Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1064-1072, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621913

RESUMEN

This article explored the mechanism by which ginsenoside Re reduces hypoxia/reoxygenation(H/R) injury in H9c2 cells by regulating mitochondrial biogenesis through nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)/peroxisome prolife-rator-activated receptor gamma coactivator-1α(PGC-1α) pathway. In this study, H9c2 cells were cultured in hypoxia for 4 hours and then reoxygenated for 2 hours to construct a cardiomyocyte H/R injury model. After ginsenoside Re pre-administration intervention, cell activity, superoxide dismutase(SOD) activity, malondialdehyde(MDA) content, intracellular reactive oxygen species(Cyto-ROS), and intramitochondrial reactive oxygen species(Mito-ROS) levels were detected to evaluate the protective effect of ginsenoside Re on H/R injury of H9c2 cells by resisting oxidative stress. Secondly, fluorescent probes were used to detect changes in mitochondrial membrane potential(ΔΨ_m) and mitochondrial membrane permeability open pore(mPTP), and immunofluorescence was used to detect the expression level of TOM20 to study the protective effect of ginsenoside Re on mitochondria. Western blot was further used to detect the protein expression levels of caspase-3, cleaved caspase-3, Cyto C, Nrf2, HO-1, and PGC-1α to explore the specific mechanism by which ginsenoside Re protected mitochondria against oxidative stress and reduced H/R injury. Compared with the model group, ginse-noside Re effectively reduced the H/R injury oxidative stress response of H9c2 cells, increased SOD activity, reduced MDA content, and decreased Cyto-ROS and Mito-ROS levels in cells. Ginsenoside Re showed a good protective effect on mitochondria by increasing ΔΨ_m, reducing mPTP, and increasing TOM20 expression. Further studies showed that ginsenoside Re promoted the expression of Nrf2, HO-1, and PGC-1α proteins, and reduced the activation of the apoptosis-related regulatory factor caspase-3 to cleaved caspase-3 and the expression of Cyto C protein. In summary, ginsenoside Re can significantly reduce I/R injury in H9c2 cells. The specific mechanism is related to the promotion of mitochondrial biogenesis through the Nrf2/HO-1/PGC-1α pathway, thereby increasing the number of mitochondria, improving mitochondrial function, enhancing the ability of cells to resist oxidative stress, and alleviating cell apoptosis.


Asunto(s)
Ginsenósidos , Factor 2 Relacionado con NF-E2 , Biogénesis de Organelos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Caspasa 3/metabolismo , Transducción de Señal , Estrés Oxidativo , Hipoxia , Miocitos Cardíacos , Apoptosis , Superóxido Dismutasa/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1286-1294, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621976

RESUMEN

This study explored the specific mechanism by which tetrahydropalmatine(THP) inhibited mitophagy through the UNC-51-like kinase 1(ULK1)/FUN14 domain containing 1(FUNDC1) pathway to reduce hypoxia/reoxygenation(H/R) injury in H9c2 cells. This study used H9c2 cells as the research object to construct a cardiomyocyte H/R injury model. First, a cell viability detection kit was used to detect cell viability, and a micro-method was used to detect lactate dehydrogenase(LDH) leakage to evaluate the protective effect of THP on H/R injury of H9c2 cells. In order to evaluate the protective effect of THP on mitochondria, the chemical fluorescence method was used to detect intracellular reactive oxygen species, intramitochondrial reactive oxygen species, mitochondrial membrane potential, and autophagosomes, and the luciferin method was used to detect intracellular adenosine 5'-triphosphate(ATP) content. Western blot was further used to detect the ratio of microtubule-associated protein 1 light chain 3(LC3) membrane type(LC3-Ⅱ) and slurry type(LC3-Ⅰ) and activated cleaved caspase-3 expression level. In addition, ULK1 expression level and its phosphorylation degree at Ser555 site, as well as the FUNDC1 expression level and its phosphorylation degree of Ser17 site were detected to explore its specific mechanism. The results showed that THP effectively reduced mitochondrial damage in H9c2 cells after H/R. THP protected mitochondria by reducing the level of reactive oxygen species in cells and mitochondria, increasing mitochondrial membrane potential, thereby increasing cellular ATP production, enhancing cellular activity, reducing cellular LDH leakage, and finally alleviating H/R damage in H9c2 cells. Further studies have found that THP could reduce the production of autophagosomes, reduce the LC3-Ⅱ/LC3-Ⅰ ratio, and lower the expression of the apoptosis-related protein, namely cleaved caspase-3, indicating that THP could reduce apoptosis by inhibiting autophagy. In-depth studies have found that THP could inhibit the activation of the ULK1/FUNDC1 pathway of mitophagy and the occurrence of mitophagy by reducing the phosphorylation degree of ULK1 at Ser555 and FUNDC1 at Ser17. The application of ULK1 agonist BL-918 reversely verified the effect of THP on reducing the phosphorylation of ULK1 and FUNDC1. In summary, THP inhibited mitophagy through the ULK1/FUNDC1 pathway to reduce H/R injury in H9c2 cells.


Asunto(s)
Alcaloides de Berberina , Hipoxia , Mitofagia , Fenilacetatos , Humanos , Mitofagia/fisiología , Caspasa 3 , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Adenosina Trifosfato/farmacología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales
3.
BMC Nephrol ; 24(1): 314, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884904

RESUMEN

Acute kidney injury (AKI) is a serious disorder associated with significant morbidity and mortality. AKI and ischemia/reperfusion (hypoxia/reoxygenation, H/R) injury can be induced due to several reasons. Paeoniflorin (PF) is a traditional herbal medicine derived from Paeonia lactiflora Pall. It exerts diverse therapeutic effects, including anti-inflammatory, antioxidative, antiapoptotic, and immunomodulatory properties; thus, it is considered valuable for treating several diseases. However, the effects of PF on H/R injury-induced AKI remain unknown. In this study, we established an in vitro H/R model using COCL2 and investigated the functions and underlying mechanisms of PF on H/R injury in HK-2 cells. The cell vitality was evaluated using the cell count kit-8 assay. The DCFH-DA fluorescence probe was used to measure the levels of reactive oxygen species (ROS). Oxidative damage was detected using superoxide dismutase (SOD) and malondialdehyde (MDA) assay kits. Apoptotic relative protein and Keap1/Nrf2/HO-1 signaling were evaluated by Western blotting. Our results indicated that PF increased cell viability and SOD activity and decreased the ROS and MDA levels in HK-2 cells with H/R injury. PF inhibits apoptosis by increasing Bcl-2 and decreasing Bax. Furthermore, PF significantly upregulated the expression of HO-1 and Nrf2, but downregulated the expression of HIF-1α and Keap1. PF considerably increased Nrf2 nuclear translocation and unregulated the HO-1 expression. The Nrf2 inhibitor (ML385) could reverse the abovementioned protective effects of PF, suggesting that Nrf2 can be a critical target of PF. To conclude, we found that PF attenuates H/R injury-induced AKI by decreasing the oxidative damage via the Nrf2/HO-1 pathway and inhibiting apoptosis.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Humanos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Factor 2 Relacionado con NF-E2/uso terapéutico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Transducción de Señal , Estrés Oxidativo , Apoptosis , Hipoxia , Superóxido Dismutasa , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
4.
Fitoterapia ; 170: 105663, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37652268

RESUMEN

A novel discovery of two hybrid benzodioxepin-dalbergiphenol epimers, named cochindalbergiphenols A-B (1-2), and a benzofuran-dalbergiphenol hybrid, named cochindalbergiphenol C (3), were isolated and identified from the heartwood of Dalbergia cochinchinensis. The structures of all the isolated compounds were identified through NMR and HRESIMS techniques, while the absolute configurations were determined by comparing the experimental and calculated ECD spectra. Compounds 1-3 exhibited potential protective effects against hypoxia/reoxygenation (H/R) induced injury in H9c2 cells.


Asunto(s)
Dalbergia , Estructura Molecular , Dalbergia/química , Extractos Vegetales/química , Espectroscopía de Resonancia Magnética
5.
Anal Biochem ; 675: 115214, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37353066

RESUMEN

Fructus Choerospondiatis (FC), a Mongolian medicine, was mainly used in Mongolian medical theory for the treatment of coronary heart disease (CHD). Nonetheless, the main components and mechanisms of action of FC in the treatment of coronary artery disease have not been studied clearly. AIM OF THE STUDY: The aim of this study is to identify the components of FC and analyze the pathways affected by the targets of these components to probe into the potential mechanisms of action of FC on coronary heart disease. MATERIALS AND METHODS: Identification of compounds in FC employing high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS) method, then further investigate the network pharmacology and molecular docking to obtain potential targets and elucidate the potential mechanism of action of FC in the therapy of CHD. Experimental validation was established to verify the mechanism of FC in vitro. RESULTS: 21 FC components were identified and 65 overlapping targets were gained. In addition, these ingredients regulated AMPK and PPAR signaling pathway by 65 target genes including IL6, AKT1 and PPARg, etc. Molecular docking displayed that the binding ability of the key target PPARg to FC components turned out to be better. Experimental validation proved that FC treatment decreased the expression of PPARg (p < 0.05) compare with model group, which may be involved in the PPAR signaling pathway. CONCLUSIONS: This study was the first to elucidate the mechanism of action of components of FC for the treatment of CHD using network pharmacology. It alleviated CHD by inhibiting the expression of PPARg to attenuate hypoxia/reoxygenation injury, and the results give a basis for elucidating the molecular mechanism of action of FC for the treatment of coronary heart disease.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , PPAR gamma , Enfermedad Coronaria/tratamiento farmacológico , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
6.
Redox Biol ; 64: 102777, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315344

RESUMEN

Zinc (Zn) has antioxidant, anti-inflammatory and anti-proliferative actions, with Zn dysregulation associated with coronary ischemia/reperfusion injury and smooth muscle cell dysfunction. As the majority of studies concerning Zn have been conducted under non-physiological hyperoxic conditions, we compare the effects of Zn chelation or supplementation on total intracellular Zn content, antioxidant NRF2 targeted gene transcription and hypoxia/reoxygenation-induced reactive oxygen species generation in human coronary artery smooth muscle cells (HCASMC) pre-adapted to hyperoxia (18 kPa O2) or normoxia (5 kPa O2). Expression of the smooth muscle marker SM22-α was unaffected by lowering pericellular O2, whereas calponin-1 was significantly upregulated in cells under 5 kPa O2, indicating a more physiological contractile phenotype under 5 kPa O2. Inductively coupled plasma mass spectrometry established that Zn supplementation (10 µM ZnCl2 + 0.5 µM pyrithione) significantly increased total Zn content in HCASMC under 18 but not 5 kPa O2. Zn supplementation increased metallothionein mRNA expression and NRF2 nuclear accumulation in cells under 18 or 5 kPa O2. Notably, NRF2 regulated HO-1 and NQO1 mRNA expression in response to Zn supplementation was only upregulated in cells under 18 but not 5 kPa. Furthermore, whilst hypoxia increased intracellular glutathione (GSH) in cells pre-adapted to 18 but not 5 kPa O2, reoxygenation had negligible effects on GSH or total Zn content. Reoxygenation-induced superoxide generation in cells under 18 kPa O2 was abrogated by PEG-superoxide dismutase but not by PEG-catalase, and Zn supplementation, but not Zn chelation, attenuated reoxygenation-induced superoxide generation in cells under 18 but not 5kPaO2, consistent with a lower redox stress under physiological normoxia. Our findings highlight that culture of HCASMC under physiological normoxia recapitulates an in vivo contractile phenotype and that effects of Zn on NRF2 signaling are altered by oxygen tension.


Asunto(s)
Vasos Coronarios , Hiperoxia , Humanos , Vasos Coronarios/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/metabolismo , Superóxidos/metabolismo , Zinc/farmacología , Zinc/metabolismo , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Hiperoxia/metabolismo , Glutatión/metabolismo , ARN Mensajero/metabolismo , Suplementos Dietéticos
7.
Artículo en Inglés | MEDLINE | ID: mdl-36652817

RESUMEN

Myocardial ischemia/reperfusion (MI/R) injury is a life-threatening syndrome with high morbidity and mortality. Zhishi-Xiebai-Guizhi Decoction (ZSXBGZD) is a classic traditional Chinese medicine formula, used to treat cardiovascular diseases for centuries. However, its underlying medicinal mechanism has not been clearly elucidated, which hinders its widespread application. Here, the curative effects and therapeutic mechanism of ZSXBGZD against MI/R were addressed based on an integration of pharmaceutical evaluation and cellular metabolomics. First, a hypoxia/reoxygenation (H/R) model in H9c2 cells was employed to resemble MI/R and multiple pharmacological indicators were performed to assess the efficacy of ZSXBGZD. The results showed that ZSXBGZD possessed exceptional ability in attenuating cardiomyocyte injury, concerning oxidative stress, mitochondrial dysfunction, energy acquisition and cell apoptosis. Furthermore, a cell metabolomics approach based on HILIC and UPLC-Q-TOF-MS coupled with multivariate analysis was conducted to explore the metabolic regulation of ZSXBGZD. 38 differential polar metabolites related to H/R were uncovered, and 34 of them were reversed to normal state after the treatment of ZSXBGZD, revealing the perturbations of energy metabolism and amino acid metabolism. Moreover, formula decomposition justified the combination of single herbs to form ZSXBZGD and confirmed the pivotal status of Allii Macrostemonis Bulbus and Trichosanthis Fructus.


Asunto(s)
Hipoxia , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Hipoxia/metabolismo , Estrés Oxidativo , Apoptosis
8.
J Integr Med ; 20(4): 365-375, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35534381

RESUMEN

OBJECTIVE: Qili Qiangxin (QLQX), a compound herbal medicine formula, is used effectively to treat congestive heart failure in China. However, the molecular mechanisms of the cardioprotective effect are still unclear. This study explores the cardioprotective effect and mechanism of QLQX using the hypoxia-reoxygenation (H/R)-induced myocardial injury model. METHODS: The main chemical constituents of QLQX were analyzed using high-performance liquid chromatography-evaporative light-scattering detection. The model of H/R-induced myocardial injury in H9c2 cells was developed to simulate myocardial ischemia-reperfusion injury. Apoptosis, autophagy, and generation of reactive oxygen species (ROS) were measured to assess the protective effect of QLQX. Proteins related to autophagy, apoptosis and signalling pathways were detected using Western blotting. RESULTS: Apoptosis, autophagy and the excessive production of ROS induced by H/R were significantly reduced after treating the H9c2 cells with QLQX. QLQX treatment at concentrations of 50 and 250 µg/mL caused significant reduction in the levels of LC3II and p62 degradation (P < 0.05), and also suppressed the AMPK/mTOR signalling pathway. Furthermore, the AMPK inhibitor Compound C (at 0.5 µmol/L), and QLQX (250 µg/mL) significantly inhibited H/R-induced autophagy and apoptosis (P < 0.01), while AICAR (an AMPK activator, at 0.5 mmol/L) increased cardiomyocyte apoptosis and autophagy and abolished the anti-apoptotic effect of QLQX. Similar phenomena were also observed on the expressions of apoptotic and autophagic proteins, demonstrating that QLQX reduced the apoptosis and autophagy in the H/R-induced injury model via inhibiting the AMPK/mTOR pathway. Moreover, ROS scavenger, N-Acetyl-L-cysteine (NAC, at 2.5 mmol/L), significantly reduced H/R-triggered cell apoptosis and autophagy (P < 0.01). Meanwhile, NAC treatment down-regulated the ratio of phosphorylation of AMPK/AMPK (P < 0.01), which showed a similar effect to QLQX. CONCLUSION: QLQX plays a cardioprotective role by alleviating apoptotic and autophagic cell death through inhibition of the ROS/AMPK/mTOR signalling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Muerte Celular Autofágica , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Autofagia , Medicamentos Herbarios Chinos , Medicina de Hierbas , Humanos , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
9.
Phytother Res ; 36(6): 2628-2640, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35583809

RESUMEN

Psoralidin (PSO) is a natural phenolic coumarin extracted from the seeds of Psoralea corylifolia L. Growing preclinical evidence indicates that PSO has anti-inflammatory, anti-vitiligo, anti-bacterial, and anti-viral effects. Growth arrest-specific gene 6 (GAS6) and its receptor, Axl, modulate cellular oxidative stress, apoptosis, survival, proliferation, migration, and mitogenesis. Notably, the neuroprotective role of the GAS6/Axl axis has been identified in previous studies. We hypothesize that PSO ameliorates cerebral hypoxia/reoxygenation (HR) injury via activating the GAS6/Axl signaling. We first confirmed that PSO was not toxic to the cells and upregulated GAS6 and Axl expression after HR injury. Moreover, PSO exerted a marked neuroprotective effect against HR injury, represented by restored cell viability and cell morphology, decreased lactate dehydrogenase (LDH) release, and reactive oxygen species (ROS) generation. Furthermore, PSO pretreatment also elevated the levels of nuclear factor-related factor 2 (Nrf-2), NAD(P)H dehydrogenase quinone-1 (NQO1), heme oxygenase-1 (HO-1), silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF1), uncoupling protein 2 (UCP2), and B-cell lymphoma 2 (BCl2) both in the condition of baseline and HR injury. However, GAS6 siRNA or Axl siRNA inhibited the neuroprotective effects of PSO. Our findings suggest that PSO pretreatment attenuated HR-induced oxidative stress, apoptosis, and mitochondrial dysfunction in neuroblastoma cells through the activation of GAS6/Axl signaling.


Asunto(s)
Hipoxia Encefálica , Fármacos Neuroprotectores , Benzofuranos , Cumarinas/farmacología , Humanos , Hipoxia , Péptidos y Proteínas de Señalización Intercelular , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo
10.
Mol Biol Rep ; 49(2): 885-894, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35001248

RESUMEN

BACKGROUND: Anshen Buxin Liuwei pill (ABLP) is a Mongolian medicinal formula that is composed of six medicinal materials: the Mongolian medicine Bos taurus domesticus Gmelin, Choerospondias axillaris (Roxb.) Burtt et Hill, Myristica fragrans Houtt., Eugenia caryophµllata Thunb., Aucklandia lappa Decne., and Liqui dambar formosana Hance. ABLP is considered to have a therapeutic effect on symptoms such as coronary heart disease, angina pectoris, arrhythmia, depression and irritability, palpitation, and shortness of breath. METHODS: H9c2 cardiomyocytes were used to construct a hypoxia/reoxygenation (HR) injury model. CCK-8 assay and Annexin V-FITC cell apoptosis assays were used for cell viability and cell apoptosis determination. The LDH, SOD, MDA, CAT, CK, GSH-Px, Na+-K+-ATPase, and Ca2+-ATPase activities in cells were determined to assess the protective effects of ABLP. The mRNA levels of Sirtuin3 (Sirt3) and Cytochrome C (Cytc) in H9c2 cells were determined by quantitative real-time PCR. RESULTS: The results indicate that HR-treated cells began to shrink from the spindle in an irregular shape with some floated in the medium. By increasing the therapeutic dose of ABLP (5, 25, and 50 µg/mL), the cells gradually reconverted in a concentration-dependent manner. The release of CK in HR-treated cells was significantly increased, indicating that ABLP exerts a protective effect in H9c2 cells against HR injury and can improve mitochondrial energy metabolism and mitochondrial function integrity. The present study scrutinized the cardioprotective effects of ABLP against HR-induced H9c2 cell injury through antioxidant and mitochondrial pathways. CONCLUSIONS: ABLP could be a promising therapeutic drug for the treatment of myocardial ischemic cardiovascular disease. The results will provide reasonable information for the clinical use of ABLP.


Asunto(s)
Medicina Tradicional de Asia Oriental/métodos , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Hipoxia/metabolismo , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Sirtuina 3/metabolismo
11.
Journal of Integrative Medicine ; (12): 365-375, 2022.
Artículo en Inglés | WPRIM | ID: wpr-939894

RESUMEN

OBJECTIVE@#Qili Qiangxin (QLQX), a compound herbal medicine formula, is used effectively to treat congestive heart failure in China. However, the molecular mechanisms of the cardioprotective effect are still unclear. This study explores the cardioprotective effect and mechanism of QLQX using the hypoxia-reoxygenation (H/R)-induced myocardial injury model.@*METHODS@#The main chemical constituents of QLQX were analyzed using high-performance liquid chromatography-evaporative light-scattering detection. The model of H/R-induced myocardial injury in H9c2 cells was developed to simulate myocardial ischemia-reperfusion injury. Apoptosis, autophagy, and generation of reactive oxygen species (ROS) were measured to assess the protective effect of QLQX. Proteins related to autophagy, apoptosis and signalling pathways were detected using Western blotting.@*RESULTS@#Apoptosis, autophagy and the excessive production of ROS induced by H/R were significantly reduced after treating the H9c2 cells with QLQX. QLQX treatment at concentrations of 50 and 250 μg/mL caused significant reduction in the levels of LC3II and p62 degradation (P < 0.05), and also suppressed the AMPK/mTOR signalling pathway. Furthermore, the AMPK inhibitor Compound C (at 0.5 μmol/L), and QLQX (250 μg/mL) significantly inhibited H/R-induced autophagy and apoptosis (P < 0.01), while AICAR (an AMPK activator, at 0.5 mmol/L) increased cardiomyocyte apoptosis and autophagy and abolished the anti-apoptotic effect of QLQX. Similar phenomena were also observed on the expressions of apoptotic and autophagic proteins, demonstrating that QLQX reduced the apoptosis and autophagy in the H/R-induced injury model via inhibiting the AMPK/mTOR pathway. Moreover, ROS scavenger, N-Acetyl-L-cysteine (NAC, at 2.5 mmol/L), significantly reduced H/R-triggered cell apoptosis and autophagy (P < 0.01). Meanwhile, NAC treatment down-regulated the ratio of phosphorylation of AMPK/AMPK (P < 0.01), which showed a similar effect to QLQX.@*CONCLUSION@#QLQX plays a cardioprotective role by alleviating apoptotic and autophagic cell death through inhibition of the ROS/AMPK/mTOR signalling pathway.


Asunto(s)
Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Muerte Celular Autofágica , Autofagia , Medicamentos Herbarios Chinos , Medicina de Hierbas , Hipoxia/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
12.
Am J Chin Med ; 49(8): 1913-1927, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34775933

RESUMEN

Myocardial ischemia/reperfusion injury (MIRI) is the major cause of myocardial cell damage in acute myocardial infarction, and its treatment remains a clinical challenge. Ginsenoside Rb1 showed protective effects on the cardiovascular system; however, the underlying mechanism remains largely unclear. Effects of Ginsenoside Rb1 on rat MIRI-induced myocardial infarct size were evaluated through TTC staining. TUNEL assay and flow cytometry analysis were employed to estimate cell apoptosis. Apoptosis, autophagy and PI3K/Akt/mTOR pathway-related proteins were estimated via western blot. Expression of Beclin1 in myocardial tissues were examined by immunohistochemical analysis. Expression levels of IL-1[Formula: see text], TNF-[Formula: see text] and IL-6 were tested by enzyme-linked immunosorbent assay (ELISA). Here, we found that Ginsenoside Rb1 treatment not only alleviated MIRI in rats but also protected H9C2 cells against hypoxia/reoxygenation induced damage. Ginsenoside Rb1 abolished the MIRI-induced activation of autophagy. Meanwhile, we found that treatment of 3-MA (autophagy inhibitor) could enhance the protective effects of Ginsenoside Rb1 on H9C2 cells during H/R. Moreover, Ginsenoside Rb1 treatment resulted in the activation of the PI3K/Akt/mTOR pathway, and treatment of LY294002 (PI3K/Akt pathway repressor) abolished the protective effects of Ginsenoside Rb1 on myocardial in vitro and in vivo. Our results suggest that Ginsenoside Rb1 functions as a protector against MIRI by repressing cardiomyocyte autophagy through the PI3K/Akt/mTOR signaling pathway.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Apoptosis , Autofagia , Ginsenósidos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
13.
Placenta ; 111: 10-18, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34126416

RESUMEN

INTRODUCTION: Attenuation of trophoblast cell dysfunction would be beneficial for retarding pre-eclampsia (PE). Vitamin D has been reported to improve trophoblast cell function in early PE, but the mechanism involved is not fully elucidated. This study is aimed to investigate whether vitamin D alleviates trophoblast cell dysfunction via regulating autophagy. METHODS: Human trophoblast HTR-8 cells were cultured in hypoxia/reoxygenation (H/R) condition to simulate the oxidative stress state of early PE in vitro. MTT, Transwell and tube formation assays were respectively applied to assess cell proliferation, invasion, and angiogenesis abilities. DCFH-DA staining was performed to detect cellular reactive oxygen species levels. GFP-RFP-LC3 plasmid transfection and transmission electron microscopy were subjected to monitor autophagy. Enzyme-linked immunosorbent assay and Western blot analysis were used to detect autophagy-related and pyroptosis-associated molecules. RESULTS: H/R led to severe impairments on the bio-function of HTR-8 cells, as evidenced by the deficiency of cell proliferation, invasion, and angiogenesis abilities, and the increase of cellular ROS production. Simultaneously, H/R inhibited autophagy and triggered pyroptosis. 1,25(OH)2D3, the hormonally active form of vitamin D, dramatically attenuated H/R-induced trophoblast dysfunction. Also, 1,25(OH)2D3 activated autophagy and inhibited pyroptosis. Additionally, autophagy-enhancer rapamycin exerted similar protective effect to that of 1,25(OH)2D3, whereas autophagy-inhibitor 3-methyladenine blocked the protective effect of 1,25(OH)2D3. DISCUSSION: The mechanism that vitamin D alleviates trophoblast cell dysfunction is associated with autophagy induction and pyroptosis inhibition.


Asunto(s)
Autofagia , Hipoxia de la Célula , Trofoblastos/fisiología , Vitamina D/fisiología , Calcitriol , Línea Celular , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Preeclampsia/prevención & control , Embarazo , Vitamina D/uso terapéutico
14.
Eur J Pharmacol ; 901: 174095, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33862063

RESUMEN

Previous clinical studies have shown that anisodamine could improve no-reflow phenomenon and prevent reperfusion arrhythmias, but whether this protective effect is related to the antagonism of the M-type cholinergic receptor or other potential mechanisms is uncertain. The aim of the present study was to investigate the role of the mitochondrial ATP-sensitive potassium channel (mitoK ATP ) in cardioprotective effect of anisodamine against ischemia/reperfusion injury. Anisodamine and 5- hydroxydecanoic acid were used to explore the relationship between anisodamine and mitoK ATP . Using a Langendorff isolated heart ischemia/reperfusion injury model, hemodynamic parameters and reperfusion ventricular arrhythmia were evaluated; in addition, changes in myocardial infarct size, cTnI from coronary effluent and myocardial ultrastructure, as well as ATP, MDA and SOD in myocardial tissues, were detected. In the hypoxia/reoxygenation injury model of neonatal rat cardiomyocyte, cTnI release in the culture medium and levels of ATP, MDA and SOD in cardiomyocytes and mitochondrial membrane potential, were analyzed. Overall, anisodamine could significantly improve the hemodynamic indexes of isolated rat heart injured by ischemia/reperfusion, reduce the occurrence of ventricular reperfusion arrhythmia and myocardial infarction area, and improve the ultrastructural damage of myocardium and mitochondria. The in vitro results demonstrated that anisodamine could improve mitochondrial energy metabolism, reduce oxidative stress and stabilize mitochondrial membrane potential. The cardioprotective effects were significantly inhibited by 5-hydroxydecanoic acid. In conclusion, this study suggests that the opening of mitoK ATP could play an important role in the protective effect of anisodamine against myocardial ischemia/reperfusion injury.


Asunto(s)
Cardiotónicos/uso terapéutico , Mitocondrias Cardíacas/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Canales de Potasio/efectos de los fármacos , Daño por Reperfusión/prevención & control , Alcaloides Solanáceos/uso terapéutico , Adenosina Trifosfato/metabolismo , Animales , Arritmias Cardíacas/prevención & control , Ácidos Decanoicos/farmacología , Metabolismo Energético/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Hidroxiácidos/farmacología , Técnicas In Vitro , Masculino , Malondialdehído/metabolismo , Ratas , Ratas Sprague-Dawley , Alcaloides Solanáceos/antagonistas & inhibidores , Superóxido Dismutasa/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 46(6): 1460-1466, 2021 Mar.
Artículo en Chino | MEDLINE | ID: mdl-33787144

RESUMEN

This project aimed to explore the protective effect of ginsenoside Rg_1 on hypoxia/reoxygenation(H/R)-induced H9 c2 cardiomyocyte injury and its underlying signaling pathway. The H/R model of H9 c2 cardiomyocytes was established and then the cells were divided into different treatment groups. CCK-8(cell counting kit-8) was used to detect the activity of cardiomyocytes; Brdu assay was used to detect the proliferation of H9 c2 cells; the caspase-3 activity was tested, and then the protein expression was assessed by Western blot. Flow cytometry was used to evaluate the apoptosis level of cardiomyocytes. Ginsenoside Rg_1 inhibited H/R-induced cardiomyocyte apoptosis and caspase-3 activity, promoted nuclear transcription of nuclear factor erythroid-2 related factor 2(Nrf2), and enhanced the expression of the downstream heme oxygenase-1(HO-1). Ginsenoside Rg_1 could increase Nrf2 nuclear transcription and HO-1 expression with the increase of concentration(10, 20, 40, 60 µmol·L~(-1)). However, the protective effect of ginsenoside Rg_1 on cardiomyocytes was significantly weakened after the transfection of Nrf2-siRNA. Ginsenoside Rg_1 could protect cardiomyocytes by activating the Nrf2/HO-1 pathway.


Asunto(s)
Ginsenósidos , Apoptosis , Ginsenósidos/farmacología , Hemo-Oxigenasa 1/genética , Humanos , Hipoxia , Miocitos Cardíacos , Factor 2 Relacionado con NF-E2/genética
16.
Biomed Pharmacother ; 135: 111177, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33454585

RESUMEN

Presently, optimal proportions and synergistic mechanisms of component-based Chinese medicines are critical for developing novel strategies to treat cardiovascular diseases (CVDs). A new multi-objective optimization algorithm based on uniform design (UD) and stepwise regression (SR) modeling is proposed to find the synergistic effect of orientin (Ori), quercitrin (Que) and vitexin (Vit), the three effective components from Polygonum orientale L., using the H9c2 cells injury induced by hypoxia/reoxygenation (H/R). The optimal proportion of these three components was calculated by simulated annealing (SA). In this research, the excellent combination named OQV-e (Ori: Que: Vit =12.55 µM: 39.99 µM: 19.99 µM) could exert significant cardioprotection against the H9c2 cells injury induced by H/R through increasing cell viability, decreasing leakage rate of lactate dehydrogenase (LDH) and the level of nitric oxide (NO). Moreover, western blot analysis revealed that OQV-e could activate autophagy by inhibiting the p-JNK/JNK signaling pathway, which showed that the method (UD-SR-SA) was a feasible strategy. Mathematical system modeling may be a considerable approach for the powerful mathematical analysis of the complex pharmacological effects of component-based Chinese medicines from herbal medicines, which might greatly enhance the efficiency to find new modern Chinese drugs for CVDs based on Chinese herbal medicine (CHM) with affirmative therapeutic effect.


Asunto(s)
Algoritmos , Descubrimiento de Drogas , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Extractos Vegetales/farmacología , Polygonum , Animales , Autofagia/efectos de los fármacos , Línea Celular , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Extractos Vegetales/aislamiento & purificación , Polygonum/química , Ratas , Transducción de Señal
17.
Zhongguo Zhong Yao Za Zhi ; 46(24): 6502-6510, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-34994143

RESUMEN

This study aimed to investigate the effect of methyl eugenol(ME) on hypoxia/reoxygenation(H/R)-induced injury of human renal tubular epithelial HK-2 cells and its mechanism. The viability of HK-2 cells cultured with different concentrations of ME and exposed to H/R was detected by cell counting kit-8(CCK-8) assay. The effect of ME on the morphology of HK-2 cells was observed under an inverted microscope. The content of intracellular reactive oxygen species in different groups was detected after 2',7'-dichlorodihydrofluorescein diacetate(DCFH-DA) fluorescence staining. Cell apoptosis was determined by flow cytometry. Changes in mitochondrial membrane potential were monitored by JC-1 dye. The concentrations of nuclear factor erythroid 2 related factor 2(Nrf2), heme oxygenase-1(HO-1), and nicotinamide adenine dinucleotide phosphatase oxidase 4(Nox4) were measured by Western blot, followed by the assay of Nrf2 concentration changes in cytoplasm and nucleus by confocal fluorescence staining. The results showed that when the concentration of ME was 0-40 µmol·L~(-1), the activity of HK-2 cells was not affected. Compared with the model group, ME enhanced the activity of HK-2 cells and the cell morphology was normal. As revealed by further experiments, ME inhibited the release of reactive oxygen species and the decline in mitochondrial membrane potential of HK-2 cells after H/R injury, promoted Nrf2/HO-1 expression and Nrf2 translocation to the nucleus, and down-regulated the expression of Nox4, thereby significantly reducing apoptosis. This protective effect of ME could be reversed by the specific Nrf2 inhibitor ML385. These findings have preliminarily proved that ME effectively protected HK-2 cells against H/R injury, which might be related to its promotion of Nrf2/HO-1 signaling pathway and inhibition of Nox4. Such exploration on the possible mechanism of ME in the treatment of renal ischemia-reperfusion injury(IRI) and protection of organ function from the perspective of antioxidant stress has provided reference for related research on the treatment of acute kidney injury with traditional Chinese medicine.


Asunto(s)
Eugenol , Daño por Reperfusión , Apoptosis , Células Epiteliales/metabolismo , Eugenol/análogos & derivados , Eugenol/farmacología , Hemo-Oxigenasa 1/metabolismo , Humanos , Hipoxia , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno , Daño por Reperfusión/tratamiento farmacológico
18.
Phytomedicine ; 81: 153415, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33285471

RESUMEN

BACKGROUND: Neuronal excitotoxicity induces a plethora of downstream signaling pathways, resulting in the calcium overload-induced excitotoxic cell death, a well-known phenomenon in cerebrovascular and neurodegenerative disorders. The naturally occurring phytosterol, stigmasterol (ST) is known for its potential role in cholesterol homeostasis and neuronal development. However, the ability of ST to protect against the induced excitotoxicity in hippocampal neurons has not been investigated yet. PURPOSE: The present study aimed to investigate whether ST could protect against hypoxia/reoxygenation (H/R)-induced excitotoxicity in hippocampal neurons. METHODS: After H/R, neurons were initially subjected to trypan blue exclusion assay for the assessment of cell viability. Live staining using fluorescence dyes namely JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide), DCFDA (2',7'-dichlorofluorescein diacetate) and FM1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) were used to measure MMP, ROS and synaptic vesicle pool size. Immunostaining was performed to analyze the expression levels of vesicular glutamate transporter 1 (VGLUT1), N-methyl-D-acetate receptor subunit 2B (GluN2B), LC3BII, p62, and PTEN induced protein kinase 1 (PINK1) in neuron after H/R. Western blotting was carried out to measure the protein expression of GluN2B. The molecular dynamics simulation was employed to elucidate the LXRß agonistic conformation of ST. RESULT: Pre-incubation of neuronal cultures with ST (20 µM) protected against excitotoxicity, and attenuated reactive oxygen species (ROS) generation, double-stranded DNA break, and mitochondrial membrane potential (MMP) loss. ST treatment also resulted in the downregulation of the expressions of VGLUT1 and GluN2B and the reduction of the size of recyclable synaptic vesicle (SV) pool. Like LXRß agonist GW3695, ST suppressed the expression of GluN2B. Furthermore, ST induced mitophagy through upregulating the expressions of LC3BII, p62, and PINK1. The molecular simulation study showed that ST interacted with the ligand binding domain of liver X receptor ß (LXRß), a known binding receptor of ST, through multiple hydrogen bonding. CONCLUSION: Collectively, these findings revealed that ST exhibited a promising neuroprotective effect by regulating both pre- and post-synaptic events following H/R, particularly, attenuation of GluN2B-mediated excitotoxicity and oxidative stress, and induction of mitophagy, and suggested that ST might be a therapeutic promise against ischemic stroke and its associated neurological disorders.


Asunto(s)
Receptores X del Hígado/agonistas , Mitofagia/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/prevención & control , Estigmasterol/farmacología , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Hipocampo/citología , Hipoxia/tratamiento farmacológico , Hipoxia/fisiopatología , Receptores X del Hígado/química , Receptores X del Hígado/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitofagia/fisiología , Simulación del Acoplamiento Molecular , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Estigmasterol/química , Estigmasterol/metabolismo
19.
Artículo en Chino | WPRIM | ID: wpr-921810

RESUMEN

This study aimed to investigate the effect of methyl eugenol(ME) on hypoxia/reoxygenation(H/R)-induced injury of human renal tubular epithelial HK-2 cells and its mechanism. The viability of HK-2 cells cultured with different concentrations of ME and exposed to H/R was detected by cell counting kit-8(CCK-8) assay. The effect of ME on the morphology of HK-2 cells was observed under an inverted microscope. The content of intracellular reactive oxygen species in different groups was detected after 2',7'-dichlorodihydrofluorescein diacetate(DCFH-DA) fluorescence staining. Cell apoptosis was determined by flow cytometry. Changes in mitochondrial membrane potential were monitored by JC-1 dye. The concentrations of nuclear factor erythroid 2 related factor 2(Nrf2), heme oxygenase-1(HO-1), and nicotinamide adenine dinucleotide phosphatase oxidase 4(Nox4) were measured by Western blot, followed by the assay of Nrf2 concentration changes in cytoplasm and nucleus by confocal fluorescence staining. The results showed that when the concentration of ME was 0-40 μmol·L~(-1), the activity of HK-2 cells was not affected. Compared with the model group, ME enhanced the activity of HK-2 cells and the cell morphology was normal. As revealed by further experiments, ME inhibited the release of reactive oxygen species and the decline in mitochondrial membrane potential of HK-2 cells after H/R injury, promoted Nrf2/HO-1 expression and Nrf2 translocation to the nucleus, and down-regulated the expression of Nox4, thereby significantly reducing apoptosis. This protective effect of ME could be reversed by the specific Nrf2 inhibitor ML385. These findings have preliminarily proved that ME effectively protected HK-2 cells against H/R injury, which might be related to its promotion of Nrf2/HO-1 signaling pathway and inhibition of Nox4. Such exploration on the possible mechanism of ME in the treatment of renal ischemia-reperfusion injury(IRI) and protection of organ function from the perspective of antioxidant stress has provided reference for related research on the treatment of acute kidney injury with traditional Chinese medicine.


Asunto(s)
Humanos , Apoptosis , Células Epiteliales/metabolismo , Eugenol/farmacología , Hemo-Oxigenasa 1/metabolismo , Hipoxia , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno , Daño por Reperfusión/tratamiento farmacológico
20.
J Cell Mol Med ; 24(18): 10924-10934, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32794652

RESUMEN

In the present study, we have investigated potential cardioprotective properties of Isosteviol analogue we recently synthesized and named JC105. Treatment of heart embryonic H9c2 cells with JC105 (10 µM) significantly increased survival of cells exposed to hypoxia-reoxygenation. JC105 (10 µM) activated ERK1/2, DRP1 and increased levels of cardioprotective SUR2A in hypoxia-reoxygenation, but did not have any effects on ERK1/2, DRP1 and/or SUR2A in normoxia. U0126 (10 µM) inhibited JC105-mediated phosphorylation of ERK1/2 and DRP1 without affecting AKT or AMPK, which were also not regulated by JC105. Seahorse bioenergetic analysis demonstrated that JC105 (10 µM) did not affect mitochondria at rest, but it counteracted all mitochondrial effects of hypoxia-reoxygenation. Cytoprotection afforded by JC105 was inhibited by U0126 (10 µM). Taken all together, these demonstrate that (a) JC105 protects H9c2 cells against hypoxia-reoxygenation and that (b) this effect is mediated via ERK1/2. The unique property of JC105 is that selectively activates ERK1/2 in cells exposed to stress, but not in cells under non-stress conditions.


Asunto(s)
Cardiotónicos/uso terapéutico , Hipoxia de la Célula/efectos de los fármacos , Diterpenos de Tipo Kaurano/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Oxígeno/farmacología , Animales , Butadienos/farmacología , Cardiotónicos/farmacología , Hipoxia de la Célula/fisiología , Línea Celular , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/farmacología , Dinaminas/metabolismo , Activación Enzimática/efectos de los fármacos , Glucólisis/efectos de los fármacos , Concentración de Iones de Hidrógeno , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Reperfusión Miocárdica , Miocitos Cardíacos/enzimología , Nitrilos/farmacología , Consumo de Oxígeno/efectos de los fármacos , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA