Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Tipo del documento
Intervalo de año de publicación
1.
Life Sci ; 339: 122420, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218534

RESUMEN

Human milk is the most valuable source of nutrition for infants. The structure and function of human milk oligosaccharides (HMOs), which are key components of human milk, have long been attracting particular research interest. Several recent studies have found HMOs to be efficacious in the prevention and treatment of necrotizing enterocolitis (NEC). Additionally, they could be developed in the future as non-invasive predictive markers for NEC. Based on previous findings and the well-defined functions of HMOs, we summarize potential protective mechanisms of HMOs against neonatal NEC, which include: modulating signal receptor function, promoting intestinal epithelial cell proliferation, reducing apoptosis, restoring intestinal blood perfusion, regulating microbial prosperity, and alleviating intestinal inflammation. HMOs supplementation has been demonstrated to be protective against NEC in both animal studies and clinical observations. This calls for mass production and use of HMOs in infant formula, necessitating more research into the safety of industrially produced HMOs and the appropriate dosage in infant formula.


Asunto(s)
Enterocolitis Necrotizante , Leche Humana , Lactante , Animales , Recién Nacido , Humanos , Leche Humana/química , Enterocolitis Necrotizante/tratamiento farmacológico , Enterocolitis Necrotizante/prevención & control , Intestinos , Proliferación Celular , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Oligosacáridos/análisis
2.
Arch Microbiol ; 206(2): 58, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191870

RESUMEN

HMOs (Human milk oligosaccharide) has an impact on maternal and infant health. Colostrum samples of 70 breastfeeding women in China were collected and recorded clinical characteristics. The major oligosaccharides and microbiota were quantitated in colostrum. The concentration of fucosylated HMOs in primipara was higher than that of multipara (p = 0.030). The concentration of N-acetylated HMOs in vaginal delivery milk was less than that of cesarean (p = 0.038). Non-fucosylated HMOs of breastfeeding women were less than that of breast pump (p = 0.038). Meanwhile, the concentration of LNT was positively correlated with Lactobacillus (r = 0.250, p = 0.037). DS-LNT was negatively correlated with Staphylococcus (r = - 0.240, p = 0.045). There was a positive correlation of Streptococcus with LNFP II (r = 0.314, p = 0.011) and 3-SL (r = 0.322, p = 0.009). In addition, there was a negative correlation between 2'-FL and 3-FL (r = - 0.465, p = 0.001). There was a positive correlation between LNT and LNnT (r = 0.778, p = 0.001). Therefore, the concentration of HMOs is related to number of deliveries, delivery mode, lactation mode and perinatal antibiotic. The concentration of HMOs is related to Lactobacillus, Streptococcus and Streptococcus in colostrum. In addition, there are connections between different oligosaccharides in content. The study protocol was also registered in the ClinicalTrails.gov (ChiCTR2200064454) (Oct. 2022).


Asunto(s)
Microbiota , Leche Humana , Embarazo , Lactante , Femenino , Humanos , Calostro , Proyectos Piloto , Lactobacillus , Oligosacáridos
3.
Br J Nutr ; 131(9): 1506-1512, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38178715

RESUMEN

This study compared the concentrations, types and distributions of sialic acid (SA) in human milk at different stages of the postnatal period with those in a range of infant formulas. Breast milk from mothers of healthy, full-term and exclusively breastfed infants was collected on the 2nd (n 246), 7th (n 135), 30th (n 85) and 90th (n 48) day after birth. The SA profiles of human milk, including their distribution, were analysed and compared with twenty-four different infant formulas. Outcome of this observational study was the result of natural exposure. Only SA of type Neu5Ac was detected in human milk. Total SA concentrations were highest in colostrum and reduced significantly over the next 3 months. Approximately 68·7­76·1 % of all SA in human milk were bound to oligosaccharides. Two types of SA, Neu5Ac and Neu5Gc, have been detected in infant formulas. Most SA was present in infant formulas combined with protein. Breastfed infants could receive more SA than formula-fed infants with the same energy intake. Overall, human milk is a preferable source of SA than infant formulas in terms of total SA content, dynamics, distribution and type. These SA profiles in the natural state are worth to be considered by the production of formulas because they may have a great effect on infant nutrition and development.


Asunto(s)
Fórmulas Infantiles , Leche Humana , Ácido N-Acetilneuramínico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Lactancia Materna , China , Calostro/química , Fórmulas Infantiles/química , Fenómenos Fisiológicos Nutricionales del Lactante , Leche Humana/química , Ácido N-Acetilneuramínico/análisis , Oligosacáridos/análisis
4.
Nutrients ; 15(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37960297

RESUMEN

Premature infants, given their limited reserves, heightened energy requirements, and susceptibility to nutritional deficits, require specialized care. AIM: To examine the complex interplay between nutrition and neurodevelopment in premature infants, underscoring the critical need for tailored nutritional approaches to support optimal brain growth and function. DATA SOURCES: PubMed and MeSH and keywords: preterm, early nutrition, macronutrients, micronutrients, human milk, human milk oligosaccharides, probiotics AND neurodevelopment or neurodevelopment outcomes. Recent articles were selected according to the authors' judgment of their relevance. Specific nutrients, including macro (amino acids, glucose, and lipids) and micronutrients, play an important role in promoting neurodevelopment. Early and aggressive nutrition has shown promise, as has recognizing glucose as the primary energy source for the developing brain. Long-chain polyunsaturated fatty acids, such as DHA, contribute to brain maturation, while the benefits of human milk, human milk oligosaccharides, and probiotics on neurodevelopment via the gut-brain axis are explored. This intricate interplay between the gut microbiota and the central nervous system highlights human milk oligosaccharides' role in early brain maturation. CONCLUSIONS: Individualized nutritional approaches and comprehensive nutrient strategies are paramount to enhancing neurodevelopment in premature infants, underscoring human milk's potential as the gold standard of nutrition for preterm infants.


Asunto(s)
Fenómenos Fisiológicos Nutricionales del Lactante , Recien Nacido Prematuro , Lactante , Femenino , Recién Nacido , Humanos , Leche Humana/química , Ácidos Grasos/análisis , Micronutrientes/análisis , Oligosacáridos/análisis , Glucosa/análisis
5.
Neonatal Netw ; 42(6): 342-347, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000798

RESUMEN

The newborn who requires intensive care hospitalization is forced into an external environment that can negatively impact the developing microbiome. The NICU nurse has a unique role that affects, and may even protect, the development of the newborn microbiome through daily nursing care. The purpose of this article is to inform neonatal nurses regarding common nursing interventions that can positively or negatively impact the developing microbiome. Evidence-based practices are presented and bundled to describe their impact the neonatal microbiome.


Asunto(s)
Microbiota , Atención de Enfermería , Recién Nacido , Humanos , Unidades de Cuidado Intensivo Neonatal , Cuidados Críticos
6.
Front Nutr ; 10: 1200645, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529001

RESUMEN

Background: Infusion of short-chain fatty acids (SCFA) to the distal colon beneficially affects human substrate and energy metabolism. Here, we hypothesized that the combination of 2'-fucosyllactose (2'-FL) with resistant starch (RS) increases distal colonic SCFA production and improves metabolic parameters. Methods: In this randomized, crossover study, 10 lean (BMI 20-24.9 kg/m2) and nine men with prediabetes and overweight/obesity (BMI 25-35 kg/m2) were supplemented with either 2'-FL, 2'-FL+RS, or placebo one day before a clinical investigation day (CID). During the CID, blood samples were collected after a overnight fast and after intake of a liquid high-fat mixed meal to determine plasma SCFA (primary outcomes). Secondary outcomes were fasting and postprandial plasma insulin, glucose, free fatty acid (FFA), glucagon-like peptide-1, and peptide YY concentrations. In addition, fecal SCFA and microbiota composition, energy expenditure and substrate oxidation (indirect calorimetry), and breath hydrogen excretion were determined. Results: In lean men, supplementation with 2'-FL increased postprandial plasma acetate (P = 0.017) and fasting H2 excretion (P = 0.041) compared to placebo. Postprandial plasma butyrate concentration increased after 2'-FL and 2'-FL+RS as compared to placebo (P < 0.05) in lean men and men with prediabetes and overweight/obesity. Additionally, 2'-FL+RS decreased fasting and postprandial plasma FFA concentrations compared to placebo (P < 0.05) in lean men. Conclusion: Supplementation of 2'-FL with/without RS the day before investigation increased systemic butyrate concentrations in lean men as well as in men with prediabetes and obesity, while acetate only increased in lean men. The combination of 2'-FL with RS showed a putatively beneficial metabolic effect by lowering plasma FFA in lean men, indicating a phenotype-specific effect. Clinical trial registration: nr. NCT04795804.

7.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511184

RESUMEN

Cow's milk protein allergy (CMPA) is a prevalent food allergy among infants and young children. We conducted a randomized, multicenter intervention study involving 194 non-breastfed infants with CMPA until 12 months of age (clinical trial registration: NCT03085134). One exploratory objective was to assess the effects of a whey-based extensively hydrolyzed formula (EHF) supplemented with 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) on the fecal microbiome and metabolome in this population. Thus, fecal samples were collected at baseline, 1 and 3 months from enrollment, as well as at 12 months of age. Human milk oligosaccharides (HMO) supplementation led to the enrichment of bifidobacteria in the gut microbiome and delayed the shift of the microbiome composition toward an adult-like pattern. We identified specific HMO-mediated changes in fecal amino acid degradation and bile acid conjugation, particularly in infants commencing the HMO-supplemented formula before the age of three months. Thus, HMO supplementation partially corrected the dysbiosis commonly observed in infants with CMPA. Further investigation is necessary to determine the clinical significance of these findings in terms of a reduced incidence of respiratory infections and other potential health benefits.


Asunto(s)
Microbioma Gastrointestinal , Hipersensibilidad a la Leche , Niño , Femenino , Animales , Bovinos , Humanos , Lactante , Preescolar , Leche Humana , Oligosacáridos , Suplementos Dietéticos , Metaboloma , Fórmulas Infantiles/química
8.
Pediatr Neonatol ; 64(3): 231-238, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36642576

RESUMEN

Based on its richness in immune-related components such as human milk, human milk oligosaccharides (HMOs), milk proteins, and lipids, breast milk can be considered the first functional food that humans encounter in their lifetime. According to WHO recommendations breast milk has to be the only food in an infant's diet in the first six months of age which is then continued up to two years of age with the suitable complementary foods. Regarding breast milk balanced composition, it is considered as the best food of infants thus many studies have been carried out to determine the benefits of breast milk. Based on numerous studies breast milk have a tendency to reduce the risk of type 2 diabetes, obesity, allergies, celiac disease, necrotizing enterocolitis (NEC), gastrointestinal tract infections and some type of cancers. The benefits of breast milk can be explained by its special combination which includes; macronutrients, micronutrients and bioactive components such as immunoglobulins, hormones, growth factors and oligosaccharides. One of the essential bioactive compounds of breast milk is known as human milk oligosaccharides (HMOs). HMOs are unique, bioactive carbohydrates which are identified as the most significant components of breast milk. Since they have structural complexity and multifunctional properties, they are one of the most wondered components of breast milk. HMOs promote the development of the neonatal intestinal immune, and nervous systems. This article briefly describes the history, complex structure and different functions of HMOs and highlight the importance of maternal diet for HMO biosynthesis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Leche Humana , Lactante , Femenino , Recién Nacido , Humanos , Leche Humana/química , Prebióticos/análisis , Diabetes Mellitus Tipo 2/metabolismo , Intestinos , Oligosacáridos/análisis , Oligosacáridos/química , Oligosacáridos/metabolismo
9.
Nutrients ; 14(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35807803

RESUMEN

Background: Five of the most abundant human milk oligosaccharides (HMOs) in human milk are 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL), lacto-N-tetraose (LNT), 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL). Methods: A randomized, double-blind, controlled parallel feeding trial evaluated growth in healthy term infants fed a control milk-based formula (CF; n = 129), experimental milk-based formula (EF; n = 130) containing five HMOs (5.75 g/L; 2'-FL, 3-FL, LNT, 3'-SL and 6'-SL) or human milk (HM; n = 104). Results: No significant differences (all p ≥ 0.337, protocol evaluable cohort) were observed among the three groups for weight gain per day from 14 to 119 days (D) of age, irrespective of COVID-19 or combined non-COVID-19 and COVID-19 periods. There were no differences (p ≥ 0.05) among the three groups for gains in weight and length from D14 to D119. Compared to the CF group, the EF group had more stools that were soft, frequent and yellow and were similar to the HM group. Serious and non-serious adverse events were not different among groups, but more CF-fed infants were seen by health care professionals for illness from study entry to D56 (p = 0.044) and D84 (p = 0.028) compared to EF-fed infants. Conclusions: The study demonstrated that the EF containing five HMOs supported normal growth, gastrointestinal (GI) tolerance and safe use in healthy term infants.


Asunto(s)
COVID-19 , Fórmulas Infantiles , Suplementos Dietéticos , Humanos , Lactante , Leche Humana , Oligosacáridos
10.
Carbohydr Res ; 519: 108627, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35803019

RESUMEN

This study reports the enzymatic upgrading of fucosylated xyloglucan from depectinized citrus residues into 2'-fucosyllactose, a fucosylated human milk oligosaccharide. Alkaline and enzymatic xyloglucan extractions were compared. Of the original fucose present in the depectinized residues of lemon and orange, 35-36% and 48-51% were extracted as fucosylated xyloglucan by enzyme- or alkaline treatment, respectively. Furthermore, the enzymatically extracted xyloglucan structures had a narrower molecular weight distribution around 1 kDa, contrary to a more polydisperse distribution of the alkaline extracted xyloglucans, ranging from 1 to 500 kDa. The applicability of the fucosylated-xyloglucan extracts in transfucosylation reactions, was determined by use of a selected fungal fucosidase, resulting in yields of 10.2-11.4% enzymatic extracts, and 6.5-7.4% for alkaline extracts (orange and lemon respectively). The results demonstrate that depectinized citrus side streams are a useful source of fucosylated xyloglucan, preferably extracted by an enzyme catalyzed approach.


Asunto(s)
Leche Humana , Pectinas , Fucosa/química , Humanos , Leche Humana/química , Oligosacáridos/química , Xilanos
11.
J Agric Food Chem ; 70(16): 5207-5217, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35434993

RESUMEN

Human milk oligosaccharides (HMOs) are the second most abundant carbohydrates in colostrum. In this study, we performed a quantitative analysis of 13 oligosaccharides in 99 colostrum samples obtained from mothers living in Northwest China. The analysis combined liquid chromatography-mass spectrometry (LC-MS) with 2-amino-N-(2-aminoethyl)benzamide (AEAB) labeling and nonsecretors accounted for 17%. Compared with healthy secretor mothers, those with gestational diabetes mellitus presented lower levels of sialylated oligosaccharides, especially 3'-sialyllactose. Colostrum from mothers with pregnancy-induced hypertension had higher levels of fucosylated oligosaccharides, but the difference was not significant, and hypothyroidism appeared to have no effect on HMOs. Most HMOs (especially 6'-sialyllactose) were more abundant in colostrum from mothers who underwent vaginal delivery than a C-section. These findings show that the concentration of total or individual HMOs is affected by multiple factors. These findings provide a reference for evaluating variations in HMO expression among different populations and potential guidance for providing personalized clinical nutrition.


Asunto(s)
Leche Humana , Oligosacáridos , Cromatografía Liquida , Calostro/química , Femenino , Humanos , Leche Humana/química , Madres , Oligosacáridos/química , Embarazo
12.
Artículo en Chino | WPRIM | ID: wpr-930438

RESUMEN

Objective:To investigate the effects of disialyllacto-N-tetraose (DSLNT) on low molecular weight metabolic profile of intestinal contents in neonatal rats with necrotizing enterocolitis (NEC), in an attempt to explore the protective mechanism of DLSNT on intestinal tract of neonates.Methods:Immediately after birth, SD rats were randomly divided into the control group, the NEC group and the NEC+ DSLNT group according to random number tale method.All rats were hand-fed by special formula milk.Rats in the NEC group and NEC+ DSLNT group were exposed to hypoxia (950 mL/L nitrogen, 10 min, thrice per day) and cold stress (4 ℃, 10 min, thrice per day) for continuous 3 days to establish rodent NEC model.Rats in the NEC+ DSLNT group were hand-fed with special formula containing 300 μmol/L DSLNT.All rats were sacrificed after 72 h, and intestinal contents were collected from ileum and colon, followed by untargeted metabolomic determination with the ultrahigh-performance liquid chromatography Q extractive mass spectrometry (UHPLC-QE-MS) method.The terminal ileum was examined by hematoxylin-eosin staining.The metabolome data were analyzed with multivariable analysis using SIMCA 14.1.The metabolites that met both variable importance in the projection (VIP) >1 in the orthogonal partial least squares analysis (OPLS-DA) model and P<0.05 in the t-test were screened as differential metabolites between groups. Results:DSLNT reduced the incidence of NEC and pathological scores of ileum tissue from neonatal rats with NEC [3.0(2.0, 3.0) scores vs.1.0(1.0, 2.0) scores, P<0.01], and also significantly suppressed inflammatory infiltration.OPLS-DA model based on the metabolome data determined by UHPLC-QE-MS could perform effective discrimination between the NEC group and the control group, as well as the NEC+ DSLNT group and the NEC group.There were 64 differential metabolites between the NEC group and the control group (VIP value>1 and P<0.05 for the OPLS-DA model). These metabolites included docosahexaenoic acid (+ 288.0%, P=0.028), xanthine (+ 372.1%, P=0.007), L-arginine (+ 233.1%, P=0.027), L-leucine (+ 232.7%, P=0.015), N-acetylneuraminic acid (-41.6%, P=0.014), and so forth.These metabolites were associated with 34 metabolic pathways.Among them, such 6 pathways as arginine biosynthesis, arginine and proline metabolism were the most disturbed pathways affected by NEC.There were 15 diffe-rential metabolites in between NEC+ DSLNT group and NEC group, which included D-mannose (-73.5%, P=0.032), xanthine (-63.4%, P=0.008), linoleic acid (+ 137.9%, P=0.047), nicotinamide adenine dinucleotide (+ 278.2%, P=0.005), and so forth.These metabolites were mapped to 7 metabolic pathways, among them, linoleic acid metabolism pathway was the most relevant differential pathway affected by DSLNT.There were 8 overlapped meta-bolites in both comparison strategies, and the variation trend of these overlapped metabolites in the NEC group was significantly reversed by DSLNT supplementation. Conclusions:DSLNT could significantly attenuate the NEC pathological damage caused by hypoxia/cold stress in neonatal rats.This protective effect is associated with the improvement of the metabolic profile of intestinal contents caused by NEC and the modulation of the linoleic acid metabolic pathway.The early preventive supplementation of DSLNT is of great significance in maintaining neonatal intestinal homeostasis and preventing the process of NEC.

13.
Nutrients ; 13(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34959752

RESUMEN

Intestinal colonization of the neonate is highly dependent on the term of pregnancy, the mode of delivery, the type of feeding [breast feeding or formula feeding]. Postnatal immune maturation is dependent on the intestinal microbiome implementation and composition and type of feeding is a key issue in the human gut development, the diversity of microbiome, and the intestinal function. It is well established that exclusive breastfeeding for 6 months or more has several benefits with respect to formula feeding. The composition of the new generation of infant formulas aims in mimicking HM by reproducing its beneficial effects on intestinal microbiome and on the gut associated immune system (GAIS). Several approaches have been developed currently for designing new infant formulas by the addition of bioactive ingredients such as human milk oligosaccharides (HMOs), probiotics, prebiotics [fructo-oligosaccharides (FOSs) and galacto-oligosaccharides (GOSs)], or by obtaining the so-called post-biotics also known as milk fermentation products. The aim of this article is to guide the practitioner in the understanding of these different types of Microbiota Influencing Formulas by listing and summarizing the main concepts and characteristics of these different models of enriched IFs with bioactive ingredients.


Asunto(s)
Ingestión de Alimentos/inmunología , Microbioma Gastrointestinal/inmunología , Sistema Inmunológico/microbiología , Fórmulas Infantiles/química , Fenómenos Fisiológicos Nutricionales del Lactante/inmunología , Femenino , Humanos , Sistema Inmunológico/crecimiento & desarrollo , Fórmulas Infantiles/microbiología , Recién Nacido , Intestinos/crecimiento & desarrollo , Intestinos/inmunología , Masculino , Leche Humana/química , Leche Humana/microbiología , Oligosacáridos/administración & dosificación , Prebióticos/administración & dosificación
14.
Nutrients ; 13(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34836092

RESUMEN

BACKGROUND: Human milk oligosaccharide supplementation safely modulates fecal bifidobacteria abundance and holds the potential to manage symptoms in irritable bowel syndrome (IBS). Here, we aimed to determine the role of a 4:1 mix of 2'-O-fucosyllactose and lacto-N-neotetraose (2'FL/LNnT) on the modulation of the gut microbiota composition and host mucosal response, as well as the link between the bifidobacteria abundance and metabolite modulation, in IBS patients. METHODS: Biological samples were collected from IBS patients (n = 58) at baseline and week 4 post-supplementation with placebo, 5 g or 10 g doses of 2'FL/LNnT. The gut microbiota composition, metabolite profiles and expression of genes related to host mucosal response were determined. RESULTS: Moderate changes in fecal, but not mucosal, microbial composition (ß-diversity) was observed during the intervention with higher dissimilarity observed within individuals receiving 10g 2'FL/LNnT compared to placebo. Both fecal and mucosal Bifidobacterium spp. increased after 2'FL/LNnT intake, with increased proportions of Bifidobacterium adolescentis and Bifidobacterium longum. Moreover, the intervention modulated the fecal and plasma metabolite profiles, but not the urine metabolite profile or the host mucosal response. Changes in the metabolite profiles were associated to changes in bifidobacteria abundance. CONCLUSION: Supplementation with 2'FL/LNnT modulated the gut microbiota, fecal and plasma metabolite profiles, but not the host mucosal response in IBS. Furthermore, the bifidogenic effect was associated with metabolite modulation. Overall, these findings support the assertion that 2'FL/LNnT supplementation modulate the intestinal microenvironment of patients with IBS, potentially related to health.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Síndrome del Colon Irritable/tratamiento farmacológico , Leche Humana/química , Oligosacáridos/farmacología , Adolescente , Adulto , Anciano , Bifidobacterium/efectos de los fármacos , Método Doble Ciego , Heces/microbiología , Femenino , Humanos , Mucosa Intestinal/efectos de los fármacos , Síndrome del Colon Irritable/microbiología , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Trisacáridos/farmacología , Adulto Joven
15.
Nutrients ; 13(8)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34444897

RESUMEN

Human milk oligosaccharides (HMOs) are non-digestible and structurally diverse complex carbohydrates that are highly abundant in human milk. To date, more than 200 different HMO structures have been identified. Their concentrations in human milk vary according to various factors such as lactation period, mother's genetic secretor status, and length of gestation (term or preterm). The objective of this review is to assess and rank HMO concentrations from healthy mothers throughout lactation at a global level. To this aim, published data from pooled (secretor and non-secretor) human milk samples were used. When samples were reported as secretor or non-secretor, means were converted to a pooled level, using the reported mean of approximately 80/20% secretor/non-secretor frequency in the global population. This approach provides an estimate of HMO concentrations in the milk of an average, healthy mother independent of secretor status. Mean concentrations of HMOs were extracted and categorized by pre-defined lactation periods of colostrum (0-5 days), transitional milk (6-14 days), mature milk (15-90 days), and late milk (>90 days). Further categorizations were made by gestational length at birth, mother's ethnicity, and analytical methodology. Data were excluded if they were from preterm milk, unknown sample size and mothers with any known disease status. A total of 57 peer-reviewed articles reporting individual HMO concentrations published between 1996 and 2020 were included in the review. Pooled HMO means reported from 31 countries were analyzed. In addition to individual HMO concentrations, 12 articles reporting total HMO concentrations were also analyzed as a basis for relative HMO abundance. Total HMOs were found as 17.7 g/L in colostrum, 13.3 g/L in transitional milk, and 11.3 g/L in mature milk. The results show that HMO concentrations differ largely for each individual HMO and vary with lactation stages. For instance, while 2'-FL significantly decreased from colostrum (3.18 g/L ± 0.9) to late milk (1.64 g/L ± 0.67), 3-FL showed a significant increase from colostrum (0.37 g/L ± 0.1) to late milk (0.92 g/L ± 0.5). Although pooled human milk contains a diverse HMO profile with more than 200 structures identified, the top 10 individual HMOs make up over 70% of total HMO concentration. In mature pooled human milk, the top 15 HMOs in decreasing order of magnitude are 2'-FL, LNDFH-I (DFLNT), LNFP-I, LNFP-II, LNT, 3-FL, 6'-SL, DSLNT, LNnT, DFL (LDFT), FDS-LNH, LNFP-III, 3'-SL, LST c, and TF-LNH.


Asunto(s)
Lactancia/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Leche Humana/química , Oligosacáridos/análisis , Calostro/química , Femenino , Humanos , Embarazo
16.
Front Immunol ; 12: 680911, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108974

RESUMEN

Breastmilk is known to be very important for infants because it provides nutrients and immunological compounds. Among these compounds, human milk oligosaccharides (HMOs) represent the third most important component of breastmilk after lipids and lactose. Several experiments demonstrated the beneficial effects of these components on the microbiota, the immune system and epithelial barriers, which are three major biological systems. Indeed, HMOs induce bacterial colonization in the intestinal tract, which is beneficial for health. The gut bacteria can act directly and indirectly on the immune system by stimulating innate immunity and controlling inflammatory reactions and by inducing an adaptive immune response and a tolerogenic environment. In parallel, HMOs directly strengthen the intestinal epithelial barrier, protecting the host against pathogens. Here, we review the molecular mechanisms of HMOs in these different compartments and highlight their potential use as new therapeutic agents, especially in allergy prevention.


Asunto(s)
Leche Humana/inmunología , Oligosacáridos/inmunología , Inmunidad Adaptativa , Animales , Bacterias/efectos de los fármacos , Bacterias/inmunología , Bacterias/metabolismo , Estudios Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Humanos , Sistema Inmunológico , Inmunidad Innata , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Microbiota , Oligosacáridos/química , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Permeabilidad , Relación Estructura-Actividad
17.
Nutrients ; 13(3)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800961

RESUMEN

In 2020, with the advent of a pandemic touching all aspects of global life, there is a renewed interest in nutrition solutions to support the immune system. Infants are vulnerable to infection and breastfeeding has been demonstrated to provide protection. As such, human milk is a great model for sources of functional nutrition ingredients, which may play direct roles in protection against viral diseases. This review aims to summarize the literature around human milk (lactoferrin, milk fat globule membrane, osteopontin, glycerol monolaurate and human milk oligosaccharides) and infant nutrition (polyunsaturated fatty acids, probiotics and postbiotics) inspired ingredients for support against viral infections and the immune system more broadly. We believe that the application of these ingredients can span across all life stages and thus apply to both pediatric and adult nutrition. We highlight the opportunities for further research in this field to help provide tangible nutrition solutions to support one's immune system and fight against infections.


Asunto(s)
COVID-19/inmunología , Ingredientes Alimentarios/análisis , Sistema Inmunológico/virología , Leche Humana/química , SARS-CoV-2/inmunología , Adulto , COVID-19/terapia , Femenino , Alimentos Funcionales/análisis , Humanos , Lactante , Fenómenos Fisiológicos Nutricionales del Lactante/inmunología , Masculino , Terapia Nutricional/métodos
18.
J Appl Microbiol ; 131(6): 2669-2687, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33740837

RESUMEN

Human milk is elixir for neonates and is a rich source of nutrients and beneficial microbiota required for infant growth and development. Its benefits prompted research into probing the milk components and their use as prophylactic or therapeutic agents. Culture-independent estimation of milk microbiome and high-resolution identification of milk components provide information, but a holistic purview of these research domains is lacking. Here, we review the current research on bio-therapeutic components of milk and simplified future directions for its efficient usage. Publicly available databases such as PubMed and Google scholar were searched for keywords such as probiotics and prebiotics related to human milk, microbiome and milk oligosaccharides. This was further manually curated for inclusion and exclusion criteria relevant to human milk and clinical efficacy. The literature was classified into subgroups and then discussed in detail to facilitate understanding. Although milk research is still in infancy, it is clear that human milk has many functions including protection of infants by passive immunization through secreted antibodies, and transfer of immune regulators, cytokines and bioactive peptides. Unbiased estimates show that the human milk carries a complex community of microbiota which serves as the initial inoculum for establishment of infant gut. Our search effectively screened for evidence that shows that milk also harbours many types of prebiotics such as human milk oligosaccharides which encourage growth of beneficial probiotics. The milk also trains the naive immune system of the infant by supplying immune cells and stimulatory factors, thereby strengthening mucosal and systemic immune system. Our systematic review would improve understanding of human milk and the inherent complexity and diversity of human milk. The interrelated functional role of human milk components especially the oligosaccharides and microbiome has been discussed which plays important role in human health.


Asunto(s)
Microbiota , Probióticos , Animales , Humanos , Lactante , Leche/química , Leche Humana , Oligosacáridos , Prebióticos/análisis
19.
Anal Bioanal Chem ; 413(6): 1595-1603, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33558961

RESUMEN

Industrial production of human milk oligosaccharides (HMOs) represents a recently growing interest since they serve as key ingredients in baby formulas and are also utilized as dietary supplements for all age groups. Despite their short oligosaccharide chain lengths, HMO analysis is challenging due to extensive positional and linkage variations. Capillary gel electrophoresis primarily separates analyte molecules based on their hydrodynamic volume to charge ratios, thus, offers excellent resolution for most of such otherwise difficult-to-separate isomers. In this work, two commercially available gel compositions were evaluated on the analysis of a mixture of ten synthetic HMOs. The relevant respective separation matrices were then applied to selected analytical in-process control examples. The conventionally used carbohydrate separation matrix was applied for the in-process analysis of bacteria-mediated production of 3-fucosyllactose, lacto-N-tetraose, and lacto-N-neotetraose. The other example showed the suitability of the method for the in vivo in-process control of a shake flask and fermentation approach of 2'-fucosyllactose production. In this latter instance, borate complexation was utilized to efficiently separate the 2'- and 3-fucosylated lactose positional isomers. In all instances, the analysis of the HMOs of interest required only a couple of minutes with high resolution and excellent migration time and peak area reproducibility (average RSD 0.26% and 3.56%, respectively), features representing high importance in food additive manufacturing in-process control.


Asunto(s)
Suplementos Dietéticos/análisis , Electroforesis Capilar/métodos , Aditivos Alimentarios/análisis , Análisis de los Alimentos/métodos , Leche Humana/metabolismo , Oligosacáridos/análisis , Ácidos Bóricos/química , Carbohidratos/química , Fermentación , Glicosilación , Humanos , Hidrodinámica , Oligosacáridos/química , Reproducibilidad de los Resultados
20.
Curr Dev Nutr ; 5(12): nzab137, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34993388

RESUMEN

BACKGROUND: Human-milk oligosaccharides (HMOs) are an abundant component of human milk that have health-related effects on breastfeeding infants. Since variation in HMO composition can be explained by maternal and environmental factors, understanding the diversity in HMOs across settings and identifying context-specific factors associated with HMO abundances is important. OBJECTIVES: The aim was to describe the HMO profile of Bangladeshi women and to estimate the effect of maternal vitamin D supplementation on HMO composition. METHODS: In a cross-sectional analysis of data and samples from the Maternal Vitamin D for Infant Growth trial in Dhaka, Bangladesh (clinicaltrials.gov; NCT01924013), 192 participants were randomly selected including 96 from each of the placebo and highest-dose vitamin D supplementation groups. In mid-feed breast milk samples collected at a mean (±SD) postpartum age of 93 ± 7 d, absolute and relative abundances of 19 HMOs were analyzed by HPLC. "Secretors" were defined as participants with 2'fucosyllactose concentrations >350 nmol/mL. Associations between HMO concentrations and selected maternal or environmental factors were estimated by multivariable linear regression, adjusting for vitamin D group allocation and secretor status. HMO profiles of Bangladeshi women were compared with data from other international cohorts. RESULTS: Overall, 34% (65/192) of participants were nonsecretors. Secretor status was associated with the concentrations of total HMOs and 79% (15/19) of individual HMOs. Vitamin D supplementation did not affect the total or individual concentration of any measured HMO. 3-Fucosyllactose concentration was significantly higher in breast milk samples collected in December to February compared with samples collected in March to May. HMO composition was similar to other previously reported cohorts. CONCLUSIONS: The HMO profile of Bangladeshi women is predominantly determined by secretor status. Context-specific HMO data may improve understanding of the effects of HMOs on the infant microbiome and health and guide the development of HMO-containing interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA