduced collagen fibrillogenesis. Emodin could regulate the activity of PI3K to increase the expression of collagen II and downregulate α-SMA expression in part through the PI3K/AKT/mTOR pathway, and emodin significantly improved cardiac structure and function in mice. CONCLUSIONS: This study revealed that emodin targeted the PI3K/AKT/mTOR pathway to inhibit the development of myocardial fibrosis and may be an antifibrotic agent for the treatment of cardiac fibrosis.


Asunto(s)
Emodina , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Emodina/farmacología , Especies Reactivas de Oxígeno , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Fibrosis , Colágeno
7.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504533

RESUMEN

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Asunto(s)
Quemaduras Químicas , Neovascularización de la Córnea , Emodina , Humanos , Ratones , Animales , Neovascularización de la Córnea/tratamiento farmacológico , Neovascularización de la Córnea/genética , Neovascularización de la Córnea/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/metabolismo , Quemaduras Químicas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Simulación del Acoplamiento Molecular , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Transducción de Señal , Células Endoteliales de la Vena Umbilical Humana , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad
8.
Aging (Albany NY) ; 16(3): 2362-2384, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38284886

RESUMEN

As one of the most common liver diseases, nonalcoholic fatty liver disease (NAFLD) affects almost one-quarter of the world's population. Although the prevalence of NAFLD is continuously rising, effective medical treatments are still inadequate. Radix Polygoni Multiflori (RPM) is a traditional Chinese herbal medicine. As a processed product of RPM, prepared Radix Polygoni Multiflori (PRPM) has been reported to have antioxidant and anti-inflammatory effects. This study investigated whether PRPM treatment could significantly improve NAFLD. We used recent literature, the Herb database and the SwissADME database to isolate the active compounds of PRPM. The OMIM, DisGeNET and GeneCards databases were used to isolate NAFLD-related target genes, and GO functional enrichment and KEGG pathway enrichment analyses were conducted. Moreover, PRPM treatment in NAFLD model mice was evaluated. The results indicate that the target genes are mainly enriched in the AMPK and de novo lipogenesis signaling pathways and that PRPM treatment improves NAFLD disease in model mice. Here, we found the potential benefits of PRPM against NAFLD and demonstrated in vivo and in vitro that PRPM and its ingredient emodin downregulate phosphorylated P38/P38, phosphorylated ERK1/2 and genes related to de novo adipogenesis signaling pathways and reduce lipid droplet accumulation. In conclusion, our findings revealed a novel therapeutic role for PRPM in the treatment of NAFLD and metabolic inflammation.


Asunto(s)
Medicamentos Herbarios Chinos , Emodina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Emodina/farmacología , Emodina/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Gotas Lipídicas , Transducción de Señal
9.
Phytother Res ; 38(3): 1345-1357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198804

RESUMEN

Cardiorenal syndrome type 4 (CRS4), a progressive deterioration of cardiac function secondary to chronic kidney disease (CKD), is a leading cause of death in patients with CKD. In this study, we aimed to investigate the cardioprotective effect of emodin on CRS4. C57BL/6 mice with 5/6 nephrectomy and HL-1 cells stimulated with 5% CKD mouse serum were used for in vivo and in vitro experiments. To assess the cardioprotective potential of emodin, we employed a comprehensive array of methodologies, including echocardiography, tissue staining, immunofluorescence staining, biochemical detection, flow cytometry, real-time quantitative PCR, and western blot analysis. Our results showed that emodin exerted protective effects on the function and structure of the residual kidney. Emodin also reduced pathologic changes in the cardiac morphology and function of these mice. These effects may have been related to emodin-mediated suppression of reactive oxygen species production, reduction of mitochondrial oxidative damage, and increase of oxidative metabolism via restoration of PGC1α expression and that of its target genes. In contrast, inhibition of PGC1α expression significantly reversed emodin-mediated cardioprotection in vivo. In conclusion, emodin protects the heart from 5/6 nephrectomy-induced mitochondrial damage via activation of the PGC1α signaling. The findings obtained in our study can be used to develop effective therapeutic strategies for patients with CRS4.


Asunto(s)
Síndrome Cardiorrenal , Emodina , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Emodina/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Apoptosis , Ratones Endogámicos C57BL
10.
J Tradit Chin Med ; 44(1): 54-62, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38213239

RESUMEN

OBJECTIVE: To prepare aloe-emodin solid dispersion (AE-SD) and determine the metabolic process of AE and AE-SD in vivo. METHODS: AE-SD was prepared viasolvent evaporation or solvent melting using PEG-6000 and PVP-K30 as carriers. Thermogravimetric analysis, X-ray diffraction spectroscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy and scanning electron microscopy were used to identify the physical state of AE-SD. Optimal prescriptions were screened viathe dissolution degree determination method. Using Phoenix software, AE suspension and AE-SD were subjected to a pharmacokinetic comparison study analyzing the alteration of behavior in vivo after AE was prepared as a solid dispersion. Acute toxicity was assessed in mice, and the physiological toxicity was used as the determination criterion for toxicity. RESULTS: AE-SD showed that AE existed in the carrier in an amorphous state. Compared with polyethylene glycol, polyvinylpyrrolidone (PVP) inhibited AE crystallization, causing the drug to transform from a dense crystalline state to an amorphous form and increasing the degree of drug dispersion. Therefore, it was more suitable as a carrier material for AE-SD. The addition of poloxamer (POL) was more beneficial to the stability of solid dispersions and could reduce the amount of PVP. The dissolution test confirmed that the optimal ratio of AE to the composite vector AE-PVP-POL was 1:2:2, and its dissolution effect was also optimal. Based on the pharmacokinetic comparison, the drug absorption was faster and quickly reached the peak of blood drug concentration in AE-SD compared to AE, the Cmax of AE-SD was greater than that of AE, and t1/2 and mean residence time of AE-SD were less than AE. The results showed that the drug metabolism in AE-SD was better, and the residence time was shorter. The toxicology study showed that both AE and AE-SD had no toxicity. CONCLUSION: This paper established that the solubility of the drug could be increased after preparing a solid dispersion, as demonstrated by in vitro dissolution experiments. In vivo pharmacokinetics studies confirmed that AE-SD could improve the bioavailability of AE in vivo, providing a new concept for the research and development of AE preparations.


Asunto(s)
Aloe , Emodina , Ratones , Animales , Difracción de Rayos X , Povidona/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Poloxámero
11.
Biochem Biophys Res Commun ; 690: 149285, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995454

RESUMEN

Multidrug-resistant Pseudomonas aeruginosa is a common pathogen that causes topical infections following burn injuries. Antimicrobial photodynamic therapy (aPDT) has emerged as a promising approach for treating antibiotic-resistant bacterial infections. The objective of this study was to evaluate the aPDT efficacy of aloe-emodin (AE), which is a photosensitizer extracted from traditional Chinese herbs, on antibiotic-sensitive and antibiotic-resistant P. aeruginosa in vitro. In this study, we confirmed the effectiveness of AE-mediated aPDT against both standard and MDR P. aeruginosa, explored the effects of irradiation time and AE concentration on bacterial survival in AE-mediated aPDT, and observed the structural damage of P. aeruginosa by using transmission electron microscope. Our results showed that neither AE nor light irradiation alone caused cytotoxic effects on P. aeruginosa. However, AE-mediated aPDT effectively inactivated both antibiotic-sensitive and antibiotic-resistant P. aeruginosa. The transmission electron microscope investigation showed that aPDT mediated by AE primarily caused damage to the cytoplasm and cell membrane. Our findings suggest that AE is a photosensitizer in the aPDT of MDR P. aeruginosa-caused topical infections following burn injuries. Future investigations will concentrate on the safety and efficacy of AE-mediated aPDT in animal models and clinical trials.


Asunto(s)
Aloe , Antiinfecciosos , Quemaduras , Emodina , Fotoquimioterapia , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pseudomonas aeruginosa , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Emodina/farmacología , Fotoquimioterapia/métodos , Antiinfecciosos/farmacología , Quemaduras/tratamiento farmacológico
12.
J Ethnopharmacol ; 322: 117583, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38122912

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Subarachnoid hemorrhage (SAH) triggers a cascade of events that lead to early brain injury (EBI), which contributes to poor outcomes and appears within 3 days after SAH initiation. EBI involves multiple process including neuronal death, blood-brain barrier (BBB) injury and inflammation response. Microglia are cluster of immune cells originating in the brain which respond to SAH by changing their states and releasing inflammatory molecules through various signaling pathways. M0, M1, M2 are three states of microglia represent resting state, promoting inflammation state, and anti-inflammation state respectively, which can be modulated by pharmacological strategies. AIM OF THE STUDY: After identified potential active ingredients and targets of Sanhua Decoction (SHD) for SAH, we selected aloe-emodin (AE) as a potential ingredient modulating microglia activation states. MATERIALS AND METHODS: Molecular mechanisms, targets and pathways of SHD were reveal by network pharmacology technique. The effects of AE on SAH were evaluated in vivo by assessing neurological deficits, neuronal apoptosis and BBB integrity in a mouse SAH model. Furthermore, BV-2 cells were used to examine the effects of AE on microglial polarization. The influence of AE on microglia transformation was measured by Iba-1, TNF-α, CD68, Arg-1 and CD206 staining. The signal pathways of neuronal apoptosis and microglia polarization was measured by Western blot. RESULTS: Network pharmacology identified potential active ingredients and targets of SHD for SAH. And AE is one of the active ingredients. We also confirmed that AE via NF-κB and PKA/CREB pathway inhibited the microglia activation and promoted transformation from M1 phenotype to M2 at EBI stage after SAH. CONCLUSIONS: AE, as one ingredient of SHD, can alleviate the inflammatory response and protecting neurons from SAH-induced injury. AE has potential value for treating SAH-induced nerve injury and is expected to be applied in clinical practice.


Asunto(s)
Aloe , Lesiones Encefálicas , Emodina , Hemorragia Subaracnoidea , Ratones , Animales , Microglía , Emodina/farmacología , Emodina/uso terapéutico , Enfermedades Neuroinflamatorias , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , FN-kappa B/metabolismo , Lesiones Encefálicas/metabolismo
13.
Biomed Pharmacother ; 170: 116039, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38157643

RESUMEN

Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.


Asunto(s)
Productos Biológicos , Medicamentos Herbarios Chinos , Enfermedades Renales , Humanos , Medicina Tradicional China , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Enfermedades Renales/tratamiento farmacológico , Fibrosis , Sistemas de Liberación de Medicamentos
14.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958772

RESUMEN

Breast cancer (BC) is the most common malignancy among women worldwide. In recent years, significant progress has been made in BC therapy. However, serious side effects resulting from the use of standard chemotherapeutic drugs, as well as the phenomenon of multidrug resistance (MDR), limit the effectiveness of approved therapies. Advanced research in the BC area is necessary to create more effective and safer forms of therapy to improve the outlook for individuals diagnosed with this aggressive neoplasm. For decades, plants and natural products with anticancer properties have been successfully utilized in treating various medical conditions. Anthraquinone derivatives are tricyclic secondary metabolites of natural origin that have been identified in plants, lichens, and fungi. They represent a few botanical families, e.g., Rhamnaceae, Rubiaceae, Fabaceae, Polygonaceae, and others. The review comprehensively covers and analyzes the most recent advances in the anticancer activity of 1,8-dihydroanthraquinone derivatives (emodin, aloe-emodin, hypericin, chrysophanol, rhein, and physcion) applied both individually, or in combination with other chemotherapeutic agents, in in vitro and in vivo BC models. The application of nanoparticles for in vitro and in vivo evidence in the context of 1,8-dihydroanthraquinone derivatives was also described.


Asunto(s)
Neoplasias de la Mama , Emodina , Polygonaceae , Rheum , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Antraquinonas/farmacología , Antraquinonas/uso terapéutico , Extractos Vegetales
15.
Molecules ; 28(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959784

RESUMEN

Emodin-8-O-glucoside (E-8-O-G) is a glycosylated derivative of emodin that exhibits numerous biological activities, including immunomodulatory, anti-inflammatory, antioxidant, hepatoprotective, or anticancer activities. However, there are no reports on the activity of E-8-O-G against cancers of the nervous system. Therefore, the aim of the study was to investigate the antiproliferative and cytotoxic effect of E-8-O-G in the SK-N-AS neuroblastoma, T98G human glioblastoma, and C6 mouse glioblastoma cancer cells. As a source of E-8-O-G the methanolic extract from the aerial parts of Reynoutria japonica Houtt. (Polygonaceae) was used. Thanks to the application of centrifugal partition chromatography (CPC) operated in the descending mode using a mixture of petroleum ether:ethyl acetate:methanol:water (4:5:4:5 v/v/v/v) and a subsequent purification with preparative HPLC, E-8-O-G was obtained in high purity in a sufficient quantity for the bioactivity tests. Assessment of the cancer cell viability and proliferation were performed with the MTT (3-(bromide 4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium), CTG (CellTiter-Glo®) and BrdU (5-bromo-2'-deoxyuridine) assays, respectively. E-8-O-G inhibits the viability and proliferation of SK-N-AS neuroblastoma, T98G human glioblastoma multiforme, and C6 mouse glioblastoma cells dose-dependently. E-8-O-G seems to be a promising natural antitumor compound in the therapy of nervous system tumors.


Asunto(s)
Emodina , Glioblastoma , Neoplasias del Sistema Nervioso , Neuroblastoma , Animales , Ratones , Humanos , Glucósidos/farmacología , Glioblastoma/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química
16.
Front Pharmacol ; 14: 1240820, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027005

RESUMEN

Rhubarb palmatum L., Polygonum multijiorum Thunb., and Polygonum cuspidatum Sieb. Et Zucc. are traditional Chinese medicines that have been used for thousands of years. They are formulated into various preparations and are widely used. Emodin is a traditional Chinese medicine monomer and the main active ingredient in Rhubarb palmatum L., Polygonum multijiorum Thunb., and Polygonum cuspidatum Sieb. Et Zucc. Modern research shows that it has a variety of pharmacological effects, including promoting lipid and glucose metabolism, osteogenesis, and anti-inflammatory and anti-autophagy effects. Research on the toxicity and pharmacokinetics of emodin can promote its clinical application. This review aims to provide a basis for further development and clinical research of emodin in the treatment of metabolic diseases. We performed a comprehensive summary of the pharmacology and molecular mechanisms of emodin in treating metabolic diseases by searching databases such as Web of Science, PubMed, ScienceDirect, and CNKI up to 2023. In addition, this review also analyzes the toxicity and pharmacokinetics of emodin. The results show that emodin mainly regulates AMPK, PPAR, and inflammation-related signaling pathways, and has a good therapeutic effect on obesity, hyperlipidemia, non-alcoholic fatty liver disease, diabetes and its complications, and osteoporosis. In addition, controlling toxic factors and improving bioavailability are of great significance for its clinical application.

17.
Phytomedicine ; 121: 155105, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801893

RESUMEN

BACKGROUND: Doxorubicin (Dox), which is an anticancer drug, has significant cardiac toxicity and side effects. Pyroptosis occurs during Dox-induced cardiotoxicity (DIC), and drug inhibition of this process is one therapeutic approach for treating DIC. Previous studies have indicated that emodin can reduce pyroptosis. However, the role of emodin in DIC and its molecular targets remain unknown. HYPOTHESIS/PURPOSE: We aimed to clarify the protective role of emodin in mitigating DIC, as well as the mechanisms underlying this effect. METHODS: The model of DIC was established via the intraperitoneal administration of Dox at a dosage of 5 mg/kg per week for a span of 4 weeks. Emodin at two different doses (10 and 20 mg/kg) or a vehicle was intragastrically administered to the mice once per day throughout the Dox treatment period. Cardiac function, myocardial injury markers, pathological morphology of the heart, level of pyroptosis and mitochondrial function were assessed. Protein microarray, biolayer interferometry and pull-down assays were used to confirm the target of emodin. Moreover, GSDMD-overexpressing plasmids were transfected into GSDMD-/- mice and HL-1 cells to further verify whether emodin suppressed GSDMD activation. RESULTS: Emodin therapy markedly enhanced cardiac function and reduced cardiomyocyte pyroptosis in mice induced by Dox. Mechanistically, emodin binds to GSDMD and inhibits the activation of GSDMD by targeting the Trp415 and Leu290 residues. Moreover, emodin was able to mitigate Dox-induced cardiac dysfunction and myocardial injury in GSDMD-/- mice overexpressing GSDMD, as shown by increased EF and FS, decreased serum levels of CK-MB, LDH and IL-1ß and mitigated cell death and cell morphological disorder. Additionally, emodin treatment significantly reduced GSDMD-N expression and plasma membrane disruption in HL-1 cells overexpressing GSDMD induced by Dox. In addition, emodin reduced mitochondrial damage by alleviating Dox-induced GSDMD perforation in the mitochondrial membrane. CONCLUSION: Emodin has the potential to attenuate DIC by directly binding to GSDMD to inhibit pyroptosis. Emodin may become a promising drug for prevention and treatment of DIC.


Asunto(s)
Emodina , Miocitos Cardíacos , Ratones , Animales , Piroptosis , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Emodina/farmacología , Doxorrubicina/farmacología
18.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37765083

RESUMEN

Diabetic cardiomyopathy (DCM) is widely recognized as a major contributing factor to the development of heart failure in patients with diabetes. Previous studies have demonstrated the potential benefits of traditional herbal medicine for alleviating the symptoms of cardiomyopathy. We have chemically designed and synthesized a novel compound called aloe-emodin derivative (AED), which belongs to the aloe-emodin (AE) family of compounds. AED was formed by covalent binding of monomethyl succinate to the anthraquinone mother nucleus of AE using chemical synthesis techniques. The purpose of this study was to investigate the effects and mechanisms of AED in treating DCM. We induced type 2 diabetes in Sprague-Dawley (SD) rats by administering a high-fat diet and streptozotocin (STZ) injections. The rats were randomly divided into six groups: control, DCM, AED low concentration (50 mg/kg/day), AED high concentration (100 mg/kg/day), AE (100 mg/kg/day), and positive control (glyburide, 2 mg/kg/day) groups. There were eight rats in each group. The rats that attained fasting blood glucose of ˃16.7 mmol/L were considered successful models. We observed significant improvements in cardiac function in the DCM rats with both AED and AE following four weeks of intragastric treatment. However, AED had a more pronounced therapeutic effect on DCM compared to AE. AED exhibited an inhibitory effect on the inflammatory response in the hearts of DCM rats and high-glucose-treated H9C2 cells by suppressing the pyroptosis pathway mediated by the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain 3 (NLRP3) inflammasome. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes showed a significant enrichment in the NOD-like receptor signaling pathway compared to the high-glucose group. Furthermore, overexpression of NLRP3 effectively reversed the anti-pyroptosis effects of AED in high-glucose-treated H9C2 cells. This study is the first to demonstrate that AED possesses the ability to inhibit myocardial pyroptosis in DCM. Targeting the pyroptosis pathway mediated by the NLRP3 inflammasome could provide a promising therapeutic strategy to enhance our understanding and treatment of DCM.

19.
Am J Chin Med ; 51(7): 1751-1793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37732372

RESUMEN

Emodin is a natural compound found in several traditional Chinese medicines, including Rheum palmatum and Polygonum cuspidatum. Recent studies have shown that emodin exhibits potent anticancer effects against a variety of cancer types, including liver, breast, lung, and colon cancer. Emodin's anticancer effects are mediated through several mechanisms, including inhibition of cell proliferation, induction of apoptosis, and suppression of tumor angiogenesis and metastasis. In this review, we provide an overview of recent research progress and new perspectives on emodin's anticancer effect. We summarize the current understanding of the molecular mechanisms underlying emodin's anticancer activity, including its effects on signaling pathways such as the PI3K/Akt, MAPK, and NF-[Formula: see text]B pathways. We also discuss the potential of emodin as a therapeutic agent for cancer treatment, including its use in combination with conventional chemotherapeutic drugs and as a sensitizer for radiotherapy. Furthermore, we highlight recent advances in the development of emodin derivatives and their potential as novel anticancer agents. Finally, we discuss the challenges and opportunities for the translation of emodin's anticancer properties into clinical applications, including the need for further preclinical and clinical studies to evaluate its safety and efficacy. In conclusion, emodin represents a promising natural compound with potent anticancer properties, and its potential as a therapeutic agent for cancer treatment warrants further investigation. This review provides a comprehensive overview of the current research progress and new perspectives on emodin's anticancer effects, which may facilitate the development of novel therapeutic strategies for cancer treatment.

20.
Pharmacol Res ; 196: 106923, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37709183

RESUMEN

Under physiological or pathological conditions, transient receptor potential (TRP) channel vanilloid type 1 (TRPV1) and TRP ankyrin 1 (TRPA1) possess the ability to detect a vast array of stimuli and execute diverse functions. Interestingly, increasing works have reported that activation of TRPV1 and TRPA1 could also be beneficial for ameliorating postoperative ileus (POI). Increasing research has revealed that the gastrointestinal (GI) tract is rich in TRPV1/TRPA1, which can be stimulated by capsaicin, allicin and other compounds. This activation stimulates a variety of neurotransmitters, leading to increased intestinal motility and providing protective effects against GI injury. POI is the most common emergent complication following abdominal and pelvic surgery, and is characterized by postoperative bowel dysfunction, pain, and inflammatory responses. It is noteworthy that natural herbs are gradually gaining recognition as a potential therapeutic option for POI due to the lack of effective pharmacological interventions. Therefore, the focus of this paper is on the TRPV1/TRPA1 channel, and an analysis and summary of the processes and mechanism by which natural herbs activate TRPV1/TRPA1 to enhance GI motility and relieve pain are provided, which will lay the foundation for the development of natural herb treatments for this disease.


Asunto(s)
Ileus , Plantas Medicinales , Humanos , Canal Catiónico TRPA1 , Ileus/tratamiento farmacológico , Dolor , Extractos Vegetales , Canales Catiónicos TRPV/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA