Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chin Med ; 17(1): 102, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042482

RESUMEN

BACKGROUND: Renal injury is one of the common microvascular complications of diabetes, known as diabetic kidney disease (DKD) seriously threatening human health. Previous research has reported that the Chinese Medicine Fufang-Zhenzhu-Tiaozhi (FTZ) capsule protected myocardia from injury in diabetic minipigs with coronary heart disease (DM-CHD). And we found significant renal injury in the minipigs. Therefore, we further investigated whether FTZ prevents renal injury of DM-CHD minipig and H2O2-induced oxidative injury of HK-2 cells. METHODS: DM-CHD model was established by streptozotocin injection, high fat/high-sucrose/high-cholesterol diet combined with balloon injury in the coronary artery. Blood lipid profile, fasting blood glucose (FBG), and SOD were measured with kits. The levels of blood urea nitrogen (BUN), serum creatinine (Scr), urine trace albumin (UALB), urine creatinine (UCR) (calculate UACR), cystatin (Cys-C), and ß-microglobulin (ß-MG) were measured by ELISA kits to evaluate renal function. TUNEL assay was performed to observe the apoptosis. qPCR was used to detect the mRNA expression levels of HO-1, NQO1, and SOD in kidney tissue. The protein expressions of Nrf2, HO-1, NQO1, Bax, Bcl-2, and Caspase 3 in the kidney tissue and HK-2 cells were detected by western blot. Meanwhile, HK-2 cells were induced by H2O2 to establish an oxidative stress injury model to verify the protective effect and mechanisms of FTZ. RESULTS: In DM-CHD minipigs, blood lipid profile and FBG were elevated significantly, and the renal function was decreased with the increase of BUN, Scr, UACR, Cys-c, and ß-MG. A large number of inflammatory and apoptotic cells in the kidney were observed accompanied with lower levels of SOD, Bcl-2, Nrf2, HO-1, and NQO1, but high levels of Bax and Cleaved-caspase 3. FTZ alleviated glucose-lipid metabolic disorders and the pathological morphology of the kidney. The renal function was improved and the apoptotic cells were reduced by FTZ administration. FTZ could also enhance the levels of SOD, Nrf2, HO-1, and NQO1 proteins to promote antioxidant effect, down-regulate the expression of Bax and Caspase3, as well as up-regulate the expression of Bcl-2 to inhibit cell apoptosis in the kidney tissue and HK-2 cells. CONCLUSIONS: We concluded that FTZ prevents renal injury of DM-CHD through activating anti-oxidative capacity to reduce apoptosis and inhibiting inflammation, which may be a new candidate for DKD treatment.

2.
J Ethnopharmacol ; 298: 115644, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987412

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Excessive serum uric acid (SUA) causes hyperuricemic nephropathy (HN), characterized by inflammatory infiltration and tubulointerstitial fibrosis. Most recently, we demonstrated that Fufang Zhenzhu Tiaozhi (FTZ) capsule attenuated diabetic nephropathy through inhibition of renal inflammation and fibrosis. However, whether FTZ ameliorates HN is still unclear. AIM OF THE STUDY: To determine the protective roles and mechanism of FTZ in mouse renal injury and fibrosis under hyperuricemic condition. MATERIALS AND METHODS: HN mice, induced by potassium oxonate and hypoxanthine, were administrated with 600 and 1200 mg/kg FTZ (intragastrically) daily for three weeks. SUA levels, renal functions and histological changes were analyzed. Western blotting, quantitative real-time PCR (q-PCR) and RNA sequencing were used to identify the roles and underlying mechanism of FTZ in HN mice. RESULTS: We demonstrated that FTZ treatment mitigated renal injury in mice, as evidenced by the decrease in SUA, serum creatinine (SCr) and cystatin C (Cys C) levels, as well as improved renal histology. FTZ markedly attenuates inflammasome activation, collagen deposition and the imbalance of uric acid transporters. RNA-sequencing revealed a key mechanism involved in the protective effects on HN mice was related to PI3K/AKT/NF-κB pathway. Western blot also confirmed that FTZ diminished the phosphorylation of AKT and p65 in HN mice. CONCLUSIONS: FTZ prevents renal injury, inflammation and fibrosis in HN mice via promoting uric acid excretion and inhibiting PI3K/AKT/NF-κB signaling pathway.


Asunto(s)
Hiperuricemia , Ácido Úrico , Animales , Fibrosis , Inflamación/tratamiento farmacológico , Riñón , Ratones , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
3.
J Ethnopharmacol ; 293: 115261, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35447198

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fufang Zhenzhu Tiaozhi (FTZ) is a traditional Chinese herbal prescription that has been used to treat dyslipidemia, nonalcoholic fatty liver disease, atherosclerosis, diabetes and its complications in the clinic for almost ten years. Endothelial-mesenchymal transition (EndMT) is the key driver of atherosclerosis. However, the effects of FTZ on endothelial dysfunction and EndMT remain unknown. AIM OF THE STUDY: To evaluate the therapeutic effects of FTZ against EndMT and the underlying mechanisms. MATERIALS AND METHODS: An in vivo model of atherosclerosis was established by feeding ApoE-/- mice with a high-fat diet (HFD). The body weight, lipid levels, plaque area, lipid deposition and EndMT were evaluated using standard assays 12 weeks after intragastric administration of FTZ and simvastatin. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to simulate EndMT in vitro. The degree of EndMT was assessed after treating the cells with FTZ or transfection with si-Akt1. The expression levels of genes involved in EndMT were quantified by real-time PCR or western blotting. RESULTS: FTZ ameliorated dyslipidemia and endothelial dysfunction in the atherosclerotic mice. In addition, FTZ reduced body weight and the total cholesterol, triglycerides and low-density lipoprotein levels, and increased that of high-density lipoproteins. FTZ also upregulated the expression of endothelial markers (CD31 and VE-cadherin) and decreased that of mesenchymal markers (ɑ-SMA and FSP1), indicating that it inhibits EndMT. Knocking down Akt1 exacerbated EndMT and reversed the therapeutic effect of FTZ. CONCLUSION: FTZ delayed atherosclerosis by inhibiting EndMT via the Akt1/ß-catenin pathway.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , beta Catenina , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/prevención & control , Peso Corporal , Medicamentos Herbarios Chinos/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lipoproteínas LDL , Medicina Tradicional China , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/metabolismo
4.
Biomed Pharmacother ; 148: 112696, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35183007

RESUMEN

BACKGROUND: Despite the fact that the initial hypertrophic response to ventricular pressure overload is thought to be compensatory, prolonged stress often leads to heart failure. Previous studies have shown that the Fufang-Zhenzhu-Tiaozhi (FTZ) formula is beneficial for the treatment of dyslipidemia and hyperglycemia. However, the effects of FTZ on cardiac hypertrophy remain unclear. OBJECTIVE: The aim of this study is to evaluate the protective effects of FTZ on cardiac hypertrophy and determine the underlying mechanisms. METHODS: TAC was utilized to establish a cardiac hypertrophy animal model, and FTZ was given via gavage for four weeks. Next, echocardiographic measurements were made. The morphology of mouse cardiomyocytes was examined using H&E and WGA staining. In vitro, the neonatal cardiomyocytes were stimulated with angiotensin Ⅱ (Ang Ⅱ). In addition to measuring the size of cardiomyocytes, qRT-PCR and western blotting were conducted to measure cardiac stress markers and pathway. RESULTS: According to our findings, FTZ alleviated cardiac hypertrophy in mice and cell models. Furthermore, expression of miR-214 was down-regulated following FTZ, whereas the effect of FTZ therapy was reversed using miR-214 transfection. Furthermore, the expression of Sirtuin 3 (SIRT3) was decreased in Ang Ⅱ-induced oxidative damage, which was associated with a reduction in SOD-1, GPX1, and HO-1 and an increase in MDA, while SIRT3 expression was restored following FTZ treatment. CONCLUSIONS: Collectively, these findings indicate that FTZ is a protective factor for cardiac hypertrophy due to its regulation of the miR-214-SIRT3 axis, which suggests that FTZ may be a therapeutic target for cardiac hypertrophy.


Asunto(s)
MicroARNs , Sirtuina 3 , Angiotensina II/metabolismo , Animales , Cardiomegalia/tratamiento farmacológico , Medicamentos Herbarios Chinos , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Miocitos Cardíacos , Estrés Oxidativo , Transducción de Señal , Sirtuina 3/genética , Sirtuina 3/metabolismo
5.
Biomed Pharmacother ; 137: 111343, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33761594

RESUMEN

BACKGROUND AND PURPOSE: Diabetes mellitus (DM) is a major risk factor for coronary heart disease (CHD). Previous research has reported that the Fufang-Zhenzhu-Tiaozhi (FTZ) formula has obvious effects on the treatment of dyslipidemia and hyperglycemia. In the present study, we intended to establish a convenient DM-CHD model in minipigs and investigated the protective effect of FTZ against myocardial injury and its mechanism. METHODS: The DM-CHD model was established by a high-fat/high-sucrose/high-cholesterol diet (HFSCD) combined with balloon injury in the coronary artery. Subsequently, sixteen Wuzhishan minipigs were assigned to three groups: control group, model group, and FTZ group. The model group and FTZ group were given a HFSCD, while the control group was given a normal diet (ND). FTZ was given with meals in the FTZ group. During this time, biochemical parameters, such as total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein (HDL-C), and fasting blood glucose (FBG), were measured by using testing kits. Insulin (INS) was determined by ELISA, and the homeostasis model assessment index of insulin resistance (HOMA-IR) was calculated to evaluate insulin resistance levels. After FTZ administration, the plasma levels of lactate dehydrogenase (LDH), creatine kinase isoenzyme MB (CK-MB), and cardiac troponin I (cTnI) were measured by using ELISA kits to evaluate myocardial injury. Coronary artery stenosis was analyzed by angiographic and HE staining. Myocardial ischemia was assayed with electrocardiogram (ECG). Moreover, cytokines, including interleukin-6 (IL-6), hypersensitive C-reactive protein (hs-CRP), and tumor necrosis factor-alpha (TNF-α), were measured by ELISA kits to assess inflammation. The myocardial tissue was collected, and the pathological morphology was observed by transmission electron microscopy (TEM), HE staining, and Masson staining. Western blots were used to detect the expression of PI3K, AKT, p-AKT, p-NF-κB, and NF-κB. RESULTS: A DM-CHD model in minipigs with glucose-lipid metabolism disorder, coronary artery incrassation and myocardial damage was successfully established through balloon injury in the coronary artery combined with HFSCD. FTZ effectively inhibited coronary artery incrassation and protected the myocardium against injury in DM-CHD minipigs. FTZ decreased proinflammatory cytokine levels and upregulated the protein expression of the PI3K/Akt pathway in the myocardium. CONCLUSIONS: A novel DM-CHD model in minipigs was successfully established through balloon injury in the coronary artery combined with HFSCD. FTZ has a protective effect against myocardial injury in DM-CHD by inhibiting inflammation and activating the PI3K/AKT signaling pathway.


Asunto(s)
Cardiotónicos/uso terapéutico , Enfermedad Coronaria/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Miocardio/patología , Angiografía , Animales , Glucemia/análisis , Enfermedad Coronaria/patología , Cardiomiopatías Diabéticas/patología , Electrocardiografía , Insulina/sangre , Resistencia a la Insulina , Lípidos/sangre , Medicina Tradicional China , Porcinos , Porcinos Enanos
6.
Biomed Pharmacother ; 133: 111060, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33378969

RESUMEN

The present study aims to reveal the compositions of Zhenshu TiaoZhi formula (FTZ) comprehensively, and investigate whether FTZ ameliorate glucolipid metabolism disorders in diabetic rats with the involvement of glucocorticoids in peripheral insulin-sensitive tissues. The fingerprint was established based on 11 batches of FTZ samples and chemical compostions of FTZ were identified by ultra performance liquid chromatography-time of flight/mass spectrometry (UPLC-TOF/MS). High-fat diet (HFD) and streptozotocin (STZ) induced diabetic rats were orally administrated with 3 and 6 g/kg body weight of FTZ for 8 weeks. Indices of glucolipid metabolism, including fasting blood glucose (FBG), fasting insulin, insulin resistance index (IRI) and blood lipids were evaluated after treatment of FTZ. The levels of HPA axis hormones were examined. Reverse transcription-polymerase chain reaction (RT-PCR) was adopted to investigate the relative mRNA expressions of 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) and glucolipid metabolic indicators. A reference fingerprint was established and 93 compounds of FTZ were tentatively identified. In vivo, FTZ treatment exerted antidiabetic and antidyslipidemic effects while decreased the level of corticotropin releasing hormone (CRH). 11ß-HSD1 mRNA showed similar trajectory in both liver, adipose and skeletal muscle tissues, which was up-regulated in diabetic group and ameliorated in FTZ groups. Furthermore, the expressions of glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK) and adipose triglyceride lipase (ATGL) were down-regulated in liver and skeletal muscle. These results elucidated the compositions of FTZ comprehensively and indicated its effect on ameliorating glucolipid metabolism of diabetic rats involved hypothalamus-pituitary-adrenal (HPA) axis homeostasis. Down-regulating 11ß-HSD1 in insulin-sensitive tissues might be a potential mechanism of FTZ in treating type 2 diabetes mellitus (T2DM).


Asunto(s)
Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Hipoglucemiantes/análisis , Hipoglucemiantes/farmacología , Hipolipemiantes/farmacología , Lípidos/sangre , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Hormona Adrenocorticotrópica/sangre , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Cromatografía Líquida de Alta Presión , Corticosterona/sangre , Hormona Liberadora de Corticotropina/sangre , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Hipolipemiantes/aislamiento & purificación , Resistencia a la Insulina , Masculino , Espectrometría de Masas , Ratas Sprague-Dawley , Estreptozocina
7.
Biomed Pharmacother ; 128: 110311, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32502838

RESUMEN

BACKGROUND AND PURPOSE: Fufang-Zhenzhu-Tiaozhi Capsule (FTZ), a traditional Chinese medicine, has been shown obvious effects on the treatment of dyslipidemia and atherosclerosis. The aim of this study was to evaluate whether FTZ can ameliorate rabbit iliac artery restenosis after angioplasty by regulating adiponectin signaling pathway. EXPERIMENTAL APPROACH: The rabbit iliac artery restenosis model was established through percutaneous iliac artery transluminal balloon angioplasty and a high-fat diet. Twenty eight male New Zealand rabbits (8-week-old) were divided into sham operation group (Group Ⅰ), model group (Group Ⅱ), atorvastatin group (Group Ⅲ) and FTZ group (Group Ⅳ), with 7 rabbits in each group. Vascular stenosis was analyzed with Digital Subtraction Angiography. Level of adiponectin (APN), and inflammatory factor including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) as well as monocyte chemoattractant protein-1 (MCP-1) was measured by Enzyme Linked Immunosorbent Assay; and injured iliac artery was collected for Hematoxylin-eosin staining and Western Blotting detection of expression of peroxisome proliferator-activated receptor-alpha (PPAR-α), adenosine 5'-monophosphate -activated protein kinase (AMPK) and phosphorylated adenosine 5'-monophosphate -activated protein kinase (p-AMPK). Besides, we evaluated FTZ's safety for the first time. KEY RESULTS: Percutaneous iliac artery transluminal balloon angioplasty and high-fat diet result in inflammatory response and restenosis. Compared with Group Ⅱ, iliac artery restenosis was significantly ameliorated in Group Ⅳ (P < 0.05). Treated with FTZ, serum lipids were significantly decreased (P < 0.01), while the level of APN was elevated significantly (P < 0.01). Western blotting detection of the injured iliac artery showed that the expressions of PPAR-α, AMPK and p-AMPK were significantly increased in Group Ⅳ (P < 0.01) than that in Group Ⅱ. Besides, before and after taking drugs, liver and kidney function indicators, creatine kinase, as well as measurement of echocardiography were of no statistical difference in four groups(P > 0.05). CONCLUSIONS AND IMPLICATIONS: FTZ could effectively reduce serum lipids and ameliorate rabbit's iliac artery restenosis after angioplasty, and its mechanism may be related to activation of APN signaling pathway.


Asunto(s)
Adiponectina/sangre , Arteriopatías Oclusivas/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Arteria Ilíaca/efectos de los fármacos , Lesiones del Sistema Vascular/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Angioplastia de Balón , Animales , Arteriopatías Oclusivas/sangre , Arteriopatías Oclusivas/etiología , Arteriopatías Oclusivas/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Arteria Ilíaca/lesiones , Arteria Ilíaca/metabolismo , Arteria Ilíaca/patología , Mediadores de Inflamación/sangre , Masculino , PPAR alfa/metabolismo , Fosforilación , Conejos , Recurrencia , Transducción de Señal , Lesiones del Sistema Vascular/sangre , Lesiones del Sistema Vascular/etiología , Lesiones del Sistema Vascular/patología
8.
Biomed Pharmacother ; 121: 109550, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31704617

RESUMEN

The aging process is accompanied by changes in the gut microbiota and metabolites. This study aimed to reveal the relationship between gut microbiota and the metabolome at different ages, as well as the anti-aging effect of FTZ, which is an effective clinical prescription for the treatment of hyperlipidemia and diabetes. METHODS: In the present study, mice were randomly divided into different age and FTZ treatment groups. The aging-relevant behavioral phenotype the levels of blood glucose, cholesterol, triglycerides, low density lipoprotein cholesterol, free fatty acids, high density lipoprotein-cholesterol and cytokine TNF-α,IL-6, IL-8 in the serum were measured. Changes of serum metabolties were analyzed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-Q-TOF/MS). Gut microbiota were identified using 16S rDNA sequencing. RESULTS: Our results indicated that with age, the aging-relevant behavioral phenotype appeared, glucose and lipid metabolism disordered, secretion levels of cytokine TNF-α, IL-6 and IL-8 increased.The Firmicutes/Bacteroidetes ratio changed with age, first increasing and then decreasing, and the microbial diversity and the community richness of the aging mice were improved by FTZ. The abundance of opportunistic bacteria decreased (Lactobacillus murinus, Erysipelatoclostridium), while the levels of protective bacteria such as Butyricimonas, Clostridium and Akkermansia increased. Metabolic analysis identified 24 potential biomarkers and 10 key pathways involving arachidonic acid metabolism, phospholipid metabolism, fatty acid metabolism, taurine and hypotaurine metabolism. Correlation analysis between the gut microbiota and biomarkers suggested that the relative abundance of protective bacteria was negatively correlated with the levels of leukotriene E4, 20-HETE and arachidonic acid, which was different from protective bacteria. CONCLUSION: Shifts of gut microbiota and metabolomic profiles were observed in the mice during the normal aging process, and treatment with FTZ moderately corrected the aging, which may be mediated via interference with arachidonic acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, taurine and hypotaurine metabolism and gut microbiota in mice.


Asunto(s)
Envejecimiento/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Metaboloma/efectos de los fármacos , Envejecimiento/metabolismo , Animales , Bacterias/efectos de los fármacos , Biomarcadores/metabolismo , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL
9.
Lipids Health Dis ; 17(1): 272, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30497486

RESUMEN

BACKGROUND: To investigate the effects of a Chinese herbal medicine Fufang-Zhenzhu Tiaozhi Capsule (FTZ) on restenosis and elucidate the mechanism of action. METHODS: A restenosis model was established by balloon rubbing the endothelium of the abdominal aorta followed by high fat diet. Rabbits were divided into blank control group, restenosis group, FTZ group (0.66 mg/kg/day), atorvastatin group (5 mg/kg/day) and FTZ + atorvastatin group (n = 8). Vascular stenosis was analyzed by X-ray. Serum levels of chemokines and cytokines interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-12 (IL-12), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) were measured by ELISA. The levels of NF-κB, IκB-α, P-IκBα, IKK-α, and P-IKKα/ß from injured abdominal arteries were detected by Western blotting. RESULTS: Restenosis was induced successfully via abdominal artery balloon injuries and high fat diet. Restenosis was significantly decreased in FTZ group compared with restenosis group (P < 0.05). FTZ group had markedly reduced serum lipid levels (P < 0.05). In addition, the levels of TNF-α, IL-1, IL-6, IL-8, IL-12, ICAM-1 and MCP-1 decreased by FTZ treatment (P < 0.05). The expression of NF-κB in the atherosclerotic lesions was significantly attenuated in FTZ group (P < 0.05). CONCLUSION: FTZ could reduce restenosis via reducing NF-κB activity and inflammatory factor expression within the atherosclerotic lesion in a rabbit restenosis model. FTZ may be a new therapeutic agent for restenosis.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Reestenosis Coronaria/tratamiento farmacológico , Medicamentos Herbarios Chinos/administración & dosificación , Inflamación/tratamiento farmacológico , Animales , Aorta Abdominal/efectos de los fármacos , Aterosclerosis/genética , Aterosclerosis/fisiopatología , Atorvastatina , Proteína C-Reactiva/genética , Quimiocina CCL2/genética , Reestenosis Coronaria/genética , Reestenosis Coronaria/fisiopatología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Endotelio/efectos de los fármacos , Endotelio/fisiopatología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/genética , Inflamación/fisiopatología , Interleucina-1/genética , Interleucina-12/genética , Interleucina-6/genética , Interleucina-8/genética , FN-kappa B/genética , Conejos , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA