Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Phytother Res ; 38(1): 400-410, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992760

RESUMEN

The incubation period of COVID-19 symptoms, along with the proliferation and high transmission rate of the SARS-CoV-2 virus, is the cause of an uncontrolled epidemic worldwide. Vaccination is the front line of prevention, and antiinflammatory and antiviral drugs are the treatment of this disease. In addition, some herbal therapy approaches can be a good way to deal with this disease. The aim of this study was to evaluate the effect of propolis syrup with Hyoscyamus niger L. extract in hospitalized patients with COVID-19 with acute disease conditions in a double-blinded approach. The study was performed on 140 patients with COVID-19 in a double-blind, randomized, and multicentral approach. The main inclusion criterion was the presence of a severe type of COVID-19 disease. The duration of treatment with syrup was 6 days and 30 CC per day in the form of three meals. On Days 0, 2, 4, and 6, arterial blood oxygen levels, C-reactive protein (CRP), erythrocyte sedimentation rate, and white blood cell, as well as the patient's clinical symptoms such as fever and chills, cough and shortness of breath, chest pain, and other symptoms, were recorded and analyzed. Propolis syrup with H. niger L. significantly reduces cough from the second day, relieving shortness of breath on the fourth day, and significantly reduces CRP, weakness, and lethargy, as well as significantly increased arterial blood oxygen pressure on the sixth day compared to the placebo group (p < 0.05). The results in patients are such that in the most severe conditions of the disease 80% < SpO2 (oxygen saturation), the healing process of the syrup on reducing CRP and increasing arterial blood oxygen pressure from the fourth day is significantly different compared with the placebo group (p < 0.05). The use of syrup is associated with a reduction of 3.6 days in the hospitalization period compared with the placebo group. Propolis syrup with H. niger L. has effectiveness in the viral and inflammatory phases on clinical symptoms and blood parameters and arterial blood oxygen levels of patients with COVID-19. Also, it reduces referrals to the intensive care unit and mortality in hospitalized patients with COVID-19. So, this syrup promises to be an effective treatment in the great challenge of COVID-19.


Asunto(s)
COVID-19 , Hyoscyamus , Própolis , Humanos , SARS-CoV-2 , Própolis/uso terapéutico , Resultado del Tratamiento , Tos , Disnea , Oxígeno
2.
Protoplasma ; 261(2): 293-302, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37814140

RESUMEN

This study aimed to investigate the effects of clinorotation induced by 2-D clinostat on the growth, tropane alkaloid production, gene expression, antioxidant capacity, and cellular defense responses in the callus tissue of Hyoscyamus niger. Callus induction was conducted by putting hypocotyl explants in the MS culture medium supplemented with 1 mgL-1 2,4-D and 1 mgL-1 BAP growth regulators. The sub-cultured calli were placed on a clinostat for 0, 3, 7, and 10 days (2.24 × 10-5 g on the edge of the callus ring). Clinorotation significantly increased callus fresh weight, dry weight, protein, carbohydrate, and proline contents compared to the control, and their maximum contents were obtained after 7 and 10 days. H2O2 level enhanced under clinorotation with a 76.3% rise after 10 days compared to control and positively affected the atropine (77.1%) and scopolamine (69.2%) productions. Hyoscyamine 6-beta hydroxylase and putrescine N-methyltransferase gene expression involved in the tropane alkaloid biosynthesis were upregulated markedly with 14.2 and 17.1-folds increase after 10 days of clinorotation, respectively. The expressions of jasmonic acid, mitogen-activated protein kinase, and ethylene-responsive element-binding transcription factor were upregulated, and the activity of peroxidase and catalase showed a 72.7 and 80% rise after 10 days. These findings suggest that microgravity can enhance callogenesis by stimulating the ROS level, which can impact the antioxidant enzymes, tropane alkaloid formation, and gene expression.


Asunto(s)
Hyoscyamus , Hyoscyamus/genética , Hyoscyamus/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Rotación , Raíces de Plantas/metabolismo , Tropanos/metabolismo , Tropanos/farmacología , Expresión Génica
3.
Phytother Res ; 35(7): 4000-4006, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33860587

RESUMEN

The outbreak of Coronavirus disease 2019 (COVID-19) has caused a global health crisis. Nevertheless, no antiviral treatment has yet been proven effective for treating COVID-19 and symptomatic supportive cares have been the most common treatment. Therefore, the present study was designed to evaluate the effects of propolis and Hyoscyamus niger L. extract in patients with COVID-19. This randomized clinical trial was conducted on 50 cases referred to Akhavan and Sepehri Clinics, Kashan university of medical sciences, Iran. Subjects were divided into two groups (intervention and placebo). This syrup (containing 1.6 mg of methanolic extract along with 450 mg of propolis per 10 mL) was administered three times a day to each patient for 6 days. The clinical symptoms of COVID-19 such as: dry cough, shortness of breath, sore throat, chest pain, fever, dizziness, headache, abdominal pain, and diarrhea were reduced with propolis plus Hyoscyamus niger L. extract than the placebo group. However, the administration of syrup was not effective in the control of nausea and vomiting. In conclusion, syrup containing propolis and Hyoscyamus niger L. extract had beneficial effects in ameliorating the signs and symptoms of COVID-19 disease, in comparison with placebo groups.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hyoscyamus , Extractos Vegetales/uso terapéutico , Própolis , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Adulto , Femenino , Humanos , Hyoscyamus/química , Irán , Masculino , Metanol , Persona de Mediana Edad , Própolis/uso terapéutico , Síndrome de Dificultad Respiratoria/virología , Resultado del Tratamiento
4.
Plants (Basel) ; 9(5)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32455988

RESUMEN

BACKGROUND: Hyoscyamus niger L. (Solanaceae) generally known as henbane, is commonly distributed in Europe and Asia. In Turkey, henbane seeds have been used in folk medicine to remove worms from the eyes. The present study aimed to investigate the insecticidal activity of H. niger seeds. METHODS: n-hexane, ethyl acetate, methanol and alkaloid extracts were prepared from the seeds of the plant and their insecticidal activities on Lucilia sericata larvae were evaluated. EC50 and EC90 values of the alkaloid extract were calculated and morphological abnormalities were investigated. RESULTS: Alkaloid extract prepared from the seeds of this plant displayed significant insecticidal activity. EC50 values of H. niger seeds alkaloid extract were found to be 8.04, 8.49, 7.96 µg/mL against first, second and third instar, respectively. It was determined that malformations of larvae included damaged larvae with small size, contraction and weak cuticle. Furthermore, HPLC analysis was performed on alkaloid extract of H. niger seeds and main components of the extract were determined. It was determined that alkaloid extract mainly contain hyoscyamine and scopolamine. CONCLUSIONS: These results confirm the folkloric usage of the plant and suggest that the alkaloid content of the plant could be responsible for the insecticidal activity.

5.
Toxicon ; 177: 52-88, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32217234

RESUMEN

Datura stramonium, Atropa belladonna, Hyoscyamus niger, and Scopolia carniolica are all temperate plants from the family Solanaceae, which as a result of their anticholinergic tropane alkaloids, hyoscyamine/atropine and scopolamine, have caused many cases of poisoning around the world. Despite the danger these nightshade plants represent, the literature often presents incomplete cases lacking in details and filled with ambiguity, and reviews on the topic tend to be limited in scope. Many also point to a gap in knowledge of these plants among physicians. To address this, the following review focuses on intoxications involving these plants as reported in the literature between 1966 and 2018, with brief mention to pertinent related plants to contextualise and provide a fuller picture of the situation surrounding the presently discussed temperate plants. Analysis of the literature displays that D. stramonium is largely associated with drug use among teens while A. belladonna is primarily ingested as a result of the berries being mistaken for edible fruits. H. niger was found to be largely ingested when mistaken for other plants, and S. carniolica was the cause of incredibly few intoxications.


Asunto(s)
Antagonistas Colinérgicos/toxicidad , Extractos Vegetales/toxicidad , Intoxicación por Plantas/epidemiología , Solanaceae , Alcaloides Solanáceos/toxicidad , Alcaloides , Atropa belladonna , Europa (Continente) , Humanos , Hyoscyamus , Escopolamina , Scopolia , Tropanos
7.
J Ethnopharmacol ; 244: 112151, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31404578

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Norse berserkers were wild warriors of Scandinavia known to enter a trance-like state that allowed them to fight with increased strength and a rage that granted them immunity to many forms of harm in battle. Though many theories have been advanced as to the cause of this state, the most widely believed is that the intoxicating mushroom Amanita muscaria was used. AIM OF THE STUDY: The following article underlines the issues with this theory and provides an alternate intoxicant that fits with the reports of berserker behaviour much better: Hyoscyamus niger. MATERIALS AND METHODS: Literature from a variety of disciplines pertaining to history, toxicology, pharmacology, and botany was compiled to frame and support the argument. RESULTS: H. niger proved to be a more likely intoxicant used to induce the berserker rage state. CONCLUSIONS: With its anticholinergic tropane alkaloids and symptom profile, H. niger is a much more likely cause of the berserker state than A muscaria. Though there is not enough archaeological and historical evidence to prove or disprove this theory, it provides a novel explanation that is at present the most viable means of understanding the berserkers' trance.


Asunto(s)
Hyoscyamus , Amanita , Etnobotánica , Humanos , Preparaciones de Plantas/toxicidad , Países Escandinavos y Nórdicos
8.
Plant Physiol Biochem ; 127: 47-54, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29549757

RESUMEN

N-methylputrescine is the precursor of nicotine and pharmaceutical tropane alkaloids such as hyoscyamine. Putrescine N-methyltransferase (PMT) catalyzes the N-methylation of putrescine to form N-methylputrescine. While the role of PMT in nicotine biosynthesis is clear, knowledge of PMT in the biosynthesis of tropane alkaloids (TAs) and the regulation of polyamines remains limited. We characterized a PMT gene from Hyoscyamus niger, designated HnPMT that was specifically expressed in roots, especially in the secondary roots and dramatically induced by methyl jasmonate (MeJA). The GUS gene was specifically expressed in Arabidopsis roots or in the vascular tissues, including pericycles and endodermis, of the H. niger hairy root cultures, when it was driven by the 5'-flanking promoter region of HnPMT. The recombinant HnPMT was purified for enzymatic assays. HnPMT converted putrescine to form N-methylputrescine, as confirmed by LC-MS. The kinetics analysis revealed that HnPMT had high affinity with putrescine but low catalytic activity, suggesting that it was a rate-limiting enzyme. When HnPMT was suppressed in the H. niger plants by using the VIGS approach, the contents of N-methylputrescine and hyoscyamine were markedly decreased, but the contents of putrescine, spermidine and a mixture of spermine and thermospermine were significantly increased; this suggested that HnPMT was involved in the biosynthesis of tropane alkaloids and played a competent role in regulating the biosynthesis of polyamines. Functional identification of HnPMT facilitated the understanding of TA biosynthesis and thus implied that the HnPMT-catalyzed step might be a target for metabolic engineering of the TA production in H. niger.


Asunto(s)
Hyoscyamus , Metiltransferasas , Raíces de Plantas , Arabidopsis/enzimología , Arabidopsis/genética , Hyoscyamus/enzimología , Hyoscyamus/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética
9.
Biochem Biophys Res Commun ; 497(1): 25-31, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29407173

RESUMEN

Scopolia lurida, a medicinal plant native to the Tibetan Plateau, is among the most effective producers of pharmaceutical tropane alkaloids (TAs). The hyoscyamine 6ß-hydroxylase genes of Hyoscyamus niger (HnH6H) and S. lurida (SlH6H) were cloned and respectively overexpressed in hairy root cultures of S. lurida, to compare their effects on promoting the production of TAs, especially the high-value scopolamine. Root cultures with SlH6H/HnH6H overexpression were confirmed by PCR and real-time quantitative PCR, suggesting that the enzymatic steps defined by H6H were strongly elevated at the transcriptional level. Tropane alkaloids, including hyoscyamine, anisodamine and scopolamine, were analyzed by HPLC. Scopolamine and anisodamine contents were remarkably elevated in the root cultures overexpressing SlH6H/HnH6H, whereas that of hyoscyamine was more or less reduced, when compared with those of the control. These results also indicated that SlH6H and HnH6H promoted anisodamine production at similar levels in S. lurida root cultures. More importantly, HnH6H-overexpressing root cultures had more scopolamine in them that did SlH6H-overexpressing root cultures. This study not only provides a feasible way of overexpressing H6H to produce high-value scopolamine in engineered root cultures of S. lurida but also found that HnH6H was better than SlH6H for engineering scopolamine production.


Asunto(s)
Ingeniería Metabólica/métodos , Oxigenasas de Función Mixta/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente/fisiología , Escopolamina/metabolismo , Scopolia/fisiología , Activación Enzimática , Estabilidad de Enzimas , Mejoramiento Genético/métodos , Oxigenasas de Función Mixta/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escopolamina/aislamiento & purificación
10.
J Hazard Mater ; 324(Pt B): 306-320, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27810325

RESUMEN

In this study, seeds of Hyoscyamus niger were exposed to different concentrations (50-800µgmL-1) of single-walled carbon nanotubes (SWCNTs) under different levels of drought stress (0.5-1.5MPa) for 14days. Germinated seeds were subsequently allowed to grow in the same culture media for 7 more days to test the further response of the seedlings in terms of biochemical changes to the employed treatments. Seeds subjected to drought showed reduction in germination percentage, vigor and lengths of roots and shoots. However, inclusion of SWCNTs at the two lowest concentrations significantly alleviated the drought stress (up to moderate levels only)-induced reduction in germination and growth attributes. This happened due to increased water uptake, up-regulation of mechanisms involved in starch hydrolysis, and reduction in oxidative injury indices including H2O2, malondialdehyde contents and electrolyte leakage. The improved plant performance under PEG-induced drought stress was a consequence of changes in the expression of various antioxidant enzymes including SOD, POD, CAT, and APX, and also biosynthesis of proteins, phenolics, and specific metabolites such as proline. Results demonstrate that treatment by low concentrations of SWCNTs can induce tolerance in seedlings against low to moderate levels of drought through enhancing water uptake and activating plant defense system.


Asunto(s)
Sequías , Hyoscyamus/efectos de los fármacos , Nanotubos de Carbono , Estrés Fisiológico/efectos de los fármacos , Catalasa/metabolismo , Germinación/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Hyoscyamus/crecimiento & desarrollo , Hyoscyamus/metabolismo , Malondialdehído/metabolismo , Peroxidasas/metabolismo , Fenoles/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Polietilenglicoles/toxicidad , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Superóxido Dismutasa/metabolismo
11.
Avicenna J Phytomed ; 4(5): 297-311, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25386392

RESUMEN

Black henbane (BH) or Hyoscyamus niger, has been used as a medicine since last centuries and has been described in all traditional medicines. It applies as a herbal medicine, but may induce intoxication accidentally or intentionally. All part of BH including leaves, seeds and roots contain some alkaloids such as Hyoscyamine, Atropine, Tropane and Scopolamine. BH has pharmacological effects like bronchodilating, antisecretory, urinary bladder relaxant, spasmolytic, hypnotic, hallucinogenic, pupil dilating, sedative and anti-diarrheal properties. Clinical manifestations of acute BH poisoning are very wide which include mydriasis, tachycardia, arrhythmia, agitation, convulsion and coma, dry mouth, thirst, slurred speech, difficulty speaking, dysphagia, warm flushed skin, pyrexia, nausea, vomiting, headache, blurred vision and photophobia, urinary retention, distension of the bladder, drowsiness, hyper reflexia, auditory, visual or tactile hallucinations, confusion, disorientation, delirium, aggressiveness, and combative behavior. The main treatment of BH intoxicated patients is supportive therapies including gastric emptying (not by Ipecac), administration of activated charcoal and benzodiazepines. Health care providers and physicians particularly emergency physicians and clinical toxicologists should know the nature, medical uses, clinical features, diagnosis and management of BH poisoning.

12.
J Sep Sci ; 37(19): 2664-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25044356

RESUMEN

In order to investigate the pharmacokinetics of tropane alkaloids in Hyoscyamus niger L., a sensitive and specific high-performance liquid chromatography with tandem mass spectrometry method for the simultaneous determination of atropine, scopolamine, and anisodamine in rat plasma is developed and fully validated, using homatropine as an internal standard. The separation of the four compounds was carried out on a BDS Hypersil C18 column using a mobile phase consisting of acetonitrile and water (containing 10 mmol ammonium acetate). Calibration curves were linear from 0.2 to 40 ng/mL for atropine, scopolamine, and from 0.08 to 20 ng/mL for anisodamine. The precision of three analytes was <5.89% and the accuracy was between -1.04 to 2.94%. This method is successfully applied to rat pharmacokinetics analysis of the three tropane alkaloids after oral administration of H. niger extract. The maximum concentration of these three tropane alkaloids was reached within 15 min, and the maximum concentrations were 31.36 ± 7.35 ng/mL for atropine, 49.94 ± 2.67 ng/mL for scopolamine, and 2.83 ± 1.49 ng/mL for anisodamine. The pharmacokinetic parameters revealed areas under the curve of 22.76 ± 5.80, 16.80 ± 3.08, and 4.31 ± 1.21 ng/h mL and mean residence times of 2.08 ± 0.55, 1.19 ± 0.45, and 3.28 ± 0.78 h for atropine, scopolamine, and anisodamine, respectively.


Asunto(s)
Atropina/sangre , Atropina/farmacocinética , Hyoscyamus/química , Escopolamina/sangre , Escopolamina/farmacocinética , Alcaloides Solanáceos/sangre , Alcaloides Solanáceos/farmacocinética , Animales , Cromatografía Líquida de Alta Presión , Masculino , Extractos Vegetales/sangre , Extractos Vegetales/farmacocinética , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
13.
Chinese Herbal Medicines ; (4): 117-126, 2011.
Artículo en Chino | WPRIM | ID: wpr-499735

RESUMEN

The reports on chemical constituents of Hyoscyamus niger were summarized. The compounds include alkaloids, saponins, lignans, coumarinolignans, flavonoids, and some other nonalkaloidal compounds. TLC, HPLC, and GC were used for the qualitative and quantitative analyses of some chemical constituents in H. niger. Modern pharmacological experiments showed that H. niger had the analgesic, anti-inflammatory, antipyretic, anticonvulsant, spasmolytic, antidiarrhoeal, antisecretory, bronchodilatory, urinary bladder relaxant, hypotensive, cardiosuppressant, vasodilator, antitumor, and feeding deterrent properties. In addition, the toxicities of this medicinal plant were also described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA