Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Food Chem ; 447: 138976, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38492300

RESUMEN

This study examines the feasibility of replacing SO2 in a New Zealand Sauvignon Blanc wine with a green tea extract. The treatments included the control with no preservatives (C), the addition of green tea extract at 0.1 and 0.2 g/L (T1 and T2), and an SO2 treatment at 50 mg/L (T3). Five monomeric phenolic compounds were detected in the green tea extract used for the experiment, and their concentrations ranged in the order (-)-epigallocatechin gallate > (-)-epigallocatechin > (-)-epicatechin > (-)-epicatechin gallate > gallic acid. At the studied addition rates, these green tea-derived phenolic compounds contributed to ∼70% of the antioxidant capacity (ABTS), ∼71% of the total phenolic index (TPI), and âˆ¼ 84% of tannin concentration (MCPT) of the extract dissolved in a model wine solution. Among wine treatments, T1 and T2 significantly increased the wine's colour absorbance at 420 nm, MCPT, gallic acid and total monomeric phenolic content. TPI and ABTS were significantly higher in wines with preservatives (i.e., T2 > T1 â‰… T3 > C, p < 0.05). These variations were observed both two weeks after the treatments and again after five months of wine aging. Additionally, an accelerated browning test and a quantitative sensory analysis of wine colour and mouthfeel attributes were performed after 5 months of wine aging. When exposed to excessive oxygen and high temperature (50 °C), T1 and T2 exhibited ∼29% and 24% higher browning capacity than the control, whereas T3 reduced the wine's browning capacity by ∼20%. Nonetheless, the results from sensory analysis did not show significant variations between the treatments. Thus, using green tea extract to replace SO2 at wine bottling appears to be a viable option, without inducing a negative impact on the perceptible colour and mouthfeel attributes of Sauvignon Blanc wine.


Asunto(s)
Antioxidantes , Benzotiazoles , Compuestos Organotiofosforados , Ácidos Sulfónicos , Vino , Antioxidantes/análisis , Vino/análisis , Dióxido de Azufre/análisis , Fermentación , Color , , Ácido Gálico/análisis , Fenoles/análisis , Extractos Vegetales/análisis
2.
Luminescence ; 39(3): e4727, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38527806

RESUMEN

Green tea extract (GTE) contains antioxidants that are present in green tea. The active constituents of green tea extract are catechins. This study demonstrates a spectrofluorimetric method for measuring GTE's catechin concentration based on its native fluorescence. To design a quick, sensitive, and ecological spectrofluorimetric approach, all features were investigated and adjusted. This method relies on determining the GTE ethanolic solution's native fluorescence at 312 nm after excitation at 227 nm. The calibration graph displayed a linear regression for values between 0.05 and 1.0 µg mL-1. The detection and quantification limits of the proposed technique were 0.008 and 0.026 µg mL-1, respectively. Two pure catechins present in GTE, (-)-epicatechin and (-)-epigallocatechin gallate, were examined by the proposed method. The analytical estimation of GTE in the pharmaceutical tablet was achieved effectively using this approach. An adequate degree of agreement was found when the findings were compared to those obtained by the comparative technique. Therefore, the novel strategy may be used in the GTE quality control study with minimal risks to people or the environment. The quantum yields of catechins were estimated. The validated technique was accepted by the International Council of Harmonization criteria.


Asunto(s)
Camellia sinensis , Catequina , Humanos , Catequina/análisis , Espectrometría de Fluorescencia , Extractos Vegetales , , Antioxidantes/análisis
3.
Environ Sci Pollut Res Int ; 31(14): 21370-21379, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38388980

RESUMEN

In this article, we present the synthesis of binary CdAl4O7/CdO nanocomposites using green tea extracts and green chemistry methods for high-performance hydrogen storage. The green tea extract contains bioactive compounds (polyphenols) that act as reducing agents, which facilitate the reaction between metal ions and water. By examining the structural and morphological characteristics of the obtained substrates using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR), it was demonstrated that the nanocomposites were successfully synthesized. We evaluated the electrochemical performance of the synthesized CdAl4O7/CdO nanocomposites using a three-electrode chronopotentiometry system. According to the results, the synthesized nanocomposites are capable of storing 1750 mAh/g of hydrogen at a constant current of 1 Amp. By using green tea extract as a natural structure-directing agent, the CdAl4O7/CdO nanocomposite can be developed more sustainably as high-performance hydrogen storage materials. Ultimately, this work contributes to the advancement of sustainable energy storage through the synthesis of a promising new material.


Asunto(s)
Hidrógeno , Nanocompuestos , Espectroscopía Infrarroja por Transformada de Fourier , Nanocompuestos/química , Difracción de Rayos X , Té/química
4.
Exp Eye Res ; 239: 109787, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211683

RESUMEN

Retinal ganglion cell (RGC) death and axonal loss cause irreversible vision loss upon optic nerve (ON) injury. We have independently demonstrated that mesenchymal stem cells (MSCs) and green tea extract (GTE) promote RGC survival and axonal regeneration in rats with ON injury. Here we aimed to evaluate the combined treatment effect of human bone marrow-derived MSCs (hBM-MSCs) and GTE on RGC survival and axonal regeneration after ON injury. Combined treatment of hBM-MSCs and GTE promoted RGC survival and neurite outgrowth/axonal regeneration in ex vivo retinal explant culture and in rats after ON injury. GTE increased Stat3 activation in the retina after combined treatment, and enhanced brain-derived neurotrophic factor secretion from hBM-MSCs. Treatment of 10 µg/mL GTE would not induce hBM-MSC apoptosis, but inhibited their proliferation, migration, and adipogenic and osteogenic differentiation in vitro with reducing matrix metalloproteinase secretions. In summary, this study revealed that GTE can enhance RGC protective effect of hBM-MSCs, suggesting that stem cell priming could be a prospective strategy enhancing the properties of stem cells for ON injury treatment.


Asunto(s)
Células Madre Mesenquimatosas , Traumatismos del Nervio Óptico , Ratas , Humanos , Animales , Traumatismos del Nervio Óptico/terapia , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo , Osteogénesis , Té/metabolismo , Regeneración Nerviosa/fisiología , Supervivencia Celular/fisiología , Axones/metabolismo
5.
Environ Sci Pollut Res Int ; 31(9): 13673-13687, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38261222

RESUMEN

Regulation of antibiotic use in aquaculture calls for the emergence of more sustainable alternative treatments. Tea polyphenols (GTE), particularly epigallocatechin gallate (EGCG), have various biological activities. However, tea polyphenols are susceptible to degradation. In this work, EGCG and GTE were encapsulated in zein nanoparticles (ZNP) stabilized with alginate (ALG) and chitosan (CS) to reduce the degradation effect. ALG-coated ZNP and ALG/CS-coated ZNP encapsulating EGCG or GTE were obtained with a hydrodynamic size of less than 300 nm, an absolute ζ-potential value >30 mV, and an encapsulation efficiency greater than 75%. The antioxidant capacity of the encapsulated substances, although lower than that of the free ones, maintained high levels. On the other hand, the evaluation of antimicrobial activity showed greater efficiency in terms of growth inhibition for ALG/CS-ZNP formulations, with average overall values of around 60%, reaching an inhibition of more than 90% for Photobacterium damselae. These results support encapsulation as a good strategy for tea polyphenols, as it allows maintaining significant levels of antioxidant activity and increasing the potential for antimicrobial activity, in addition to increasing protection against sources of degradation.


Asunto(s)
Quitosano , Nanopartículas , Compuestos Organometálicos , Piridinas , Zeína , Animales , Antioxidantes/farmacología , Antioxidantes/análisis , Alginatos , Polifenoles/farmacología , Antibacterianos/farmacología ,
6.
Geroscience ; 46(2): 2239-2251, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37923874

RESUMEN

The Caenorhabditis Intervention Testing Program (CITP) is an NIH-funded research consortium of investigators who conduct analyses at three independent sites to identify chemical interventions that reproducibly promote health and lifespan in a robust manner. The founding principle of the CITP is that compounds with positive effects across a genetically diverse panel of Caenorhabditis species and strains are likely engaging conserved biochemical pathways to exert their effects. As such, interventions that are broadly efficacious might be considered prominent compounds for translation for pre-clinical research and human clinical applications. Here, we report results generated using a recently streamlined pipeline approach for the evaluation of the effects of chemical compounds on lifespan and health. We studied five compounds previously shown to extend C. elegans lifespan or thought to promote mammalian health: 17α-estradiol, acarbose, green tea extract, nordihydroguaiaretic acid, and rapamycin. We found that green tea extract and nordihydroguaiaretic acid extend Caenorhabditis lifespan in a species-specific manner. Additionally, these two antioxidants conferred assay-specific effects in some studies-for example, decreasing survival for certain genetic backgrounds in manual survival assays in contrast with extended lifespan as assayed using automated C. elegans Lifespan Machines. We also observed that GTE and NDGA impact on older adult mobility capacity is dependent on genetic background, and that GTE reduces oxidative stress resistance in some Caenorhabditis strains. Overall, our analysis of the five compounds supports the general idea that genetic background and assay type can influence lifespan and health effects of compounds, and underscores that lifespan and health can be uncoupled by chemical interventions.


Asunto(s)
Antioxidantes , Caenorhabditis , Animales , Humanos , Anciano , Antioxidantes/farmacología , Masoprocol/farmacología , Masoprocol/metabolismo , Caenorhabditis elegans/genética , Longevidad , Promoción de la Salud , Extractos Vegetales/farmacología , Té/metabolismo , Mamíferos
7.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37703424

RESUMEN

Antioxidants such as vitamin C (VC) and green tea extract (GTE) have been reported to have various antioxidant functions and are used as one of the nutritional approaches to alleviate heat stress (HS) in chickens. However, studies on the feeding timing that can produce optimal effects have not been reported. In this study, the stress-relieving effect of VC and GTE addition timing was investigated in high-temperature broiler chickens. A total of 880 1-d-old male chickens were used, and the treatments were as follows: no feed additives provided, CON; VC 250 mg/kg added from 1 d, VC1; GTE 600 mg/kg added from 1 d, GTE1; VC 250 mg/kg added from 22 d, VC22; GTE 600 mg/kg added from 22 d, GTE22. The HS environment was provided for 2 wk from the 22 d and was set at 33 ± 1 °C, 55 ± 10% for 24 h. Feed and water were provided ad libitum. Broiler production was similar in all treatments. In chicken meat quality, the addition of VC and GTE had an effect on meat color and pH (P < 0.05). In particular, GTE had a positive effect on the antioxidant capacity and quality preservation of breast meat (P < 0.05). In blood characteristics, GTE1 significantly lowered the level of total cholesterol, and VC1 affected AST and IgM (P < 0.05). Interestingly, the VC1 group had a positive effect on the maintenance and development of intestinal morphology, a lower rectal temperature, and showed to relieve stress. In conclusion, the addition of VC and GTE has been shown to alleviate the high-temperature stress of broilers, and in the case of VC in particular, feeding from 1 d appeared to alleviate stress more effectively. This study suggests that it is important to determine the appropriate timing of addition of functional substances in order to effectively reduce various stresses that occur in livestock rearing.


The increasing frequency of exposure to high-temperature environments has prompted research into nutritional approaches to alleviate heat stress in chickens, but little research has been reported on feeding timing. The aim of this study was to determine the effect of feeding timing on the effectiveness of the natural antioxidants vitamin C (VC) and green tea extract (GTE). Production was similar among all treatments, and GTE fed from 1 d of age increased antioxidant capacity, including DPPH, FRAP, and MDA in carcass quality. VC fed from 1 d of age decreased AST and increased IgM in the blood, and increased villus height (VH), with a positive effect on intestinal development. In conclusion, feeding VC and GTE from 1 d of age has been shown to effectively alleviate stress by increasing antioxidant capacity in breast meat, positively changing total cholesterol, AST, and IgM in the blood, and maintaining intestinal morphology, and it is important to set the timing of feeding to increase the effectiveness of the additives.


Asunto(s)
Antioxidantes , Pollos , Animales , Masculino , Dieta/veterinaria , Temperatura , Ácido Ascórbico , Vitaminas , Suplementos Dietéticos , Alimentación Animal/análisis
8.
Nutrients ; 15(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37447257

RESUMEN

Previous research has shown that both heat-treated green tea extract (HTGT) and enzymatically modified isoquercitrin (EMIQ) have anti-obesity effects. Given the absence of in vivo evidence demonstrating their synergistic effects, our study aimed to elucidate the combined obesity prevention potential of HTGT and EMIQ in mice. Mice were treated with these compounds for 8 weeks, while being fed a high-fat diet, to investigate their preventive anti-obesity effects. We demonstrated that the co-treatment of HTGT and EMIQ results in a synergistic anti-obesity effect, as determined by a Kruskal-Wallis test. Furthermore, the combined treatment of HTGT and EMIQ was more effective than orlistat in reducing body weight gain and adipocyte hypertrophy induced by high-fat diet. The co-treatment also significantly reduced total body fat mass and abdominal fat volume. Additionally, the group receiving the co-treatment exhibited increased energy expenditure and higher glucose intolerance. We observed a dose-dependent upregulation of genes associated with mitochondrial oxidative metabolism and PKA signaling, which is linked to lipolysis, in response to the co-treatment. The co-treatment group displayed elevated cAMP levels and AMPK activation in adipose tissue and increased excretion of fecal lipids. The results indicate that the co-treatment of HTGT and EMIQ holds the potential to be a promising combination therapy for combating obesity. To further validate the anti-obesity effect of the combined treatment of HTGT and EMIQ in human subjects, additional clinical studies are warranted.


Asunto(s)
Calor , Obesidad , Ratones , Humanos , Animales , Obesidad/metabolismo , Antioxidantes/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
9.
Nutr Res ; 113: 29-38, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37011435

RESUMEN

Green tea extract (GTE) is a potential mitigator of oxidative stress, and F2-isoprostanes are a reliable biomarker of oxidative stress. Genetic polymorphisms in the catechol-o-methyltransferase (COMT) gene may modify tea catechin metabolism, prolonging exposure. We hypothesized that GTE supplementation would decrease plasma F2-isoprostanes concentrations compared with placebo and that participants with the COMT genotype polymorphisms would experience a more significant expression of this outcome. This study was a secondary analysis of the Minnesota Green Tea Trial, a randomized placebo-controlled, double-blinded trial investigating the effects of GTE in women who were generally healthy and postmenopausal. The treatment group consumed 843 mg of epigallocatechin gallate daily for 12 months versus placebo. Participants in this study had a mean age of 60 years, were predominantly White, and most had a healthy body mass index. GTE supplementation did not significantly change plasma F2-isoprostanes concentrations compared with placebo after 12 months (P for overall treatment = .07). There were no significant interactions between treatment and age, or body mass index, physical activity, smoking history, and alcohol intake. COMT genotype did not modify the effect of GTE supplementation on F2-isoprostanes concentrations in the treatment group (P = .85). Among participants in the Minnesota Green Tea Trial, consuming GTE supplements daily for 1 year did not result in a significant decrease in plasma F2-isoprostanes concentrations. Likewise, the COMT genotype did not modify the effect of GTE supplementation on F2-isoprostanes concentrations.


Asunto(s)
Catequina , F2-Isoprostanos , Femenino , Humanos , Persona de Mediana Edad , Posmenopausia , Catecol O-Metiltransferasa/genética , Isoprostanos , Antioxidantes , , Suplementos Dietéticos , Extractos Vegetales/uso terapéutico , Catequina/farmacología
10.
J Nutr Biochem ; 117: 109333, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36965783

RESUMEN

Current clinical treatments have not yet effectively cured progressive retinal ganglion cell (RGC) death and axonal degeneration after optic nerve (ON) injury. We previously demonstrated green tea extract (GTE) can reduce RGC death in rats after ischemic injury. Here, we aim to determine the prophylactic and therapeutic effects and mechanisms of GTE on RGC survival and axonal regeneration in rats with ON injury. GTE (275 or 550 mg/kg) was administered intragastrically for 7 d before or 14 d post-ON crush surgery in adult Fischer 344 rats. Rats with pre- or post-operative treatment of 275 mg/kg GTE showed significantly higher numbers of RGCs and regenerated axons post-ON injury with improved pupillary light reflex as compared to saline-treated rats. Akt and Erk p42/44 activation was higher in the retina of rats given 275 mg/kg GTE pre-surgery, whereas Stat3 activation was higher in those with 275 mg/kg GTE post-operation. Less activated microglia were observed in rats with pre-treatment of 275 or 550 mg/kg GTE. RNA sequencing analysis identified the downregulation of inflammation, apoptosis, and microglia activation genes in the retina of rats with pre- or post-treatment with 275 mg/kg GTE as compared to the saline-treated rats. In summary, this study revealed the prophylactic and therapeutic treatment effects of GTE on RGC survival and axonal regeneration in rats with ON injury, indicating a potential alternative treatment for traumatic optic neuropathy.


Asunto(s)
Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Ratas , Animales , Células Ganglionares de la Retina/metabolismo , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/metabolismo , Regeneración Nerviosa/fisiología , Ratas Endogámicas F344 , , Supervivencia Celular
11.
Phytother Res ; 37(4): 1366-1376, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36729048

RESUMEN

Chronic obstructive pulmonary disease (COPD) is an important lung disease characterized by complicated symptoms including emphysema. We aimed to explore the mechanisms underlying the protective effect of green tea extract (GTE) on cigarette smoke condensate (CSC)-induced emphysema by demonstrating the reduction of macrophage-induced protease expression through GTE treatment in vivo and in vitro. Mice were intranasally administered 50 mg/kg CSC once a week for 4 weeks, and doses of 100 or 300 mg/kg GTE were administered orally once daily for 4 weeks. GTE significantly reduced macrophage counts in bronchoalveolar lavage fluid and emphysematous lesions in lung tissues in CSC-exposed mice. In addition, GTE suppressed CSC-induced extracellular signal-regulated kinase (ERK)/activator protein (AP)-1 phosphorylation followed by matrix metalloproteinases (MMP)-9 expression as revealed by western blotting, immunohistochemistry, and zymography in CSC-instilled mice. These underlying mechanisms related to reduced protease expression were confirmed in NCI-H292 cells stimulated by CSC. Taken together, GTE effectively inhibits macrophage-driven emphysematous lesions induced by CSC treatment, and these protective effects of GTE are closely related to the ERK/AP-1 signaling pathway, followed by a reduced protease/antiprotease imbalance. These results suggest that GTE can be used as a supplementary agent for the prevention of emphysema progression in COPD patients.


Asunto(s)
Fumar Cigarrillos , Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Ratones , Animales , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfisema Pulmonar/complicaciones , Enfisema Pulmonar/metabolismo , Macrófagos , Antioxidantes/uso terapéutico , Enfisema/complicaciones , Extractos Vegetales/farmacología , Péptido Hidrolasas ,
12.
Appl Biochem Biotechnol ; 195(7): 4469-4484, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36701093

RESUMEN

The aim of the current study is to design the radiolabeled and drug-loaded nanocarrier with high loading capacity and pH-dependent drug release characteristics that could effectively transport loaded compounds to various organs for efficient diagnostic imaging and chemotherapeutic drug delivery. The aqueous extract of green tea leaves was used to synthesize the small-sized iron oxide nanoparticles (IONPs). The nanoparticles were characterized with UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray analysis (EDX). Iron oxide nanoparticles with sizes smaller than 50 nm were successfully synthesized, making them suitable for in vivo studies. In drug loading trials, 94% of the drug was loaded onto the active surface of iron oxide nanoparticles from the solution. The in vitro drug release study revealed that an acidic environment (pH 4.5) effectively triggers the release of doxorubicin (DOX) from the nanoparticles as compared to a neutral environment (pH 7.4). The gamma-emitting radionuclide 99mTc was successfully labeled with IONPs for biodistribution and imaging studies. The efficiency of radiolabeling was observed to be ≥ 99%. Furthermore, the in vivo biodistribution study of radiolabeled IONPs in rabbit model showed rapid accumulation in various organs such as heart, liver, and kidneys. This work suggested that green synthesized iron oxide nanoparticles are potential nanocarriers for diagnostic imaging and efficiently distributing DOX to specific organs. The aqueous extract of green tea leaves was used for the facile green synthesis of iron oxide nanoparticles (IONPs). Furthermore, the chemotherapeutic drug doxorubicin (DOX) and gamma-emitting radionuclide 99mTc were loaded on these iron oxide nanoparticles to evaluate the in vivo biodistribution and drug delivery studies in the rabbit models.


Asunto(s)
Doxorrubicina , Extractos Vegetales , Animales , Conejos , Distribución Tisular , Microscopía Electrónica de Transmisión , , Espectroscopía Infrarroja por Transformada de Fourier , Liberación de Fármacos , Portadores de Fármacos/química
13.
Int J Biol Macromol ; 224: 1183-1195, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36330858

RESUMEN

The design and fabrication of bio-inspired materials are valuable for the treatment of Parkinson's disease (PD) due to their remarkable antioxidant properties, biocompatibility, and minor side effects. In this study, novel biocompatible and biodegradable chitosan-gelatin-green tea extract (CS-Gel-GTE) composite particles were fabricated with excellent antioxidant properties for therapeutic purposes in PD. An innovative angle-dependent electrospray system fabricated CS-Gel-GTE composite particles in only 1 min using a single-step method. The composite particles were investigated using various characterization methods. In addition to being facile and cost-effective, our methodology resulted in the formation of particles with a prolonged release time of nine days for GTE with a pH of 7.4. A cellular study was also performed to investigate the composite particles' cell viability and neuroprotective effects. The results showed enhanced cell viability and a significant reduction in cell apoptosis. In addition, the synthesized biomaterials showed the potential to inhibit the formation of reactive oxygen species (ROS), increase tyrosine hydroxylase (TH) enzyme expression and decrease α-syn protein expression. Overall, this study offers exquisite natural biomaterials for PD treatment.


Asunto(s)
Antioxidantes , Quitosano , Antioxidantes/farmacología , Quitosano/química , Gelatina , Té/química , Extractos Vegetales/química , Materiales Biocompatibles
14.
J Diet Suppl ; 20(3): 459-474, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34983294

RESUMEN

The goal of this study was to evaluate if combinations of ingredients with known anti-cachexia benefits (Fish oil-FO with either curcumin or Green tea extract-GTE), have adverse effects on tumor growth, using human carcinoma xenograft mice models. FO (EPA/DHA 360 mg/kg bw), GTE (90 mg/kg bw), and curcumin (180 mg/kg bw) were administered orally, alone or in combination, to nude mice bearing either A549 human non-small cell lung carcinoma or SW620 human colon carcinoma tumors. Bodyweight, tumor growth, survival time, and other clinical endpoints were assessed. The ingredients either alone or in combinations were well tolerated in both lung and colon tumor-bearing mice. There were no significant group differences between individual or combination treatments for tumor growth (A549 or SW620) as measured by the median time in days to endpoint of tumor volume (TTE). TTE results indicate that these ingredients (alone or combinations) did not adversely impact tumor growth. No significant differences in body weights or survival were observed between controls and treatment groups indicating no adverse health effects of the ingredients. In conclusion, FO, GTE or curcumin administered as monotherapies and in combination were well tolerated and displayed no adverse effects on tumor growth in mouse xenograft models of lung and colon cancer.


Asunto(s)
Carcinoma , Neoplasias del Colon , Curcumina , Humanos , Ratones , Animales , Curcumina/farmacología , Polifenoles/farmacología , Aceites de Pescado/farmacología , Xenoinjertos , Ratones Desnudos , Neoplasias del Colon/tratamiento farmacológico , Pulmón , Aceites de Plantas
15.
J Nutr Biochem ; 111: 109173, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228975

RESUMEN

The antidiabetic effects of green tea have been demonstrated in clinical trials and epidemiological studies. This study investigated the antidiabetic effects of green tea extract (GTE) and its underlying molecular mechanisms using a leptin receptor-deficient db/db mouse model (Leprdb/db). Treatment with GTE for 2 weeks improved glucose tolerance and insulin sensitivity in Leprdb/db mice. In addition, GTE treatment reduced the body weight and adiposity of Leprdb/db mice. Furthermore, GTE treatment reduced pro-inflammatory gene expression, including nuclear factor kappa B (NF-κB) in white adipose tissue (WAT), and also reduced dipeptidyl peptidase-4 (DPP4) expression levels in WAT as well as in the serum. The promoter region of Dpp4 contains the NF-κB binding site, and DPP4 was found to be a direct target of NF-κB. Consistently, in vitro treatment of cells with GTE or its main constituent epigallocatechin gallate reduced lipopolysaccharide-induced NF-κB/DPP4 expression in 3T3-L1 adipocytes and RAW264.7 cells. Overall, our data demonstrated that GTE exerts an anti-diabetic effect by regulating the expression levels of NF-κB and DPP4 in WAT.


Asunto(s)
Dipeptidil Peptidasa 4 , Hipoglucemiantes , Ratones , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/metabolismo , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/uso terapéutico , Tejido Adiposo/metabolismo , Té/química
16.
Molecules ; 27(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36500365

RESUMEN

Food extract supplements, with high functional activity and low side effects, play a recognized role in the adjunctive therapy of human colorectal cancer. The present study reported a new functional beverage, which is a type of Chinese Hakka stir-fried green tea (HSGT) aged for several years. The extracts of the lyophilized powder of five HSGT samples with different aging periods were analyzed with high-performance liquid chromatography. The major components of the extract were found to include polyphenols, catechins, amino acids, catechins, gallic acid and caffeine. The tea extracts were also investigated for their therapeutic activity against human colorectal cancer cells, HT-29, an epithelial cell isolated from the primary tumor. The effect of different aging time of the tea on the anticancer potency was compared. Our results showed that, at the cellular level, all the extracts of the aged teas significantly inhibited the proliferation of HT-29 in a concentration-dependent manner. In particular, two samples prepared in 2015 (15Y, aged for 6 years) and 2019 (19Y, aged for 2 years) exhibited the highest inhibition rate for 48 h treatment (cell viability was 50% at 0.2 mg/mL). Further, all the aged tea extracts examined were able to enhance the apoptosis of HT-29 cells (apoptosis rate > 25%) and block the transition of G1/S phase (cell-cycle distribution (CSD) from <20% to >30%) population to G2/M phase (CSD from nearly 30% to nearly 10%) at 0.2 mg/mL for 24 h or 48 h. Western blotting results also showed that the tea extracts inhibited cyclin-dependent kinases 2/4 (CDK2, CDK4) and CylinB1 protein expression, as well as increased poly ADP-ribose polymerase (PRAP) expression and Bcl2-associated X (Bax)/B-cell lymphoma-2 (Bcl2) ratio. In addition, an upstream signal of one of the above proteins, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling, was found to be involved in the regulation, as evidenced by the inhibition of phosphorylated PI3K and AKT by the extracts of the aged tea. Therefore, our study reveals that traditional Chinese aged tea (HSGT) may inhibit colon cancer cell proliferation, cell-cycle progression and promoted apoptosis of colon cancer cells by inactivating PI3K/AKT signalling.


Asunto(s)
Camellia sinensis , Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Apoptosis , Camellia sinensis/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Té/química
17.
Nutrients ; 14(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36558368

RESUMEN

Menopause is characterized by weight gain and increased visceral fat, which acts as an endocrine organ secreting proinflammatory adipocytokines, with consequent increased risk of metabolic disorders. The aim of this double-blind, placebo-controlled randomized trial was to evaluate the effects of a 60-day dietary supplementation using Camellia sinensis leaf extract on adipose tissue dysfunction in overweight or class I obese post-menopausal, sedentary women. Primary endpoints were the respiratory quotient (RQ), the percentage of carbohydrates (%CHO), the percentage of fat oxidation (%FAT), and the resting energy expenditure (REE) measured by indirect calorimetry. Secondary endpoints included body composition, by dual x-ray absorptiometry (DXA), glucose profile, lipid profile, inflammatory state, liver and kidney function, hormonal status regarding satiety, and status of catecholamines. Twenty-eight women were randomized into two groups: 14 (BMI 31.1 ± 3.5) were supplemented and 14 (BMI 31.9 ± 2.2) received placebo. In regards to the between-group differences over time (ß), a statistically significant difference between the supplemented and placebo group was observed for: RQ (ß = -0.04, p = 0.009), % fat oxidation (ß = 11.04, p = 0.0006), insulin (ß = -1.74, p = 0.009), HOMA (ß = -0.31, p = 0.02), waist circumference (ß = -1.07, p = 0.007), REE (ß = 83.21, p = 0.009), and CRP (ß = -0.14, p = 0.02). These results demonstrate that a 60-day green tea extract supplementation counteracts the dysfunction of adipose tissue in overweight post-menopausal and class I obese women.


Asunto(s)
Sobrepeso , Posmenopausia , Humanos , Femenino , Sobrepeso/metabolismo , Obesidad/metabolismo , Antioxidantes/metabolismo , Tejido Adiposo/metabolismo , Suplementos Dietéticos , Té/química , Extractos Vegetales/uso terapéutico
18.
Nutrients ; 14(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36235549

RESUMEN

In women, fat oxidation during exercise changes with the menstrual cycle. This study aimed to investigate the effect of green tea extract (GTE) ingestion on fat oxidation during exercise depending on the menstrual cycle phase. Ten women with regular menstrual cycles participated in this randomized, double-blind, crossover study. GTE or placebo was administered during the menstrual cycle's follicular phase (FP) and luteal phase (LP). Participants cycled for 30 min at 50% maximal workload, and a respiratory gas analysis was performed. Serum estradiol, progesterone, free fatty acid, plasma noradrenaline, blood glucose, and lactate concentrations were assessed before, during, and after the exercise. Fat oxidation, carbohydrate oxidation, and the respiratory exchange ratio (RER) were calculated using respiratory gas. Fat oxidation during the exercise was significantly higher in the FP than in the LP with the placebo (p < 0.05) but did not differ between the phases with GTE. Carbohydrate oxidation, serum-free fatty acid, plasma noradrenaline, blood glucose, and lactate concentrations were not significantly different between the phases in either trial. Our results suggest that GTE ingestion improves the decrease in fat oxidation in the LP.


Asunto(s)
Glucemia , Progesterona , Antioxidantes , Estudios Cruzados , Ingestión de Alimentos , Estradiol , Ácidos Grasos no Esterificados , Femenino , Humanos , Lactatos , Ciclo Menstrual , Norepinefrina , Proyectos Piloto , Extractos Vegetales/farmacología ,
19.
Food Res Int ; 160: 111762, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36076430

RESUMEN

BACKGROUND: Metabolic syndrome (MetS) is a common metatoblic disorder that leads to various adverse health outcomes such as diabetes and cardiovascular diseases (CVDs). Recent studies suggested that MetS-associated gut dysbiosis could exacerbate MetS related diseases. Green tea, a popular beverage rich in polyphenols, has showed antioxidant and anti-inflammatory effects in treating MetS through gut modulation. OBJECTIVES: This study aimed to understand the impact of green tea extract (GTE) on the composition and metabolism of gut microbiota from people with MetS. METHODS: We utilized an in-vitro human colonic model (HCM) to specifically investigate the host-free interactions between GTE and gut microbiota of MetS adults. Fresh fecal samples donated by three adults with MetS were used as gut microbe inoculum in our HCM system. 16S ribosomal RNA sequencing and liquid-chromatography mass spectrometry (LC/MS) combined with QIIME 2, Compound Discoverer 3.1 and MetaboAnalyst 4.0 based data analyses were performed to show the regulating effects of GTE treatment on gut microbial composition and their metabolism. RESULTS: Our data suggested that GTE treatment in HCM system modified composition of MetS gut microbiota at genus level and led to significant microbiota metabolic profile change. Bioinformatics analysis showed relative abundance of Escherichia and Klebsiella was commonly increased while Bacteroides, Citrobacter, and Clostridium were significantly reduced. All free fatty acids detected were significantly increased in different colon sections. Lipopolysaccharide biosynthesis, methane metabolism, pentose phosphate pathway, purine metabolism, and tyrosine metabolism were regulated by GTE in MetS gut microbiota. In addition, we identified significant associations between altered microbes and microbial metabolites. CONCLUSIONS: Overall, our study revealed the impact of GTE treatment on gut microbiota composition and metabolism changes in MetS microbiota in vitro, which may provide information for further mechanistic investigation of GTE in modulating gut dysbiosis in MetS.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Adulto , Antioxidantes , Colon , Disbiosis , Humanos , Extractos Vegetales/farmacología , Té/química
20.
Front Biosci (Schol Ed) ; 14(3): 24, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-36137983

RESUMEN

Oral cancer (OC) is the eighth most common cancer, particularly prevalent in developing countries. Current treatment includes a multidisciplinary approach, involving chemo, radio, and immunotherapy and surgery, which depends on cancer stage and location. As a result of the side effects of currently available drugs, there has been an increasing interest in the search for naturally-occurring bioactives for treating all types of cancer, including OC. Thus, this comprehensive review aims to give a holistic view on OC incidence and impact, while highlights the preclinical and clinical studies related to the use of medicinal plants for OC prevention and the recent developments in bioactive synthetic analogs towards OC management. Chemoprophylactic therapies connect the use of natural and/or synthetic molecules to suppress, inhibit or revert the transformation of oral epithelial dysplasia (DOK) into oral squamous cell carcinoma (OSCC). Novel searches have underlined the promising role of plant extracts and phytochemical compounds, such as curcumin, green tea extract, resveratrol, isothiocyanates, lycopene or genistein against this malignancy. However, poor bioavailability and lack of in vivo and clinical studies and complex pharmacokinetic profiles limit their huge potential of application. However, recent nanotechnological and related advances have shown to be promising in improving the bioavailability, absorption and efficacy of such compounds.


Asunto(s)
Carcinoma de Células Escamosas , Curcumina , Neoplasias de la Boca , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/prevención & control , Curcumina/química , Curcumina/farmacología , Curcumina/uso terapéutico , Genisteína/farmacología , Humanos , Isotiocianatos , Licopeno , Neoplasias de la Boca/tratamiento farmacológico , Fitoquímicos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Resveratrol , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA