Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.357
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Fish Dis ; 47(8): e13953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38616496

RESUMEN

Ferritin, transferrin, and transferrin receptors I and II play a vital role in iron metabolism, health, and indication of iron deficiency anaemia in fish. To evaluate the use of high-iron diets to prevent or reverse channel catfish (Ictalurus punctatus) anaemia of unknown causes, we investigated the expression of these iron-regulatory genes and proteins in channel catfish fed plant-based diets. Catfish fingerlings were fed five diets supplemented with 0 (basal), 125, and 250 mg/kg of either inorganic iron or organic iron for 2 weeks. Ferritin, transferrin, and transferrin receptor I and II mRNA and protein expression levels in fish tissues (liver, intestine, trunk kidney, and head kidney) and plasma were determined. Transferrin (iron transporter) and TfR (I and II) genes were generally highly expressed in fish fed the basal diet compared to those fed the iron-supplemented diets. In contrast, ferritin (iron storage) genes were more expressed in the trunk kidney of fish fed the iron-supplemented diets than in those fed the basal diet. Our results demonstrate that supplementing channel catfish plant-based diets with iron from either organic or inorganic iron sources affected the expression of the iron-regulatory genes and increased body iron status in the fish.


Asunto(s)
Alimentación Animal , Dieta , Ferritinas , Ictaluridae , Hierro , Receptores de Transferrina , Transferrina , Animales , Ictaluridae/genética , Ferritinas/genética , Ferritinas/metabolismo , Ferritinas/sangre , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Transferrina/metabolismo , Transferrina/genética , Dieta/veterinaria , Alimentación Animal/análisis , Hierro/metabolismo , Suplementos Dietéticos/análisis , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedades de los Peces , Hierro de la Dieta/administración & dosificación , Hierro de la Dieta/metabolismo , Expresión Génica/efectos de los fármacos
2.
BMC Plant Biol ; 24(1): 235, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561649

RESUMEN

Drought stress considered a key restrictive factor for a warm-season bermudagrass growth during summers in China. Genotypic variation against drought stress exists among bermudagrass (Cynodon sp.), but the selection of highly drought-tolerant germplasm is important for its growth in limited water regions and for future breeding. Our study aimed to investigate the most tolerant bermudagrass germplasm among thirteen, along latitude and longitudinal gradient under a well-watered and drought stress condition. Current study included high drought-resistant germplasm, "Tianshui" and "Linxiang", and drought-sensitive cultivars; "Zhengzhou" and "Cixian" under drought treatments along longitude and latitudinal gradients, respectively. Under water deficit conditions, the tolerant genotypes showed over-expression of a dehydrin gene cdDHN4, antioxidant genes Cu/ZnSOD and APX which leads to higher antioxidant activities to scavenge the excessive reactive oxygen species and minimizing the membrane damage. It helps in maintenance of cell membrane permeability and osmotic adjustment by producing organic osmolytes. Proline an osmolyte has the ability to keep osmotic water potential and water use efficiency high via stomatal conductance and maintain transpiration rate. It leads to optimum CO2 assimilation rate, high chlorophyll contents for photosynthesis and elongation of leaf mesophyll, palisade and thick spongy cells. Consequently, it results in elongation of leaf length, stolon and internode length; plant height and deep rooting system. The CdDHN4 gene highly expressed in "Tianshui" and "Youxian", Cu/ZnSOD gene in "Tianshui" and "Linxiang" and APX gene in "Shanxian" and "Linxiang". The genotypes "Zhongshan" and "Xiaochang" showed no gene expression under water deficit conditions. Our results indicate that turfgrass show morphological modifications firstly when subjected to drought stress; however the gene expression is directly associated and crucial for drought tolerance in bermudagrass. Hence, current research has provided excellent germplasm of drought tolerant bermudagrass for physiological and molecular study and future breeding.


Asunto(s)
Antioxidantes , Cynodon , Cynodon/fisiología , Antioxidantes/metabolismo , Sequías , Fitomejoramiento , Fotosíntesis/genética , Agua/metabolismo , Expresión Génica
3.
Biochem Genet ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653889

RESUMEN

Peppermint (Mentha piperita) is a perennial medicinal plant containing active ingredients that can be used for treating liver and prostate cancers, acute respiratory infections, allergies, digestive problems, neuralgia, and migraines. The objective of this research is to investigate the expression of essential genes in the menthol pathway of Mentha piperita, including Pulegone reductase (Pr), Menthofuran synthase (Mfs), and limonene synthase (Ls) using qPCR, physiological analysis and essential oil composition in response to methyl jasmonate (MeJA) (0.5 mM) elicitation. Physiological analysis showed that 0.5 mM MeJA triggers defensive responsiveness in Mentha piperita by increasing superoxide dismutase (SOD) and Peroxidase (POD) enzymes activity. The highest transcript levels of Pr and Mfs genes were observed during 8 and 12 h after treatment respectively, but following 24 h, they were down-regulated. Essential oil analysis indicated that the percentage of constituents in the essential oil was changed using MeJA at 48 h and 96 h after post-treatment. Effective antimicrobial compounds, α-pinene, ß-pinene, linalool and methyl acetate, were induced after 48 h. A non-significant positive relationship was detected between menthol content, and expression of the Pr and Mfs genes. Due to the significant change in the expression of Pr and Mfs genes in the menthol pathway, role of Pr gene in directing the pathway to the valuable compound menthol and deviation of the menthol pathway to the menthofuran as an undesirable component of essential oil by Mfs gene, it can be deduced that they are the most critical genes in response to MeJA treatment, which are appropriate candidates for metabolite engineering. In addition, MeJA improved defensive responsiveness and percentage of some constituents with antimicrobial properties in Mentha piperita.

4.
Plants (Basel) ; 13(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38592867

RESUMEN

In light of expected climate change, it is important to seek nature-based solutions that can contribute to the protection of our planet as well as to help overcome the emerging adverse changes. In an agricultural context, increasing plant resistance to abiotic stress seems to be crucial. Therefore, the scope of the presented research was focused on the application of botanical extracts that exerted positive effects on model plants growing under controlled laboratory conditions, as well as plants subjected to sorbitol-induced osmotic stress. Foliar spraying increased the length and fresh mass of the shoots (e.g., extracts from Taraxacum officinale, Trifolium pratense, and Pisum sativum) and the roots (e.g., Solidago gigantea, Hypericum perforatum, and Pisum sativum) of cabbage seedlings grown under stressful conditions, as well as their content of photosynthetic pigments (Pisum sativum, Lens culinaris, and Hypericum perforatum) along with total phenolic compounds (Hypericum perforatum, Taraxacum officinale, and Urtica dioica). The antioxidant activity of the shoots measured with the use of DDPH (Pisum sativum, Taraxacum officinale, Urtica dioica, and Hypericum perforatum), ABTS (Trifolium pratense, Symphytum officinale, Valeriana officinalis, Pisum sativum, and Lens culinaris), and FRAP (Symphytum officinale, Valeriana officinalis, Urtica dioica, Hypericum perforatum, and Taraxacum officinale) assays was also enhanced in plants exposed to osmotic stress. Based on these findings, the most promising formulation based on Symphytum officinale was selected and subjected to transcriptomic analysis. The modification of the expression of the following genes was noted: Bol029651 (glutathione S-transferase), Bol027348 (chlorophyll A-B binding protein), Bol015841 (S-adenosylmethionine-dependent methyltransferases), Bol009860 (chlorophyll A-B binding protein), Bol022819 (GDSL lipase/esterase), Bol036512 (heat shock protein 70 family), Bol005916 (DnaJ Chaperone), Bol028754 (pre-mRNA splicing Prp18-interacting factor), Bol009568 (heat shock protein Hsp90 family), Bol039362 (gibberellin regulated protein), Bol007693 (B-box-type zinc finger), Bol034610 (RmlC-like cupin domain superfamily), Bol019811 (myb_SHAQKYF: myb-like DNA-binding domain, SHAQKYF class), Bol028965 (DA1-like Protein). Gene Ontology functional analysis indicated that the application of the extract led to a decrease in the expression of many genes related to the response to stress and photosynthetic systems, which may confirm a reduction in the level of oxidative stress in plants treated with biostimulants. The conducted studies showed that the use of innovative plant-based products exerted positive effects on crops and can be used to supplement current cultivation practices.

5.
BMC Plant Biol ; 24(1): 333, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664694

RESUMEN

BACKGROUND: The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS: In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS: Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.


Asunto(s)
Camellia sinensis , Ritmo Circadiano , Fotosíntesis , Fotosíntesis/genética , Camellia sinensis/genética , Camellia sinensis/fisiología , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Familia de Multigenes , Proteínas de Unión a Clorofila/genética , Proteínas de Unión a Clorofila/metabolismo , Fotoperiodo
6.
Open Vet J ; 14(1): 70-89, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633150

RESUMEN

Background: Organic selenium (Sel-Plex®) supplementation holds considerable promise for improving the effectiveness of fish production. Aim: This experiment was accomplished to judge the potential benefits of Sel-Plex® nutritional additive on growth outcomes, physiological response, oxidative status, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Utilizing a basal diet of 30% protein, four experimental diets were prepared, each of which contained Sel-Plex® at concentrations of 0.0, 0.5, 1, and 2 mg/kg, respectively. Three replicates of 20 fish/treatment were used using 240 healthy Nile tilapia fingerlings. Fish were placed in 12 glass aquariums and separated into 4 groups at random. For the entire span of 8 weeks, diets were admitted to fish at a 3% rate of fish biomass/aquarium. After the feeding trial, pathogenic A. hydrophila was intraperitoneally injected into fish of each treatment, and fish were observed for 15 days to track the survival rate (SR) after the challenge. Results: Growth performance, physiological response, immunological parameters (phagocytic activity, phagocytic index, and lysozyme), and antioxidant parameters [catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione peroxidase (GPx)] were noticeably improved in Sel-Plex® treated groups. Moreover, Sel-Plex® increased gene expression linked with the immune system in the liver (tumor necrosis factor-alpha and interleukin 1ß), to growth (insulin-like growth factor 1 and growth hormone receptor), and antioxidants (SOD and GPx). Under pathogen-challenge conditions, the employed dietary Sel-Plex® supplementation could successfully lower fish oxidative stress, offering a potential preventive additive for Nile tilapia instead of antibiotics. On the other hand, Sel-Plex® significantly enhanced each of three intestinal morphological measurements (villus width, villus length, and crypt depth), demonstrating the greatest influence on the improvement of intestinal structure overall. In the Nile tilapia control group, the infection with A. hydrophila caused noticeable degenerative alterations in the gut, hepatopancreas, spleen, and posterior kidney. The severity of the lesion was significantly reduced and significantly improved with higher Sel-Plex® concentrations. Sel-Plex® supplemented groups had 100% SRs among the A. hydrophila-challenged groups. Conclusion: It could be advised to enrich the diets of Nile tilapia fingerlings with 1-2 mg.kg-1 of Sel-Plex® to enhance growth rate, physiological response, immunological reaction, and intestinal absorptive capacity.


Asunto(s)
Cíclidos , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas hydrophila/metabolismo , Cíclidos/metabolismo , Resistencia a la Enfermedad , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Suplementos Dietéticos , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Expresión Génica
7.
Open Vet J ; 14(1): 116-135, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633169

RESUMEN

Background: Mannanoligosaccharides (MOS) usage in fish production has drawn more attention because of their positive benefits on disease resistance and fish performance. Aim: The ongoing research was executed to assess the potential advantages of Bio-Mos® dietary supplementation regarding the growth outcomes, physiological response, oxidative biomarkers, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Four experimental diets were developed using a 30% protein baseline diet, with Bio-Mos® added at variable levels; 0.0, 0.5, 1, and 2 g/kg, respectively. 240 healthy Nile tilapia fingerlings were split into 4 groups at random and assigned to 12 glass aquariums (three replicates of 20 fish/treatment). Diets were admitted at a 3% rate of fish biomass/aquarium for 8 weeks. Following the feeding trial, fish from every treatment were intraperitoneally injected with pathogenic A. hydrophila, and then observed for 15 days to record the survival rate percent (SR%) post challenge. Results: Results revealed significant improvement in growth performance, physiological response, immunological parameters (phagocytic index, phagocytic activity, and lysozyme), and antioxidant parameters [catalase, malondialdehyde, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD)] among Bio-Mos® treated groups. Moreover, Bio-Mos® increased the expression of tumor necrosis factor alpha and Interleukin 1ß, genes linked to the liver immune system. Growth-related genes (GHr), antioxidant-related genes (SOD and GSH-Px). In fish subjected to pathogens, dietary MOS supplementation could significantly lower oxidative stress, showing promise as a preventative supplement for Nile tilapia in place of antibiotics. On the other hand, Bio-Mos® considerably improved each of the three intestinal morphological measures (villus width, villus length, and crypt depth), showing the best overall intestinal structure-improving impact. The challenge with A. hydrophila caused marked degenerative alterations in the intestine, hepatopancreas, spleen, and posterior kidney of Nile tilapia, in the control group. However, lesion severity was greatly decreased and showed marked amelioration with an increased concentration of Bio-Mos®. The A. hydrophila-challenged groups revealed a 100% SR% mainly among the Bio-Mos® supplemented groups. Conclusion: It is recommended to enrich the Nile tilapia fingerlings diets with 2 g.kg-1 of MOS for better results on the growth rate, physiological response, immunological response, and intestinal absorptive capacity.


Asunto(s)
Antioxidantes , Cíclidos , Animales , Antioxidantes/metabolismo , Aeromonas hydrophila/metabolismo , Cíclidos/metabolismo , Suplementos Dietéticos , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Expresión Génica
8.
Open Vet J ; 14(1): 164-175, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633171

RESUMEN

Background: Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are well defined as food poisoning pathogens that are highly resistant and need continuous studies. Aim: The purpose of the work was to examine phenotypic and genotypic characteristics of both P. aeruginosa and S. aureus, and treatment trials with medicinal plants. Methods: Samples were examined for isolation of P. aeruginosa and S. aureus on selective media followed by biochemical confirmation, biofilm formation, genes detection, and expression of P. aeruginosa pslA biofilm gene was performed by quantitative real-time polymerase chain reaction after treatment with 0.312 mg/ml Moringa oleifera aqueous extract as a minimum inhibitory concentration. Results: The highest isolation rate of P. aeruginosa was 20% from both raw milk and Kariesh cheese, followed by 16% and 12% from ice cream and processed cheese, respectively, while the highest isolation rate of S. aureus was 36% from raw milk followed by 28% in ice cream and 16% in both Kariesh cheese and processed cheese. 30% of P. aeruginosa isolates were biofilm producers, while only 21% of S. aureus isolates were able to produce biofilm. The P. aeruginosa isolates harbor virulence-associated genes nan1, exoS, toxA, and pslA at 100%, 80%, 40%, and 40%, respectively. Staphylococcus aureus SEs genes were examined in S. aureus strains, where SEA and SEB genes were detected with 60%, but no isolate harbored SEC, SED, or SEE. The significant fold change of P. aeruginosa pslA expression was 0.40332 after treatment with M. oleifera aqueous extract. Conclusion: Pseudomonas aeruginosa and S. aureus harbor dangerous virulence genes that cause food poisoning, but M. oleifera extract could minimize their action.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Moringa oleifera , Infecciones Estafilocócicas , Animales , Staphylococcus aureus/genética , Pseudomonas aeruginosa/genética , Leche , Moringa oleifera/genética , Enterotoxinas/genética , Enterotoxinas/metabolismo , Enterotoxinas/farmacología , Microbiología de Alimentos , Antibacterianos/farmacología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Biopelículas , Enfermedades Transmitidas por los Alimentos/veterinaria , Expresión Génica
9.
Physiol Mol Biol Plants ; 30(3): 401-415, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38633270

RESUMEN

The gene family known as the Lateral Organ Boundary Domain (LBD) is responsible for producing transcription factors unique to plants, which play a crucial role in controlling diverse biological activities, including their growth and development. This research focused on examining Cerasus humilis'ChLBD gene, owing to its significant ecological, economic, and nutritional benefits. Examining the ChLBD gene family's member count, physicochemical characteristics, phylogenetic evolution, gene configuration, and motif revealed 41 ChLBD gene family members spread across 8 chromosomes, with ChLBD gene's full-length coding sequences (CDSs) ranging from 327 to 1737 base pairs, and the protein sequence's length spanning 109 (ChLBD30)-579 (ChLBD35) amino acids. The molecular weights vary from 12.068 (ChLBD30) to 62.748 (ChLBD35) kDa, and the isoelectric points span from 4.74 (ChLBD20) to 9.19 (ChLBD3). Categorizing them into two evolutionary subfamilies: class I with 5 branches, class II with 2, the majority of genes with a single intron, and most members of the same subclade sharing comparable motif structures. The results of collinearity analysis showed that there were 3 pairs of tandem repeat genes and 12 pairs of fragment repeat genes in the Cerasus humilis genome, and in the interspecific collinearity analysis, the number of collinear gene pairs with apples belonging to the same family of Rosaceae was the highest. Examination of cis-acting elements revealed that methyl jasmonate response elements stood out as the most abundant, extensively dispersed in the promoter areas of class 1 and class 2 ChLBD. Genetic transcript analysis revealed that during Cerasus humilis' growth and maturation, ChLBD developed varied control mechanisms, with ChLBD27 and ChLBD40 potentially playing a role in managing color alterations in fruit ripening. In addition, the quality of calcium fruit will be affected by the environment during transportation and storage, and it is particularly important to use appropriate means to preserve the fruit. The research used salicylic acid-treated Cerasus humilis as the research object and employed qRT-PCR to examine the expression of six ChLBD genes throughout storage. Variations in the expression of the ChLBD gene were observed when exposed to salicylic acid, indicating that salicylic acid could influence ChLBD gene expression during the storage of fruits. This study's findings lay the groundwork for additional research into the biological role of the LBD gene in Cerasus humilis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01438-5.

10.
J Hazard Mater ; 470: 134263, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613951

RESUMEN

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Asunto(s)
Antimonio , Antioxidantes , Regulación de la Expresión Génica de las Plantas , Nanopartículas , Oryza , Selenio , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Oryza/genética , Antimonio/toxicidad , Antioxidantes/metabolismo , Selenio/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nanopartículas/toxicidad , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo
11.
Biology (Basel) ; 13(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38666892

RESUMEN

Astragalus mongholicus is a traditional Chinese medicine (TCM) with important medicinal value and is widely used worldwide. Heat shock (HSF) transcription factors are among the most important transcription factors in plants and are involved in the transcriptional regulation of various stress responses, including drought, salinity, oxidation, osmotic stress, and high light, thereby regulating growth and developmental processes. However, the HFS gene family has not yet been identified in A. mongholicus, and little is known regarding the role of HSF genes in A. mongholicus. This study is based on whole genome analysis of A. mongholicus, identifying a total of 22 AmHSF genes and analyzing their physicochemical properties. Divided into three subgroups based on phylogenetic and gene structural characteristics, including subgroup A (12), subgroup B (9), and subgroup C (1), they are randomly distributed in 8 out of 9 chromosomes of A. mongholicus. In addition, transcriptome data and quantitative real time polymerase chain reaction (qRT-PCR) analyses revealed that AmHSF was differentially transcribed in different tissues, suggesting that AmHSF gene functions may differ. Red and blue light treatment significantly affected the expression of 20 HSF genes in soilless cultivation of A. mongholicus seedlings. AmHSF3, AmHSF3, AmHSF11, AmHSF12, and AmHSF14 were upregulated after red light and blue light treatment, and these genes all had light-corresponding cis-elements, suggesting that AmHSF genes play an important role in the light response of A. mongholicus. Although the responses of soilless-cultivated A. mongholicus seedlings to red and blue light may not represent the mature stage, our results provide fundamental research for future elucidation of the regulatory mechanisms of HSF in the growth and development of A. mongholicus and its response to different light conditions.

12.
Curr Issues Mol Biol ; 46(4): 3328-3341, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38666938

RESUMEN

Kidney cancer has emerged as a major medical problem in recent times. Multiple compounds are used to treat kidney cancer by triggering cancer-causing gene targets. For instance, isoquercitrin (quercetin-3-O-ß-d-glucopyranoside) is frequently present in fruits, vegetables, medicinal herbs, and foods and drinks made from plants. Our previous study predicted using protein-protein interaction (PPI) and molecular docking analysis that the isoquercitrin compound can control kidney cancer and inflammation by triggering potential gene targets of IGF1R, PIK3CA, IL6, and PTGS2. So, the present study is about further in silico and in vitro validation. We performed molecular dynamic (MD) simulation, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, cytotoxicity assay, and RT-PCR and qRT-PCR validation. According to the MD simulation (250 ns), we found that IGF1R, PIK3CA, and PTGS2, except for IL6 gene targets, show stable binding energy with a stable complex with isoquercitrin. We also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the final targets to determine their regulatory functions and signaling pathways. Furthermore, we checked the cytotoxicity effect of isoquercitrin (IQ) and found that 5 µg/mL and 10 µg/mL doses showed higher cell viability in a normal kidney cell line (HEK 293) and also inversely showed an inhibition of cell growth at 35% and 45%, respectively, in the kidney cancer cell line (A498). Lastly, the RT-PCR and qRT-PCR findings showed a significant decrease in PTGS2, PIK3CA, and IGF1R gene expression, except for IL6 expression, following dose-dependent treatments with IQ. Thus, we can conclude that isoquercitrin inhibits the expression of PTGS2, PIK3CA, and IGF1R gene targets, which in turn controls kidney cancer and inflammation.

13.
Sci Total Environ ; 930: 172413, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38631632

RESUMEN

Nanotechnology is a new scientific area that promotes unique concepts to comprehend the optimal mechanics of nanoparticles (NPs) in plants under heavy metal stress. The present investigation focuses on effects of synthetic and green synthesized titanium dioxide nanoparticles (TiO2 NPs and gTiO2 NPs) against Cr(VI). Green TiO2 NPs have been produced from plant leaf extract (Ricinus communis L.). Synthesis was confirmed employing an array of optical spectroscopic and electron microscopic techniques. Chromium strongly accelerated H2O2 and MDA productions by 227 % and 266 % at highest chromium concentration (60 mg/kg of soil), respectively, and also caused DNA damage, and decline in photosynthesis. Additionally, anomalies were observed in stomatal cells with gradual increment in chromium concentrations. Conversely, foliar applications of TiO2 NPs and gTiO2 NPs considerably mitigated chromium stress. Sunflower plants treated with modest amounts of green TiO2 NPs had significantly better growth index compared to chemically synthesized ones. Principal component analysis highlighted the variations among photosynthetic attributes, oxidative stress markers, and antioxidant defense systems. Notably, gTiO2 supplementation to the Cr(VI) strained plants minimized PC3 production which is a rare report so far. Conclusively, gTiO2 NPs have been identified to be promising nano-based nutrition resource for farming applications.


Asunto(s)
Cromo , Tecnología Química Verde , Helianthus , Titanio , Titanio/toxicidad , Helianthus/efectos de los fármacos , Cromo/toxicidad , Nanopartículas del Metal/toxicidad , Contaminantes del Suelo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Nanopartículas
14.
3 Biotech ; 14(5): 126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38585411

RESUMEN

Genus Mucuna encompasses several plant species renowned for their utilization in traditional Ayurvedic medicine for the treatment of Parkinson's disease, chiefly due to their exceptionally high L-dopa content relative to other plants. However, limited information exists regarding Mucuna laticifera, a newly identified species within the Mucuna genus. This study unveils a remarkable L-dopa content of 174.3 mg/g in M. laticifera seeds, surpassing all previously documented Mucuna species. Moreover, this research marks the first documentation of L-dopa, flavonoids, and phenolics within M. laticifera seeds. Furthermore, the aqueous extract derived from these seeds exhibits robust antioxidant properties. Investigation into its anti-inflammatory potential reveals a significant reduction in paw swelling and neutrophil infiltration at inflammatory sites in a carrageenan-induced rat model. Gene expression analysis utilizing a rat paw model demonstrates that the seed extract significantly downregulates the expression of various inflammation-related genes compared to carrageenan-treated rats. Collectively, these findings clearly substantiate the anti-inflammatory activity of M. laticifera seed extract. The exceptional L-dopa content combined with its anti-inflammatory properties position M. laticifera seeds as a promising therapeutic option for neurodegenerative diseases like Parkinson's, as well as various inflammatory conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03969-w.

15.
Proc Natl Acad Sci U S A ; 121(18): e2322692121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652744

RESUMEN

Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.


Asunto(s)
Peso Corporal , Ingestión de Alimentos , Elementos de Facilitación Genéticos , Hipotálamo , Proopiomelanocortina , Pez Cebra , Animales , Proopiomelanocortina/metabolismo , Proopiomelanocortina/genética , Ratones , Hipotálamo/metabolismo , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo , Femenino , Masculino , Ratones Transgénicos , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Mamíferos/metabolismo , Mamíferos/genética
16.
Acta Parasitol ; 69(1): 951-999, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38492183

RESUMEN

PURPOSE: The in vivo efficacy of ultrasonicated Rosmarinus officinalis ethanolic extract (UROEE) and its chitosan-loaded nanoparticles (UROEE-CsNPs) was investigated as a dietary prophylactic agent and as a therapeutic treatment against Eimeria tenella infected broiler chickens. METHODS: Chickens were infected with 4 × 104 E. tenella oocysts at 21 days old for primary infection and with 8 × 104 oocysts at 35 days old for secondary infection. Eleven experimental groups were conducted. Dietary addition of 100 mg/kg UROEE and 20 mg/kg for CsNPs as well as UROEE-CsNPs were included for prophylactic groups from day 1 to 42. The same doses were used for therapeutic treatment groups for 5 constitutive days. Oocyst output in feces was counted. Histopathological and immunohistochemical studies were conducted. Gene expression of pro-inflammatory cytokines as IFN-γ, IL-1ß and IL-6 as well as anti-inflammatory cytokines as IL-10 and TGF-ß4 was analyzed using semi-quantitative reverse transcriptase-PCR. RESULTS: The results showed an efficacy of UROEE, CsNPs and UROEE-CsNPs in reduction of oocyst excretion and improving the cecal tissue architecture. CD4+ and CD8+ T lymphocytes protein expression were reduced. E. tenella infection lead to upregulation of pro-inflammatory cytokines as IFN-γ, IL-1ß, IL-6 and anti-inflammatory cytokines as TGF-ß4 following primary infection, while their expression was downregulated following secondary infection. CONCLUSION: The dietary prophylactic additives and therapeutic treatments with UROEE, CsNPs and UROEE-CsNPs could decrease the inflammatory response to E. tenella as indicated by oocyst output reduction, histopathological improvements, CD4+ and CD8+ T cells protein expression reduction as well as reducing mRNA expression levels of the tested cytokines following primary and secondary infections. Consequently, these results will help to develop better-combating strategies for the control and prevention of coccidiosis on poultry farms as a dietary prophylactic agent or as a therapeutic treatment.


Asunto(s)
Pollos , Quitosano , Coccidiosis , Citocinas , Eimeria tenella , Nanopartículas , Extractos Vegetales , Enfermedades de las Aves de Corral , Rosmarinus , Animales , Coccidiosis/veterinaria , Coccidiosis/parasitología , Coccidiosis/prevención & control , Coccidiosis/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/prevención & control , Eimeria tenella/efectos de los fármacos , Citocinas/metabolismo , Rosmarinus/química , Oocistos/efectos de los fármacos , Heces/parasitología , Alimentación Animal/análisis
17.
Front Vet Sci ; 11: 1357491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435364

RESUMEN

With growing restrictions on the use of antibiotics in animal feed, plant extracts are increasingly favored as natural feed additive sources. Glycyrrhiza polysaccharide (GP), known for its multifaceted biological benefits including growth promotion, immune enhancement, and antioxidative properties, has been the focus of recent studies. Yet, the effects and mechanisms of GP on broiler growth and meat quality remain to be fully elucidated. This study aimed to investigate the effects of GP on growth, serum biochemistry, meat quality, and gene expression in broilers. The broilers were divided into five groups, each consisting of five replicates with six birds. These groups were supplemented with 0, 500, 1,000, 1,500, and 2,000 mg/kg of GP in their basal diets, respectively, for a period of 42 days. The results indicated that from day 22 to day 42, and throughout the entire experimental period from day 1 to day 42, the groups receiving 1,000 and 1,500 mg/kg of GP showed a significant reduction in the feed-to-gain ratio (F:G) compared to the control group. On day 42, an increase in serum growth hormone (GH) levels was shown in groups supplemented with 1,000 mg/kg GP or higher, along with a significant linear increase in insulin-like growth factor-1 (IGF-1) concentration. Additionally, significant upregulation of GH and IGF-1 mRNA expression levels was noted in the 1,000 and 1,500 mg/kg GP groups. Furthermore, GP significantly elevated serum concentrations of alkaline phosphatase (AKP) and globulin (GLB) while reducing blood urea nitrogen (BUN) levels. In terms of meat quality, the 1,500 and 2,000 mg/kg GP groups significantly increased fiber density in pectoral muscles and reduced thiobarbituric acid (TBA) content. GP also significantly decreased cooking loss rate in both pectoral and leg muscles and the drip loss rate in leg muscles. It increased levels of linoleic acid and oleic acid, while decreasing concentrations of stearic acid, myristic acid, and docosahexaenoic acid. Finally, the study demonstrated that the 1,500 mg/kg GP group significantly enhanced the expression of myogenin (MyoG) and myogenic differentiation (MyoD) mRNA in leg muscles. Overall, the study determined that the optimal dosage of GP in broiler feed is 1,500 mg/kg.

18.
BMC Bioinformatics ; 25(1): 138, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553675

RESUMEN

Even though high-throughput transcriptome sequencing is routinely performed in many laboratories, computational analysis of such data remains a cumbersome process often executed manually, hence error-prone and lacking reproducibility. For corresponding data processing, we introduce Curare, an easy-to-use yet versatile workflow builder for analyzing high-throughput RNA-Seq data focusing on differential gene expression experiments. Data analysis with Curare is customizable and subdivided into preprocessing, quality control, mapping, and downstream analysis stages, providing multiple options for each step while ensuring the reproducibility of the workflow. For a fast and straightforward exploration and visualization of differential gene expression results, we provide the gene expression visualizer software GenExVis. GenExVis can create various charts and tables from simple gene expression tables and DESeq2 results without the requirement to upload data or install software packages. In combination, Curare and GenExVis provide a comprehensive software environment that supports the entire data analysis process, from the initial handling of raw RNA-Seq data to the final DGE analyses and result visualizations, thereby significantly easing data processing and subsequent interpretation.


Asunto(s)
Curare , RNA-Seq , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos , Transcriptoma , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Perfilación de la Expresión Génica/métodos
19.
BMC Plant Biol ; 24(1): 170, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443797

RESUMEN

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is one of the most famous Chinese traditional medicinal plants. The taproot is the main organ producing triterpenoid saponins, and its development is directly linked to the quality and yield of the harvested P. notoginseng. However, the mechanisms underlying the dynamic metabolic changes occurring during taproot development of P. notoginseng are unknown. RESULTS: We carried out metabolomic and transcriptomic analyses to investigate metabolites and gene expression during the development of P. notoginseng taproots. The differentially accumulated metabolites included amino acids and derivatives, nucleotides and derivatives, and lipids in 1-year-old taproots, flavonoids and terpenoids in 2- and 3-year-old taproots, and phenolic acids in 3-year-old taproots. The differentially expressed genes (DEGs) are related to phenylpropanoid biosynthesis, metabolic pathway and biosynthesis of secondary metabolites at all three developmental stages. Integrative analysis revealed that the phenylpropanoid biosynthesis pathway was involved in not only the development of but also metabolic changes in P. notoginseng taproots. Moreover, significant accumulation of triterpenoid saponins in 2- and 3-year-old taproots was highly correlated with the up-regulated expression of cytochrome P450s and uridine diphosphate-dependent glycosyltransferases genes. Additionally, a gene encoding RNase-like major storage protein was identified to play a dual role in the development of P. notoginseng taproots and their triterpenoid saponins synthesis. CONCLUSIONS: These results elucidate the molecular mechanism underlying the accumulation of and change relationship between primary and secondary metabolites in P. notoginseng taproots, and provide a basis for the quality control and genetic improvement of P. notoginseng.


Asunto(s)
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Metaboloma , Perfilación de la Expresión Génica
20.
Heliyon ; 10(5): e26388, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439855

RESUMEN

The Artemisia genus belongs to the Asteraceae family and is used in the treatment of many different diseases such as hepatitis and cancer. So far, around 500 species of Artemisia have been found in different regions of the world. Artemisinin is one of the medicinal compounds found in Artemisia species. Hence, this medical feature encourages researchers to pay attention to various species of this genus to discover more genetic and phytochemical information. In the present study, five species of Artemisia including A. fragrans, A. annua, A. biennis, A. scoparia, and A. absinthium were compared to each other in terms of the artemisinin content and other phytochemical components. Moreover, the relative expression profiles of eight genes related to the accumulation and synthesis of artemisinin [including 4FPSF, DBR2, HMGR1, HMGR2, WIRKY, ADS, DXS, and SQS] were determined in investigated species. The result of high-performance liquid chromatography (HPLC) analysis showed that the content of artemisinin in various species was in the order of A. fragrans > A. annua > A. biennis > A. scoparia > A. absinthium. Based on the gas chromatography-mass spectrometry (GC-MS) analysis, 34, 26, 26, 24, and 20 phytochemical compounds were identified for A. scoparia, A. biennis, A. fragrans, A. absinthum, and A. annua species, respectively. Moreover, camphor (38.86%), ß-thujone (68.42%), spathulenol (48.33%), ß-farnesene (48.16%), and camphor (29.04%) were identified as the considerable compounds A. fragrans, A. absinthium, A. scoparia, A. biennis, and A. annua species, respectively. Considering the relative expression of the targeted genes, A. scoparia revealed higher expression for the 4FPSF gene. The highest relative expression of the DBR2, WIRKY, and SQS genes was found in A. absinthium species. Moreover, A. annua showed the highest expression of the ADS and DXS genes than the other species. In conclusion, our findings revealed that various species of Artemisia have interesting breeding potential for further investigation of different aspects such as medicinal properties and molecular studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA