Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int Immunopharmacol ; 120: 110292, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37182452

RESUMEN

BACKGROUND: NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis plays a key role in various acute and chronic inflammatory diseases. Targeted inhibition of NLRP3-mediated pyroptosis may be a potential therapeutic strategy for various inflammatory diseases. Ergolide (ERG) is a sesquiterpene lactone natural product derived from the traditional Chinese medicinal herb, Inula britannica. ERG has been shown to have anti-inflammatory and anti-cancer activities, but the target is remains unknown. HYPOTHESIS/PURPOSE: This study performed an in-depth investigation of the anti-inflammatory mechanism of ERG in NLRP3-mediated pyroptosis and NLPR3 inflammasome related sepsis and acute lung injury model. METHODS: ELISA and Western blot were used to determine the IL-1ß and P20 levels. Co-immunoprecipitation assays were used to detect the interaction between proteins. Drug affinity response target stability (DARTS) assays were used to explore the potential target of ERG. C57BL/6J mice were intraperitoneally injected with E. coli DH5α (2 × 109 CFU/mouse) to establish a sepsis model. Acute lung injury was induced by intratracheal administrationof lipopolysaccharide in wild-type mice and NLRP3 knockout mice with or without ERG treatment. RESULTS: We showed that ERG is an efficient inhibitor of NLRP3-mediated pyroptosis in the first and second signals of NLRP3 inflammasome activation. Furthermore, we demonstrated that ERG irreversibly bound to the NACHT domain of NLRP3 to prevent the assembly and activation of the NLRP3 inflammasome. ERG remarkably improved the survival rate of wild-type septic mice. In lipopolysaccharide-induced acute lung injury model, ERG alleviated acute lung injury of wild-type mice but not NLRP3 knockout mice. CONCLUSION: Our results revealed that the anti-pyroptosis effect of ERG are dependent on NLRP3 and NLRP3 NACHT domain is ERG's direct target. Therefore, ERG can serve as a precursor drug for the development of novel NLRP3 inhibitors to treat NLRP3 inflammasome mediated inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Sesquiterpenos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos , Escherichia coli/metabolismo , Ratones Endogámicos C57BL , Lactonas , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Sepsis/tratamiento farmacológico , Ratones Noqueados
2.
J Ethnopharmacol ; 253: 112504, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31904493

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Inula oculus christi belongs to the family of Asteraceae and it was traditionally wide used in treatment of kidney stones and urethra infection; besides, recently the potent sesquiterpene lactones isolated from inula species has gained increasing attention in cancer treatments. This study investigates the anti-cancer properties and underlying mechanism of ergolide isolated from Inula oculus christi against leukemic cell lines. METHODS: Viability, metabolic activity and proliferation evaluated using different index of MTT assay such as IC50 and GI50. Human erythrocytes were used to evaluate hemolytic activity. Flow-cytometry was used to detect and measure ROS level, and the induction of apoptosis and autophagy were evaluated using Annexin V/PI, Acridine Orange staining, respectively. Moreover, qRT-PCR was performed to examine the expression of a large cohort of crucial regulatory genes. Tunel assay was also carried out to assess morphologically ergolide effects. RESULTS: Ergolide did not exert ant cytotoxicity against non-tumorous cells and did not cause noticeable hemolysis. It also caused ROS production during early hours after treatment of cells which was then followed by cell cycle arrest in G0/G1 phase and autophagy induction. Using N-acetyl-L-cysteine (NAC), we found that ergolide could not increase ROS and induce autophagy and moreover repressed cell death, indicating that ergolide induce cell death through ROS-dependent manner by altering the expression of pro apoptotic related genes. Autophagy inhibition also potentiated ergolide-induced cell death. Furthermore, ergolide intensified vincristine cytotoxicity against acute lymphoblastic leukemia (ALL) cell lines revealed robust synergistic properties of ergolide with VCR. CONCLUSION: Here we showed that ergolide could be considered as a potent natural compound against leukemic cells by inducing cell cycle arrest followed by dose-dependent cell death. Based on results, Autophagy response in a result of ROS accumulation acted as a survival pathway and blocking this pathway could noticeably increase ergolide cytotoxicity on ALL cell lines.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Lactonas/farmacología , Leucemia/tratamiento farmacológico , Sesquiterpenos/farmacología , Vincristina/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Humanos , Concentración 50 Inhibidora , Inula/química , Lactonas/administración & dosificación , Lactonas/aislamiento & purificación , Leucemia/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos/administración & dosificación , Sesquiterpenos/aislamiento & purificación , Vincristina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA