Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 249, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38580941

RESUMEN

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) belongs to Polygonaceae family and has attracted increasing attention owing to its high nutritional value. UDP-glycosyltransferases (UGTs) glycosylate a variety of plant secondary metabolites to control many metabolic processes during plant growth and development. However, there have been no systematic reports of UGT superfamily in F. tataricum. RESULTS: We identified 173 FtUGTs in F. tataricum based on their conserved UDPGT domain. Phylogenetic analysis of FtUGTs with 73 Arabidopsis UGTs clustered them into 21 families. FtUGTs from the same family usually had similar gene structure and motif compositions. Most of FtUGTs did not contain introns or had only one intron. Tandem repeats contributed more to FtUGTs amplification than segmental duplications. Expression analysis indicates that FtUGTs are widely expressed in various tissues and likely play important roles in plant growth and development. The gene expression analysis response to different abiotic stresses showed that some FtUGTs were involved in response to drought and cadmium stress. Our study provides useful information on the UGTs in F. tataricum, and will facilitate their further study to better understand their function. CONCLUSIONS: Our results provide a theoretical basis for further exploration of the functional characteristics of FtUGTs and for understanding the growth, development, and metabolic model in F. tataricum.


Asunto(s)
Fagopyrum , Humanos , Filogenia , Fagopyrum/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Methods Mol Biol ; 2791: 1-14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532087

RESUMEN

This section describes a set of methods for callus induction followed by the successful regeneration of whole plants and obtaining a culture of transgenic hairy roots from buckwheat plants (Fagopyrum esculentum Moench.). Callus induction and regeneration are key steps for many biotechnological, genetic, and breeding approaches, such as genetic modification, production of biologically active compounds, and propagation of valuable germplasm. Induction of hairy roots using Agrobacterium rhizogenes is also an important tool for functional gene research and plant genome modification. While many efforts were invested into the development of the corresponding protocols, they are not equally efficient for different cultivars. Here, we have tested and optimized the protocols of callus induction, regeneration, and transformation using A. rhizogenes for a set of cultivars of F. esculentum, including wild ancestor of cultivated buckwheat F. esculentum ssp. ancestrale and a self-pollinated accession KK8. The optimal medium for callus induction is Murashige-Skoog basal medium with 3% sucrose which includes hormones 2,4-dichlorophenoxyacetic acid 2 mg/L and kinetin 2 mg/L; for shoot initiation 6-benzylaminopurine 2 mg/L, kinetin 0.2 mg/L, and indole-3-acetic acid 0.2 mg/L; for shoot multiplication 6-benzylaminopurine 3 mg/L and indole-3-acetic acid 0.2 mg/L; and for root initiation half-strength Murashige-Skoog medium with 1.5% sucrose and indole-3-butyric acid 1 mg/L. A. rhizogenes R1000 strain proved to be the most efficient in inducing hairy roots in buckwheat and T-DNA transfer from binary vectors. Seedling explants cut at the root area and immersed in agrobacterium suspension, as well as prickling the cotyledonary area with agrobacteria dipped syringe needle, are the most labor-effective methods of infection, allowing to initiate hairy root growth in 100% of explants.


Asunto(s)
Compuestos de Bencilo , Fagopyrum , Purinas , Cinetina , Raíces de Plantas/genética , Fitomejoramiento , Sacarosa
3.
Methods Mol Biol ; 2791: 71-80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532093

RESUMEN

Immunocytochemical studies of the cell wall are used to visualize specific epitopes of pectins, arabinogalactan proteins, hemicelluloses, extensins, and other wall components using specific primary antibodies. This reaction, combined with calcofluor staining, allows to comprehend how the cell wall is rebuilt during the protoplast culture. In this protocol, the method of immunostaining using antibodies against cell wall components based on Fagopyrum esculentum and Fagopyrum tataricum protoplasts is described.


Asunto(s)
Fagopyrum , Pared Celular , Pectinas
4.
Methods Mol Biol ; 2791: 15-22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532088

RESUMEN

Immunostaining is a well-established technique for identifying specific proteins in tissue samples with specific antibodies to identify a single target protein. It is commonly used in research and provides information about cellular localization and protein expression levels. This chapter describes a detailed protocol for immunostaining fixed Fagopyrum calli embedded in Steedman's wax using nine antibodies raised against histone H3 and H4 methylation and acetylation on several lysines and DNA methylation.


Asunto(s)
Fagopyrum , Fagopyrum/metabolismo , Histonas/metabolismo , Epigénesis Genética , Metilación de ADN , Lisina/metabolismo , Anticuerpos/metabolismo , Acetilación
5.
Methods Mol Biol ; 2791: 57-70, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532092

RESUMEN

Immunohistochemistry is a method that allows the detection of individual components of cell walls in an extremely precise way at the level of a single cell and wall domains. The cell wall antibodies detect specific epitopes of pectins, arabinogalactan proteins (AGP), hemicelluloses, and extensins. The presented method visualization of the selected pectic and AGP epitopes using antibodies directed to wall components is described. The method of the analysis of the chemical composition of the wall is present on the example of the shoot apical meristems of Fagopurum esculentum and Fagopyrum tataricum. Recommended protocols for immunostaining and examination on fluorescence microscopy level are presented.


Asunto(s)
Fagopyrum , Fagopyrum/química , Fagopyrum/metabolismo , Meristema/metabolismo , Pectinas/análisis , Inmunohistoquímica , Epítopos , Pared Celular/química
6.
Methods Mol Biol ; 2791: 81-87, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532094

RESUMEN

This chapter presents the squash chromosome preparation technique for Fagopyrum esculentum and F. tataricum, using the root tips as the source of the material. Using an optimized version of this method, the chromosomes are free of cytoplasmic debris and are spread evenly on the glass slide. What comes of it is the possibility to make observations of the chromosome number and structure at the metaphase stage. This technique's modified version allows micronuclei analysis in interphase cells of buckwheats.


Asunto(s)
Fagopyrum , Fagopyrum/química , Fagopyrum/genética , Cromosomas
7.
Mol Biol Rep ; 51(1): 312, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374412

RESUMEN

BACKGROUND: The present study is analysisof the seeds of buckwheat (Fagopyrum sp.),member of the Polygonaceae family for isolation of rutin and its anticancer property againstOsteosarcoma celllines (SAOS2). The selected plant is traditionally used for diabetes and cancer. It has several biological properties such as antibacterial, antioxidant and anti-aging. PURPOSE: Thirty-five buckwheat cultivars were obtained from Nepal Agriculture Genetic Resources Centre (NAGRC) Khumaltar, Kathmandu, Nepal, and Kumrek Sikkim. These plant varieties are scientifically evaluated their biological properties. METHODS: Rutin wasfractionated from buckwheat seeds using methanol fraction and analysed for quality by HPLC method. The rutin fraction of the cultivar NGRC03731 a tartary buck wheat and standard rutin was used against Osteosarcoma cell lines (SAOS2) and human gingival fibroblast cells (hGFs) for anticancer activity. The cell viability using rutin fraction and standard rutin treated with SAOS2 cells were assessed by MTT assay. For further research, the best doses (IC-50: 20 g/ml) were applied. By using AO/EtBr dual staining, the effects of Rutin fraction on SAOS2 cell death were analysed. The scratch wound healing assay was used to analyse cell migration. Real-time PCR was used to analyse the pro-/anti-apoptotic gene expression. RESULTS: The seeds with the highest rutin content, NGRC03731 seeds, had 433 mg/100 g of rutin.The rutin fraction treatment and standard rutin significantly reduced cell viability in the MTT assay, and osteosarcoma cells were observed on sensitive to the IC-50 dose at a concentration of 20 g/ml after 24 h.The SAOS2 cells exposed to rutin fraction at 20 g/ml and standard rutin at 10 g/ml exhibited significant morphological alterations, cell shrinkage and decreased cell density, which indicate apoptotic cells.Rutin-fraction treated cells stained with acridine orange/ethidium bromide (AO/EtBr) dual staining cells turned yellow, orange, and red which indicatesto measure apoptosis.The anti-migration potential of rutin fraction, results prevented the migration of SAOS2 cancer cells.Rutin-fraction significantly increased the expression of pro-apoptotic proteinsBad, using real-time PCR analysis (mRNA for Bcl-2 family proteins) resulted Bcl-2's expression is negatively regulated. CONCLUSION: Osteosarcoma (SAOS2) cell lines' proliferation, migration, and ability to proliferate were reduced markedly by rutin fraction and it also causes apoptosis of Osteosarcoma cell lines (SAOS2).


Asunto(s)
Fagopyrum , Osteosarcoma , Humanos , Rutina/farmacología , Fagopyrum/genética , Línea Celular , Proteínas Proto-Oncogénicas c-bcl-2 , Osteosarcoma/tratamiento farmacológico
8.
Int J Phytoremediation ; 26(4): 569-578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37684742

RESUMEN

To promote the selenium (Se) uptakes in fruit trees under Se-contaminated soil, the effects of water extract of Fagopyrum dibotrys (D. Don) Hara straw on the Se accumulation in peach seedlings under selenium-contaminated soil were studied. The results showed that the root biomass, chlorophyll content, activities of antioxidant enzymes, and soluble protein content of peach seedlings were increased by the F. dibotrys straw extract. The different forms of Se (total Se, inorganic Se, and organic Se) were also increased in peach seedlings following treatment with the F. dibotrys straw extract. The highest total shoot Se content was treated by the 300-fold dilution of F. dibotrys straw, which was 30.87% higher than the control. The F. dibotrys straw extract also increased the activities of adenosine triphosphate sulfurase (ATPS), and adenosine 5'-phosphosulfate reductase (APR) in peach seedlings, but decreased the activity of serine acetyltransferase (SAT). Additionally, correlation and grey relational analyses revealed that chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se content. Overall, this study shows that the water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.


The water extract of Fagopyrum dibotrys (D. Don) Hara straw promoted the selenium (Se) uptake in peach seedlings under selenium-contaminated soil. The concentration of F. dibotrys straw extract showed a quadratic polynomial regression relationship with the total root and shoot Se. Furthermore, chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se. This study shows that water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.


Asunto(s)
Fagopyrum , Prunus persica , Selenio , Biodegradación Ambiental , Clorofila A/análisis , Fagopyrum/metabolismo , Prunus persica/metabolismo , Plantones/química , Selenio/metabolismo , Suelo , Agua/análisis
9.
Pest Manag Sci ; 80(2): 763-775, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37774133

RESUMEN

BACKGROUND: Nectar plants provide extra nourishment for parasitoids, which can utilize floral volatiles to locate nectar-rich flowers. A promising strategy is to screen potential floral species based on the wasps' olfactory preferences for nectar sources, and to ensure their suitability for both natural enemies and targeted pests. Cotesia vestalis (Haliday) is a dominant parasitoid of the oligophagous pest Plutella xylostella, which poses a significant threat to cruciferous vegetables globally. However, the chemical cues in plant-parasitoid complexes mediating Cotesia vestalis to locate nectar food resources and the positive effect of nectar plants on the Cotesia vestalis population are poorly understood. RESULTS: The results showed that Fagopyrum esculentum was the most attractive plant that attracted Cotesia vestalis, not Plutella xylostella in 44 flowering plants from 19 families. 1,2-Diethyl benzene and 1,4-diethyl benzene, identified from the floral volatiles from F. esculentum in full bloom, were found to elicit dose-dependent electrophysiological responses and attract Cotesia vestalis adults, demonstrating their potential as semiochemicals. Moreover, the age-stage, two-sex life table revealed that feeding on nectar food increased the efficacy of Cotesia vestalis adults against Plutella xylostella. CONCLUSION: In summary, the findings provide insights into the chemical ecology of plant-parasitoid complexes and support the potential use of F. esculentum as insectary plants in habitat manipulation against Plutella xylostella by supplying natural nectar food for the Cotesia vestalis population. Our results suggest an attract and reward strategy based on an attractant for Cotesia vestalis to control Plutella xylostella, or the development of volatile-based artificial food for Cotesia vestalis. © 2023 Society of Chemical Industry.


Asunto(s)
Fagopyrum , Lepidópteros , Mariposas Nocturnas , Avispas , Humanos , Animales , Néctar de las Plantas , Benceno , Avispas/fisiología , Mariposas Nocturnas/fisiología , Larva , Interacciones Huésped-Parásitos
10.
J Agric Food Chem ; 71(50): 20131-20145, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38063436

RESUMEN

Tartary buckwheat is an annual minor cereal crop with a variety of secondary metabolites, endowing it with a high nutritional and medicinal value. Flavonoids constitute the primary compounds of Tartary buckwheat. Recently, metabolomics, as an adjunct breeding method, has been increasingly employed in crop research. This study explores the correlation between the total flavonoid content (TFC) and antioxidant capacity in 167 Tartary buckwheat varieties. Ten Tartary buckwheat varieties with significant differences in flavonoid content and antioxidant capacity were selected by cluster analysis. With the use of liquid chromatography-mass spectrometry, 58 flavonoid compounds were identified, namely, 42 flavonols, 10 flavanols, 3 flavanones, 1 isoflavone, 1 anthocyanidin, and 1 proanthocyanidin. Different samples were clearly separated by employing principal component analysis and partial least-squares discriminant analysis. Eight differential flavonoid compounds were further selected through volcano plots and variable importance in projection. Differential metabolites were highly correlated with TFC and antioxidant capacity. Finally, metabolic markers of kaempferol-3-O-hexoside, kaempferol-7-O-glucoside, and naringenin-O-hexoside were determined by the random forest model. The findings provide a basis for the selection and identification of Tartary buckwheat varieties with high flavonoid content and strong antioxidant activity.


Asunto(s)
Fagopyrum , Flavonoides , Flavonoides/química , Quempferoles/metabolismo , Fagopyrum/metabolismo , Antioxidantes/metabolismo , Fitomejoramiento
11.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003497

RESUMEN

Pseudo-cereals such as buckwheat (Fagopyrum esculentum) are valid candidates to promote diet biodiversity and nutrition security in an era of global climate change. Buckwheat hulls (BHs) are currently an unexplored source of dietary fibre and bioactive phytochemicals. This study assessed the effects of several bioprocessing treatments (using enzymes, yeast, and combinations of both) on BHs' nutrient and phytochemical content, their digestion and metabolism in vitro (using a gastrointestinal digestion model and mixed microbiota from human faeces). The metabolites were measured using targeted LC-MS/MS and GC analysis and 16S rRNA gene sequencing was used to detect the impact on microbiota composition. BHs are rich in insoluble fibre (31.09 ± 0.22% as non-starch polysaccharides), protocatechuic acid (390.71 ± 31.72 mg/kg), and syringaresinol (125.60 ± 6.76 mg/kg). The bioprocessing treatments significantly increased the extractability of gallic acid, vanillic acid, p-hydroxybenzoic acid, syringic acid, vanillin, syringaldehyde, p-coumaric acid, ferulic acid, caffeic acid, and syringaresinol in the alkaline-labile bound form, suggesting the bioaccessibility of these phytochemicals to the colon. Furthermore, one of the treatments, EC_2 treatment, increased significantly the in vitro upper gastrointestinal release of bioactive phytochemicals, especially for protocatechuic acid (p < 0.01). The BH fibre was fermentable, promoting the formation mainly of propionate and, to a lesser extent, butyrate formation. The EM_1 and EC_2 treatments effectively increased the content of insoluble fibre but had no effect on dietary fibre fermentation (p > 0.05). These findings promote the use of buckwheat hulls as a source of dietary fibre and phytochemicals to help meet dietary recommendations and needs.


Asunto(s)
Fagopyrum , Humanos , Fagopyrum/metabolismo , Cromatografía Liquida , ARN Ribosómico 16S/metabolismo , Espectrometría de Masas en Tándem , Fibras de la Dieta/metabolismo , Fitoquímicos/metabolismo
12.
Mol Plant ; 16(9): 1427-1444, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37649255

RESUMEN

Common buckwheat (Fagopyrum esculentum) is an ancient crop with a world-wide distribution. Due to its excellent nutritional quality and high economic and ecological value, common buckwheat is becoming increasingly important throughout the world. The availability of a high-quality reference genome sequence and population genomic data will accelerate the breeding of common buckwheat, but the high heterozygosity due to the outcrossing nature has greatly hindered the genome assembly. Here we report the assembly of a chromosome-scale high-quality reference genome of F. esculentum var. homotropicum, a homozygous self-pollinating variant of common buckwheat. Comparative genomics revealed that two cultivated buckwheat species, common buckwheat (F. esculentum) and Tartary buckwheat (F. tataricum), underwent metabolomic divergence and ecotype differentiation. The expansion of several gene families in common buckwheat, including FhFAR genes, is associated with its wider distribution than Tartary buckwheat. Copy number variation of genes involved in the metabolism of flavonoids is associated with the difference of rutin content between common and Tartary buckwheat. Furthermore, we present a comprehensive atlas of genomic variation based on whole-genome resequencing of 572 accessions of common buckwheat. Population and evolutionary genomics reveal genetic variation associated with environmental adaptability and floral development between Chinese and non-Chinese cultivated groups. Genome-wide association analyses of multi-year agronomic traits with the content of flavonoids revealed that Fh05G014970 is a potential major regulator of flowering period, a key agronomic trait controlling the yield of outcrossing crops, and that Fh06G015130 is a crucial gene underlying flavor-associated flavonoids. Intriguingly, we found that the gene translocation and sequence variation of FhS-ELF3 contribute to the homomorphic self-compatibility of common buckwheat. Collectively, our results elucidate the genetic basis of speciation, ecological adaptation, fertility, and unique flavor of common buckwheat, and provide new resources for future genomics-assisted breeding of this economically important crop.


Asunto(s)
Productos Biológicos , Fagopyrum , Fagopyrum/genética , Metagenómica , Variaciones en el Número de Copia de ADN , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Fertilidad
13.
Front Microbiol ; 14: 1220431, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601353

RESUMEN

Golden buckwheat (Fagopyrum dibotrys, also known as F. acutatum) is a traditional edible herbal medicinal plant with a large number of secondary metabolites and is considered to be a source of therapeutic compounds. Different ecological environments have a significant impact on their compound content and medicinal effects. However, little is known about the interactions between soil physicochemical properties, the rhizosphere, endophytic fungal communities, and secondary metabolites in F. dibotrys. In this study, the rhizosphere soil and endophytic fungal communities of F. dibotrys in five different ecological regions in China were identified based on high-throughput sequencing methods. The correlations between soil physicochemical properties, active components (total saponins, total flavonoids, proanthocyanidin, and epicatechin), and endophytic and rhizosphere soil fungi of F. dibotrys were analyzed. The results showed that soil pH, soil N, OM, and P were significantly correlated with the active components of F. dibotrys. Among them, epicatechin, proanthocyanidin, and total saponins were significantly positively correlated with soil pH, while proanthocyanidin content was significantly positively correlated with STN, SAN, and OM in soil, and total flavone content was significantly positively correlated with P in soil. In soil microbes, Mortierella, Trechispora, Exophiala, Ascomycota_unclassified, Auricularia, Plectosphaerella, Mycena, Fungi_unclassified, Agaricomycetes_unclassified, Coprinellus, and Pseudaleuria were significantly related to key secondary metabolites of F. dibotrys. Diaporthe and Meripilaceae_unclassified were significantly related to key secondary metabolites in the rhizome. This study presents a new opportunity to deeply understand soil-plant-fungal symbioses and secondary metabolites in F. dibotrys, as well as provides a scientific basis for using biological fertilization strategies to improve the quality of F. dibotrys.

14.
BMC Plant Biol ; 23(1): 212, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37088810

RESUMEN

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) is an important food and medicine crop plant, which has been cultivated for 4000 years. A nuclear genome has been generated for this species, while an intraspecific pan-plastome has yet to be produced. As such a detailed understanding of the maternal genealogy of Tartary buckwheat has not been thoroughly investigated. RESULTS: In this study, we de novo assembled 513 complete plastomes of Fagopyrum and compared with 8 complete plastomes of Fagopyrum downloaded from the NCBI database to construct a pan-plastome for F. tartaricum and resolve genomic variation. The complete plastomes of the 513 newly assembled Fagopyrum plastome sizes ranged from 159,253 bp to 159,576 bp with total GC contents ranged from 37.76 to 37.97%. These plastomes all maintained the typical quadripartite structure, consisting of a pair of inverted repeat regions (IRA and IRB) separated by a large single copy region (LSC) and a small single copy region (SSC). Although the structure and gene content of the Fagopyrum plastomes are conserved, numerous nucleotide variations were detected from which population structure could be resolved. The nucleotide variants were most abundant in the non-coding regions of the genome and of those the intergenic regions had the most. Mutational hotspots were primarily found in the LSC regions. The complete 521 Fagopyrum plastomes were divided into five genetic clusters, among which 509 Tartary buckwheat plastomes were divided into three genetic clusters (Ft-I/Ft-II/Ft-III). The genetic diversity in the Tartary buckwheat genetic clusters was the greatest in Ft-III, and the genetic distance between Ft-I and Ft-II was the largest. Based on the results of population structure and genetic diversity analysis, Ft-III was further subdivided into three subgroups Ft-IIIa, Ft-IIIb, and Ft-IIIc. Divergence time estimation indicated that the genera Fagopyrum and Rheum (rhubarb) shared a common ancestor about 48 million years ago (mya) and that intraspecies divergence in Tartary buckwheat began around 0.42 mya. CONCLUSIONS: The resolution of pan-plastome diversity in Tartary buckwheat provides an important resource for future projects such as marker-assisted breeding and germplasm preservation.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Perfilación de la Expresión Génica , Fitomejoramiento , Mutación , Nucleótidos , Filogenia
15.
Heliyon ; 9(3): e14029, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911881

RESUMEN

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

16.
Plant Foods Hum Nutr ; 78(2): 279-285, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36740612

RESUMEN

The germinated seeds of many plants are a natural source of substances that can be used to supplement food and increase its functionality. The seeds' metabolism may be modified during germination to produce specific health-promoting compounds. Fagopyrum esculentum Moench is a rich source of nutrients. Buckwheat seeds modified during germination may be helpful as an additive to new functional food products with anti-atherogenic properties. However, their effect and safety should be assessed in in vivo studies. The aim of the study was to evaluate the effect that adding modified buckwheat sprouts (Fagopyrum esculentum Moench) to an atherogenic (high-fat) diet has on the morphology and digestibility parameters of rats. Buckwheat seeds were modified by adding the probiotic strain of the yeast Saccharomyces cerevisiae var. boulardii. The study was carried out on 32 Wistar rats, and digestibility and blood counts were assessed during the experiment. There was no evidence of an adverse effect on the animals' weight gain and nutritional efficiency. However, the influence of diets with freeze-dried buckwheat sprouts on digestibility and morphological parameters was noticed. Fat digestibility registered a statistically significant decrease in the groups fed a high-fat diet with the addition of sprouts. The study shows a new direction in the use of buckwheat sprouts.


Asunto(s)
Fagopyrum , Ratas , Animales , Dieta Aterogénica , Ratas Wistar , Germinación , Extractos Vegetales/farmacología , Semillas
17.
J Pharm Biomed Anal ; 223: 115158, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36410130

RESUMEN

In the present study, a procyanidins-enriched fraction (PCE) from the rhizome of Fagopyrum dibotrys was obtained by anticomplement activity-guided fractionation. PCE could alleviate H1N1-induced ALI in mice by reducing weight loss, decreasing lung index, and regulating cytokine levels in lung tissue. PCE contained 76.5 ± 1.1% procyanidins with a mean degree of polymerization (mDP) of 5.24 ± 0.16. Meanwhile, thirty-three chemical constituents, including 27 procyanidins and 6 other compounds, were recognized by UPLC-Triple-TOF-MS/MS. Among them, twenty recognized procyanidins were composed of (epi)catechin with B-type link, while the rest consisted of (epi)catechin gallate. Furthermore, six compounds were obtained by preparative HPLC on a C18 column (250 × 10.0 mm, 5 µm), and their structures were confirmed by mass spectrum (MS), nuclear magnetic resonance (NMR), and specific rotation. The structure-activity relationship analysis indicated that DP and galloylation were closely related to the anticomplement activity of procyanidins. The obtained results revealed that anticomplement procyanidins were one kind of the potentially effective materials of F. dibotrys against H1N1 influenza virus infection, and the in vivo efficacy of these compounds was worthy of further investigation.


Asunto(s)
Lesión Pulmonar Aguda , Fagopyrum , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Proantocianidinas , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Proantocianidinas/farmacología , Proantocianidinas/uso terapéutico , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión
18.
Food Chem ; 404(Pt B): 134730, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36323045

RESUMEN

This study investigated the heat-induced interactions between wheat and buckwheat proteins by heating wheat proteins, buckwheat albumin, globulin, and mixtures of wheat flour with buckwheat albumin/globulin at 50, 65, 80, 95, and 100 °C. The results showed that the cross-linking reactions of wheat glutenin with buckwheat albumin and globulin initiated at 80 and 95 °C, respectively. Buckwheat albumin decreased the extractability of α-gliadin by 35 % at 95 °C and 5.9 % at 100 °C. The linkage of buckwheat globulin to wheat glutelin prevented part of the wheat gliadin from linking to glutelin, resulting in the extractability of α- and γ-gliadin increased by 8.6 % and 11 % at 95 °C, respectively. The chemical forces results indicated that interactions between wheat and buckwheat proteins were primarily driven by disulfide bonds and hydrophobic interactions. This study provides a theoretical basis for better regulating the wheat-buckwheat protein network to improve the quality of buckwheat-enriched products.


Asunto(s)
Fagopyrum , Globulinas , Triticum/química , Fagopyrum/química , Harina/análisis , Gliadina/química , Calor , Globulinas/química , Albúminas
19.
J Plant Physiol ; 280: 153842, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36434991

RESUMEN

R2R3-MYB transcription factors play important roles in response to abiotic stresses in planta, such as salt, drought, and osmotic stress. However, the role of FtMYB11 in Tartary buckwheat (Fagopyrum tataricum) in drought and osmotic tolerance has not yet been elucidated. In this study, we found that FtMYB11 was markedly induced by exogenous abscisic acid (ABA), salinity, and mannitol. Further, FtMYB11-overexpressing Arabidopsis showed hypersensitivity to ABA-mediated seed germination and seedling establishment through regulating transcripts of AtCBF1, AtDREB2A, and AtRD20, compared with wild type, indicating that FtMYB11 plays a positive role in ABA signaling. In contrast, transgenic lines overexpressing FtMYB11 were sensitive to mannitol and NaCl treatments, suggesting that FtMYB11 plays a negative role in osmotic tolerance. Intriguingly, the transcripts of ABA biosynthetic enzyme genes were significantly elevated in plants overexpressing FtMYB11 after exposure to osmotic stresses, such as AtABA3 and AtNCED3. In addition, flavonoid biosynthesis genes were also upregulated in transgenic Arabidopsis under ABA, salt, and drought treatments, including AtC4H, AtF3H, AtANS, AtFLS, and At4CL. The drought tolerance assay showed that plants overexpressing FtMYB11 displayed greater tolerance to water deficit through regulating MDA and proline content. Taken together, FtMYB11 has opposite roles in response to abiotic stresses, but it may mediate flavonoid biosynthesis through regulation of related enzyme genes.


Asunto(s)
Arabidopsis , Fagopyrum , Arabidopsis/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Cloruro de Sodio/farmacología , Sequías , Manitol , Flavonoides , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/farmacología , Estrés Fisiológico/genética
20.
Plant Physiol Biochem ; 194: 696-707, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36565614

RESUMEN

Tartary buckwheat is rich in flavonoids, which not only play an important role in the plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtbHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase (CHI), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.


Asunto(s)
Fagopyrum , Rutina , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides/metabolismo , Luciferasas/metabolismo , Rutina/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA